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Abstract

The area under the ROC curve (AUC) is a widely used performance measure in machine
learning, and has been widely studied in recent years particularly in the context of bi-
partite ranking. A dominant theoretical and algorithmic framework for AUC optimiza-
tion/bipartite ranking has been to reduce the problem to pairwise classification; in partic-
ular, it is well known that the AUC regret can be formulated as a pairwise classification
regret, which in turn can be upper bounded using usual regret bounds for binary classifi-
cation. Recently, Kotlowski et al. (2011) showed AUC regret bounds in terms of the regret
associated with ‘balanced’ versions of the standard (non-pairwise) logistic and exponential
losses. In this paper, we obtain such (non-pairwise) surrogate regret bounds for the AUC in
terms of a broad class of proper (composite) losses that we term strongly proper. Our proof
technique is considerably simpler than that of Kotlowski et al. (2011), and relies on prop-
erties of proper (composite) losses as elucidated recently by Reid and Williamson (2009,
2010, 2011) and others. Our result yields explicit surrogate bounds (with no hidden bal-
ancing terms) in terms of a variety of strongly proper losses, including for example logistic,
exponential, squared and squared hinge losses. An important consequence is that standard
algorithms minimizing a (non-pairwise) strongly proper loss, such as logistic regression and
boosting algorithms (assuming a universal function class and appropriate regularization),
are in fact AUC-consistent; moreover, our results allow us to quantify the AUC regret in
terms of the corresponding surrogate regret. We also obtain tighter surrogate regret bounds
under certain low-noise conditions via a recent result of Clémençon and Robbiano (2011).

Keywords: Area under ROC curve (AUC), bipartite ranking, statistical consistency, re-
gret bounds, proper losses, strongly proper losses.

1. Introduction

The area under the ROC curve (AUC) is a widely used performance measure in machine
learning, and has been widely studied, particularly in the context of bipartite ranking prob-
lems (Freund et al., 2003; Cortes and Mohri, 2004; Agarwal et al., 2005). A variety of
algorithms have been developed for optimizing the AUC, again often in the context of
bipartite ranking; many of these algorithms effectively reduce the problem to pairwise clas-
sification (Herbrich et al., 2000; Joachims, 2002; Freund et al., 2003; Rakotomamonjy, 2004;
Burges et al., 2005). In recent years, there has been much interest in understanding statisti-
cal consistency and regret behavior of such algorithms (Clémençon et al., 2008; Clémençon
and Robbiano, 2011; Kotlowski et al., 2011; Uematsu and Lee, 2011); indeed, there has
been much interest in understanding consistency and regret behavior for ranking problems
at large, including not only bipartite instance ranking problems under the AUC perfor-
mance measure, but also other forms of instance ranking problems as well as various types
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of label/subset ranking problems (Clémençon and Vayatis, 2007; Cossock and Zhang, 2008;
Balcan et al., 2008; Ailon and Mohri, 2008; Xia et al., 2008; Duchi et al., 2010; Ravikumar
et al., 2011; Buffoni et al., 2011; Calauzènes et al., 2012; Lan et al., 2012).

In this paper, we study regret bounds for the AUC, or equivalently, for bipartite in-
stance ranking problems where instances are labeled positive or negative, and the goal is to
learn a scoring function that minimizes the probability of mis-ranking a pair of positive and
negative instances, i.e. that maximizes the AUC. As noted above, a popular algorithmic
and theoretical approach to AUC optimization has been to reduce the problem to pairwise
classification; indeed, this approach enjoys theoretical support, since the AUC regret can
be formulated as a pairwise classification regret, and therefore any algorithm minimizing
the latter over a suitable class of functions will also minimize the AUC regret (Clémençon
et al., 2008, see Section 3.1 for a summary). Nevertheless, it has often been observed that
algorithms such as AdaBoost, logistic regression, and in some cases even SVMs, which min-
imize the exponential, logistic, and hinge losses respectively in the standard (non-pairwise)
setting, also yield good AUC performance (Cortes and Mohri, 2004; Rakotomamonjy, 2004;
Rudin and Schapire, 2009). For losses such as the exponential or logistic losses, this is not
surprising since algorithms minimizing these losses (but not the hinge loss) are known to
effectively estimate conditional class probabilities (Zhang, 2004); since the class probability
function provides the optimal ranking (Clémençon et al., 2008), it is intuitively clear (and
follows formally from results in (Clémençon et al., 2008; Clémençon and Robbiano, 2011))
that any algorithm providing a good approximation to the class probability function should
also produce a good ranking. However, there has been very little work on quantifying the
AUC regret of a scoring function in terms of the regret associated with such surrogate losses.

Recently, Kotlowski et al. (2011) showed that the AUC regret of a scoring function can
be upper bounded in terms of the regret associated with balanced versions of the standard
(non-pairwise) exponential and logistic losses. However their proof technique builds on
analyses involving the reduction of bipartite ranking to pairwise classification, and involves
analyses specific to the exponential and logistic losses (see Section 3.2).

In this paper, we obtain quantitative regret bounds for the AUC in terms of a broad class
of proper (composite) loss functions that we term strongly proper. Our proof technique is
considerably simpler than that of Kotlowski et al. (2011), and relies on properties of proper
(composite) losses as elucidated recently for example in (Reid and Williamson, 2009, 2010,
2011; Gneiting and Raftery, 2007; Buja et al., 2005). Our result yields explicit surrogate
bounds (with no hidden balancing terms) in terms of a variety of strongly proper (composite)
losses, including for example logistic, exponential, squared and squared hinge losses. An
immediate consequence is that standard algorithms minimizing such losses, such as logistic
regression and boosting algorithms (assuming a universal function class and appropriate
regularization), are in fact AUC-consistent. We also obtain tighter surrogate regret bounds
under certain low-noise conditions via a recent result of Clémençon and Robbiano (2011).

The paper is organized as follows. Section 2 gives preliminaries and background. Sec-
tion 3 summarizes previous work, namely the reduction of bipartite ranking to pairwise
binary classification and the result of Kotlowski et al. (2011). In Section 4 we define and
characterize strongly proper losses. Section 5 contains our main result, namely surrogate
regret bounds for the AUC in terms of strongly proper losses. Section 6 gives a tighter
bound under certain low-noise conditions. We conclude with a brief discussion in Section 7.
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2. Preliminaries and Background

Let X be an instance space and let D be a probability distribution on X × {±1}. For
(X,Y ) ∼ D and x ∈ X , we denote η(x) = P(Y = 1 | X = x) and p = P(Y = 1). We denote
R̄ = [−∞,∞] and R̄+ = [0,∞].

AUC and Bipartite Ranking. The AUC of a scoring function f : X→R̄ w.r.t. D, used
as a performance measure in bipartite ranking problems, can be written as follows (Cortes
and Mohri, 2004; Agarwal et al., 2005; Clémençon et al., 2008):1,2

AUCD[f ] = E
[
1
(
(Y − Y ′)(f(X)− f(X ′)) > 0

)
+ 1

2 1
(
f(X) = f(X ′)

) ∣∣ Y 6= Y ′
]
,

where (X,Y ), (X ′, Y ′) are assumed to be drawn i.i.d. from D, and 1(·) is 1 if its argument
is true and 0 otherwise; thus the AUC of f is simply the probability that a randomly drawn
positive instance is ranked higher by f (receives a higher score under f) than a randomly
drawn negative instance, with ties broken uniformly at random. The optimal AUC is

AUC∗D = sup
f :X→R̄

AUCD[f ] = 1− 1

2p(1− p)
EX,X′

[
min

(
η(X)(1−η(X ′)), η(X ′)(1−η(X))

)]
.

The AUC regret of a scoring function f : X→R̄ is then simply

regretAUC
D [f ] = AUC∗D −AUCD[f ] .

We will be interested in upper bounding the AUC regret of a scoring function f in terms
of its regret with respect to various (binary) loss functions.

Loss Functions and Regret. A binary loss function on a prediction space Ŷ ⊆ R̄ is a
function ` : {±1}×Ŷ→R̄+ that assigns a penalty `(y, ŷ) for predicting ŷ ∈ Ŷ when the true
label is y ∈ {±1}.3 For any such loss `, the `-error (or `-risk) of a function f : X→Ŷ is
defined as

er`D[f ] = E(X,Y )∼D[`(Y, f(X))] ,

and the optimal `-error (or optimal `-risk or Bayes `-risk) is defined as

er`,∗D = inf
f :X→Ŷ

er`D[f ] .

The `-regret of a function f : X→Ŷ is the difference of its `-error from the optimal `-error:

regret`D[f ] = er`D[f ]− er`,∗D .

The conditional `-risk L` : [0, 1]× Ŷ→R̄+ is defined as4

L`(η, ŷ) = EY∼η[`(Y, ŷ)] = η `(1, ŷ) + (1− η) `(−1, ŷ) ,

1. One typically works with real-valued functions; we also allow values −∞ and ∞ for technical reasons.
2. We assume measurability conditions wherever necessary.
3. Most loss functions take values in R+, but some loss functions (such as the logistic loss, described later)

can assign a loss of ∞ to certain label-prediction pairs.
4. Note that we overload notation by using η here to refer to a number in [0, 1]; the usage should be clear

from context.
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where Y ∼ η denotes a {±1}-valued random variable taking value +1 with probability η.
The conditional Bayes `-risk H` : [0, 1]→R̄+ is defined as

H`(η) = inf
ŷ∈Ŷ

L`(η, ŷ) .

Clearly, er`D[f ] = EX [L`(η(X), f(X))] and er`,∗D = EX [H`(η(X))]. We note the following:

Lemma 1 For any Ŷ ⊆ R̄ and binary loss ` : {±1} × Ŷ→R̄+, the conditional Bayes `-risk
H` is a concave function on [0, 1].

The proof follows simply by observing that H` is defined as the pointwise infimum of a
family of linear (and therefore concave) functions, and therefore is itself concave.

Proper and Proper Composite Losses. Proper losses in their basic form are defined on
the prediction space Ŷ = [0, 1] and facilitate class probability estimation. A loss function
c : {±1} × [0, 1]→R̄+ is said to be proper if for all η ∈ [0, 1],

η ∈ arg min
η̂∈[0,1]

Lc(η, η̂) ,

and strictly proper if the minimizer is unique for all η ∈ [0, 1]. Equivalently, c is proper if
∀η ∈ [0, 1], Hc(η) = Lc(η, η), and strictly proper if Hc(η) < Lc(η, η̂) ∀η̂ 6= η. As in (Gneiting
and Raftery, 2007), we say a loss c : {±1} × [0, 1]→R̄+ is regular if c(1, η̂) ∈ R+ ∀η̂ ∈ (0, 1]
and c(−1, η̂) ∈ R+ ∀η̂ ∈ [0, 1), i.e. if c(y, η̂) is finite for all y, η̂ except possibly for c(1, 0)
and c(−1, 1), which are allowed to be infinite. We recall the following well known results:

Theorem 2 (Savage (1971)) A regular loss c : {±1}× [0, 1]→R̄+ is proper if and only if
for all η, η̂ ∈ [0, 1] there exists a superderivative H ′c(η̂) of Hc at η̂ such that5

Lc(η, η̂) = Hc(η̂) + (η − η̂) ·H ′c(η̂) .

Theorem 3 (Hendrickson and Buehler (1971); Schervish (1989)) A proper loss c :
{±1} × [0, 1]→R̄+ is strictly proper if and only if Hc is strictly concave.

The notion of properness can be extended to binary loss functions operating on predic-
tion spaces Ŷ other than [0, 1] via composition with a link function ψ : [0, 1]→Ŷ. Specifically,
for any Ŷ ⊆ R̄, a loss function ` : {±1} × Ŷ→R+ is said to be proper composite if it can be
written as

`(y, ŷ) = c(y, ψ−1(ŷ))

for some proper loss c : {±1} × [0, 1]→R̄+ and strictly increasing (and therefore invertible)
link function ψ : [0, 1]→Ŷ. Proper composite losses have been studied recently in (Reid
and Williamson, 2009, 2010, 2011; Buja et al., 2005), and include several widely used losses
such as squared, squared hinge, logistic, and exponential losses.

Note that for a proper composite loss ` formed from a proper loss c, H` = Hc. We
will refer to a proper composite loss ` formed from a regular proper loss c as regular proper
composite, a composite loss formed from a strictly proper loss as strictly proper composite,
etc. In Section 4, we will define and characterize strongly proper (composite) losses, which
we will use to obtain regret bounds for the AUC.

5. Here u ∈ R is a superderivative of Hc at η̂ if for all η ∈ [0, 1], Hc(η̂)−Hc(η) ≥ u(η̂ − η).
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3. Previous Work

As noted above, a popular theoretical and algorithmic framework for bipartite ranking/AUC
optimization has been to reduce the problem to pairwise classification. Below we review
this reduction in the context of our setting and notation, and then summarize the result of
Kotlowski et al. (2011) which builds on this pairwise reduction.

3.1. Reduction of Bipartite Ranking to Pairwise Binary Classification

Given a distribution D on X ×{±1}, consider the distribution D̃ on (X ×X )×{±1} defined
as follows:

1. Sample (X,Y ) and (X ′, Y ′) i.i.d. from D;

2. If Y = Y ′, then go to step 1; else set6

X̃ = (X,X ′) , Ỹ = sign(Y − Y ′)

and return (X̃, Ỹ ).

Now for any scoring function f : X→R̄, define fdiff : X × X→R̄ as

fdiff(x, x′) = f(x)− f(x′) . (1)

Also define the 0-1 loss `0-1 : {±1} × {±1}→{0, 1} as `0-1(y, ŷ) = 1(ŷ 6= y). Then it can be
shown that

AUCD[f ] = 1− er0-1
D̃

[sign ◦ fdiff ] ; AUC∗D = 1− er0-1,∗
D̃

,

where (g ◦ f)(u) = g(f(u)); the second equality follows from the fact that the classifier
h∗(x, x′) = sign(η(x)− η(x′)) (which is of the form in Eq. (1) for f = η) achieves the Bayes
0-1 risk, i.e. er0-1

D̃
[h∗] = er0-1,∗

D̃
(Clémençon et al., 2008). Thus

regretAUC
D [f ] = regret0-1

D̃
[sign ◦ fdiff ] , (2)

and therefore the AUC regret of a scoring function f : X→R̄ can be analyzed via upper
bounds on the 0-1 regret of the pairwise classifier (sign ◦ fdiff) : X × X→{±1}.7

In particular, as noted in (Clémençon et al., 2008), applying a result of Bartlett et al.
(2006), we can upper bound the pairwise 0-1 regret of any pairwise classifier h : X×X→{±1}
in terms of the pairwise `φ-regret associated with any classification-calibrated margin loss

6. Throughout the paper, sign(u) = +1 if u > 0 and −1 otherwise.
7. Note that the setting here is somewhat different from that of Balcan et al. (2008) and Ailon and Mohri

(2008), who consider a subset version of bipartite ranking where each instance consists of some finite
subset of objects to be ranked; there also the problem is reduced to a (subset) pairwise classification
problem, and it is shown that given any (subset) pairwise classifier h, a subset ranking function f can be
constructed such that the resulting subset ranking regret is at most twice the subset pairwise classification
regret of h (Balcan et al., 2008), or in expectation at most equal to the pairwise classification regret of
h (Ailon and Mohri, 2008).
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`φ : {±1} × R̄→R̄+, i.e. any loss of the form `φ(y, ŷ) = φ(yŷ) for some function φ : R̄→R̄+

satisfying ∀ η ∈ [0, 1], η 6= 1
2 ,8

ŷ∗ ∈ arg min
ŷ∈R̄

Lφ(η, ŷ) =⇒ ŷ∗(η − 1
2) > 0 .

Theorem 4 (Bartlett et al. (2006); see also Clémençon et al. (2008)) Let φ : R̄→R̄+

be such that the margin loss `φ : {±1}× R̄→R̄+ defined as `φ(y, ŷ) = φ(yŷ) is classification-
calibrated as above. Then ∃ strictly increasing function gφ : R̄+→[0, 1] with gφ(0) = 0 such

that for any f̃ : X × X→R̄,

regret0-1
D̃

[sign ◦ f̃ ] ≤ gφ

(
regretφ

D̃
[f̃ ]
)
.

Bartlett et al. (2006) give a construction for gφ; in particular, for the exponential loss given
by φexp(u) = e−u and logistic loss given by φlog(u) = ln(1 + e−u), both of which are known
to be classification-calibrated, one has

gexp(z) ≤
√

2z ; glog(z) ≤
√

2z . (3)

Kotlowski et al. (2011) build on these observations to bound the ranking regret in terms of
the regret associated with balanced versions of the exponential and logistic losses.

3.2. Result of Kotlowski et al. (2011)

For any binary loss ` : {±1} × Ŷ→R̄+, define the balanced `-loss `bal : {±1} × Ŷ→R̄+ as

`bal(y, ŷ) =
1

2p
`(1, ŷ) · 1(y = 1) +

1

2(1− p)
`(−1, ŷ) · 1(y = −1) . (4)

Such a balanced loss depends on the underlying distribution D via p = P(Y = 1). Kotlowski
et al. (2011) show the following, via analyses specific to the exponential and logistic losses:

Theorem 5 (Kotlowski et al. (2011)) For any f : X→R̄,

regretexp

D̃
[fdiff ] ≤ 9

4
regretexp,bal

D [f ] ; regretlog

D̃
[fdiff ] ≤ 2 regretlog,bal

D [f ] .

Combining this with Eq. (2), Theorem 4, and Eq. (3) then gives the following bounds on
the AUC regret in terms of the (non-pairwise) balanced exponential and logistic regrets:

regretAUC
D [f ] ≤ 3√

2

√
regretexp,bal

D [f ] ; regretAUC
D [f ] ≤ 2

√
regretlog,bal

D [f ] .

This suggests that an algorithm that produces a function f : X→R̄ with low balanced expo-
nential or logistic regret will also have low AUC regret. Unfortunately, since the balanced
losses depend on the unknown distribution D, they cannot be optimized by an algorithm
directly.9 Below we obtain upper bounds on the AUC regret of a function f directly in terms
of its loss-based regret (with no balancing terms) for a wide range of proper (composite)
loss functions that we term strongly proper, including the exponential and logistic losses as
special cases.

8. We abbreviate Lφ = L`φ , erφD = er
`φ
D , etc.

9. We note it is possible to optimize approximately balanced losses, e.g. by estimating p from the data.
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4. Strongly Proper Losses

We define strongly proper losses as follows:

Definition 6 Let c : {±1} × [0, 1]→R̄+ be a binary loss and let λ > 0. We say c is
λ-strongly proper if for all η, η̂ ∈ [0, 1],

Lc(η, η̂)−Hc(η) ≥ λ

2
(η − η̂)2 .

We have the following necessary and sufficient conditions for strong properness:

Lemma 7 Let λ > 0. If c : {±1} × [0, 1]→R̄+ is λ-strongly proper, then Hc is λ-strongly
concave.

Proof Let c be λ-strongly proper. Let η1, η2 ∈ [0, 1] such that η1 6= η2, and let t ∈ (0, 1).
Then we have

Hc

(
tη1 + (1− t)η2

)
= Lc

(
tη1 + (1− t)η2, tη1 + (1− t)η2

)
= t Lc

(
η1, tη1 + (1− t)η2

)
+ (1− t)Lc

(
η2, tη1 + (1− t)η2

)
≥ t

(
Hc(η1) +

λ

2
(1− t)2(η1 − η2)2

)
+ (1− t)

(
Hc(η2) +

λ

2
t2(η1 − η2)2

)
= tHc(η1) + (1− t)Hc(η2) +

λ

2
t(1− t)(η1 − η2)2 .

Thus Hc is λ-strongly concave.

Lemma 8 Let λ > 0 and let c : {±1} × [0, 1]→R̄+ be a regular proper loss. If Hc is
λ-strongly concave, then c is λ-strongly proper.

Proof Let η, η̂ ∈ [0, 1]. By Theorem 2, there exists a superderivative H ′c(η̂) of Hc at η̂ such
that

Lc(η, η̂) = Hc(η̂) + (η − η̂) ·H ′c(η̂) .

This gives

Lc(η, η̂)−Hc(η) = Hc(η̂)−Hc(η) + (η − η̂) ·H ′c(η̂)

≥ λ

2
(η̂ − η)2 , since Hc is λ-strongly concave.

Thus c is λ-strongly proper.

This gives us the following characterization of strong properness for regular proper losses:

Theorem 9 Let λ > 0 and let c : {±1} × [0, 1]→R̄+ be a regular proper loss. Then c is
λ-strongly proper if and only if Hc is λ-strongly concave.

It is interesting to compare this result with Theorem 3, which gives a similar character-
ization of strict properness of a proper loss c in terms of strict concavity of Hc. Section 5.2
contains examples of strongly proper (composite) losses. Theorem 9 will form our main tool
in establishing strong properness of many of these loss functions.
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5. Regret Bounds via Strongly Proper Losses

We start by recalling the following result of Clémençon et al. (2008) (adapted to account
for ties, and for the conditioning on Y 6= Y ′):

Theorem 10 (Clémençon et al. (2008)) For any f : X→R̄,

regretAUC
D [f ] =

1

2p(1− p)
EX,X′

[∣∣η(X)− η(X ′)
∣∣ · (1

(
(f(X)− f(X ′))(η(X)− η(X ′)) < 0

)
+ 1

21
(
f(X) = f(X ′)

))]
.

As noted by Clémençon and Robbiano (2011), this leads to the following corollary on the
AUC regret of any plug-in ranking (scoring) function based on an estimate η̂:

Corollary 11 For any η̂ : X→[0, 1],

regretAUC
D

[
η̂
]
≤ 1

p(1− p)
EX

[∣∣η̂(X)− η(X)
∣∣] .

For completeness, a proof is given in Appendix A. We are now ready for our main result.

5.1. Main Result

Theorem 12 Let Ŷ ⊆ R̄ and let λ > 0. Let ` : {±1} × Ŷ→R̄+ be a λ-strongly proper
composite loss. Then for any f : X→Ŷ,

regretAUC
D [f ] ≤

√
2

p(1− p)
√
λ

√
regret`D[f ] .

Proof Let c : {±1}× [0, 1]→R̄+ be a λ-strongly proper loss and ψ : [0, 1]→Ŷ be a (strictly
increasing) link function such that `(y, ŷ) = c(y, ψ−1(ŷ)) for all y ∈ {±1}, ŷ ∈ Ŷ. Let
f : X→Ŷ. Then we have,

regretAUC
D [f ] = regretAUC

D [ψ−1 ◦ f ] , since ψ is strictly increasing

≤ 1

p(1− p)
EX

[∣∣ψ−1(f(X))− η(X)
∣∣] , by Corollary 11

=
1

p(1− p)

√(
EX

[∣∣ψ−1(f(X))− η(X)
∣∣])2

≤ 1

p(1− p)

√
EX

[(
ψ−1(f(X))− η(X)

)2]
,

by convexity of φ(u) = u2 and Jensen’s inequality

≤ 1

p(1− p)

√
2

λ
EX

[
Lc(η(X), ψ−1(f(X)))−Hc(η(X))

]
, since c is λ-strongly proper

=
1

p(1− p)

√
2

λ
EX

[
L`(η(X), (f(X))−H`(η(X))

]
=

√
2

p(1− p)
√
λ

√
regret`D[f ] .

This proves the result.
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Table 1: Examples of strongly proper composite losses ` : {±1} × Ŷ→R̄+ together with
prediction space Ŷ, underlying proper loss c : {±1} × [0, 1]→R̄+, link function
ψ : [0, 1]→Ŷ, and strong properness parameter λ. The spherical loss is described
in Appendix B.

Loss Ŷ `(y, ŷ) c(y, η̂) ψ(η̂) λ

y = 1 y = −1

Exponential R̄ e−yŷ
√

1−η̂
η̂

√
η̂

1−η̂
1
2 ln

(
η̂

1−η̂
)

4

Logistic R̄ ln(1 + e−yŷ) − ln η̂ − ln(1− η̂) ln
(

η̂
1−η̂
)

4

Squared [−1, 1] (1− yŷ)2 4(1− η̂)2 4η̂2 2η̂ − 1 8

Spherical [0, 1] c(y, ŷ) 1− η̂√
η̂2+(1−η̂)2

1− 1−η̂√
η̂2+(1−η̂)2

η̂ 1

Theorem 12 shows that for any strongly proper composite loss ` : {±1}×Ŷ→R̄+, a function
f : X→Ŷ with low `-regret will also have low AUC regret. Below we give examples of such
strongly proper (composite) loss functions. Properties of these losses are summarized in
Table 1; the spherical loss is described in Appendix B.

5.2. Examples

Example 1 (Exponential loss) The exponential loss `exp : {±1} × R̄→R̄+ defined as

`exp(y, ŷ) = e−yŷ

is a proper composite loss with associated proper loss cexp : {±1} × [0, 1]→R̄+ and link
function ψexp : [0, 1]→R̄ given by

cexp(y, η̂) =

(
1− η̂
η̂

)y/2
; ψexp(η̂) =

1

2
ln

(
η̂

1− η̂

)
.

It is easily verified that cexp is regular. Moreover, it can be seen that

Hexp(η) = 2
√
η(1− η) ,

with

−H ′′exp(η) =
1

2(η(1− η))3/2
≥ 4 ∀η ∈ [0, 1] .

Thus Hexp is 4-strongly concave, and so by Theorem 9, we have `exp is 4-strongly proper
composite. Therefore applying Theorem 12 we have for any f : X→R̄,

regretAUC
D [f ] ≤ 1√

2 p(1− p)

√
regretexp

D [f ] .
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Example 2 (Logistic loss) The logistic loss `exp : {±1} × R̄→R̄+ defined as

`log(y, ŷ) = ln(1 + e−yŷ)

is a proper composite loss with associated proper loss clog : {±1} × [0, 1]→R̄+ and link
function ψlog : [0, 1]→R̄ given by

clog(1, η̂) = − ln η̂ ; clog(−1, η̂) = − ln(1− η̂) ; ψlog(η̂) = ln

(
η̂

1− η̂

)
.

Again, it is easily verified that clog is regular. Moreover, it can be seen that

Hlog(η) = − η ln η − (1− η) ln(1− η) ,

with

−H ′′log(η) =
1

η(1− η)
≥ 4 ∀η ∈ [0, 1] .

Thus Hlog is 4-strongly concave, and so by Theorem 9, we have `log is 4-strongly proper
composite. Therefore applying Theorem 12 we have for any f : X→R̄,

regretAUC
D [f ] ≤ 1√

2 p(1− p)

√
regretlog

D [f ] .

Example 3 (Squared and squared hinge losses) The (binary) squared loss (1 − yŷ)2

and squared hinge loss ((1−yŷ)+)2 (where u+ = max(u, 0)) are generally defined for ŷ ∈ R.
To obtain class probability estimates from a predicted value ŷ ∈ R, one then truncates ŷ to
[−1, 1], and uses η̂ = ŷ+1

2 (Zhang, 2004). To obtain a proper composite loss, we can take

Ŷ = [−1, 1]; in this range, both losses coincide, and we can define `sq : {±1}× [−1, 1]→[0, 4]
as

`sq(y, ŷ) = (1− yŷ)2 .

This forms a proper composite loss with associated proper loss csq : {±1} × [−1, 1]→[0, 4]
and link function ψsq : [0, 1]→[−1, 1] given by

csq(1, η̂) = 4(1− η̂)2 ; csq(−1, η̂) = 4η̂2 ; ψsq(η̂) = 2η̂ − 1 .

It can be seen that
Lsq(η, η̂) = 4η(1− η̂)2 + 4(1− η)η̂2

and
Hsq(η) = 4η(1− η) ,

so that
Lsq(η, η̂)−Hsq(η) = 4(η − η̂)2 .

Thus `sq is 8-strongly proper composite, and so applying Theorem 12 we have for any f :
X→[−1, 1],

regretAUC
D [f ] ≤ 1

2 p(1− p)

√
regretsq

D [f ] .

Note that, if a function f : X→R is learned, then our bound in terms of `sq-regret applies
to the AUC regret of an appropriately transformed function f̄ : X→[−1, 1], such as that
obtained by truncating values f(x) /∈ [−1, 1] to the appropriate endpoint −1 or 1.

10
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6. Tighter Bounds under Low-Noise Conditions

In essence, our results exploit the fact that for a λ-strongly proper composite loss ` formed
from a λ-strongly proper loss c and link function ψ, given any scoring function f , the L2(µ)
distance (where µ denotes the marginal density of D on X ) between ψ−1(f(X)) and η(X)
(and therefore the L1(µ) distance between ψ−1(f(X)) and η(X), which gives an upper
bound on the AUC regret of f) can be upper bounded precisely in terms of the `-regret of
f . From this perspective, η̂ = ψ−1 ◦ f can be treated as a ‘plug-in’ scoring function, which
we analyzed via Corollary 11.

Recently, Clémençon and Robbiano (2011) showed that, under certain low-noise as-
sumptions, one can obtain tighter bounds on the bipartite ranking/AUC regret of a plug-in
scoring function η̂ : X→[0, 1] than that offered by Corollary 11. Specifically, Clémençon and
Robbiano (2011) consider the following noise assumption for bipartite ranking (inspired by
the noise condition studied in (Tsybakov, 2004) for binary classification):

Noise Assumption NA(α) (α ∈ [0, 1]): A distribution D on X × {±1} satisfies assump-
tion NA(α) if ∃ a constant C > 0 such that for all x ∈ X and t ∈ [0, 1],

PX

(∣∣η(X)− η(x)
∣∣ ≤ t) ≤ C · tα .

Note that α = 0 imposes no restriction on D, while larger values of α impose greater
restrictions. Clémençon and Robbiano (2011) showed the following result (adapted slightly
to our setting, where the AUC is conditioned on Y 6= Y ′):

Theorem 13 (Clémençon and Robbiano (2011)) Let α ∈ [0, 1) and q ∈ [1,∞). Then
∃ a constant Cα,q > 0 such that for any distribution D on X × {±1} satisfying noise
assumption NA(α) and any η̂ : X→[0, 1],

regretAUC
D [ η̂ ] ≤ Cα,q

p(1− p)

(
EX

[∣∣η̂(X)− η(X)
∣∣q]) 1+α

q+α
.

This allows us to obtain the following tighter version of our regret bound in terms of
strongly proper losses under the same noise assumption:

Theorem 14 Let Ŷ ⊆ R̄ and λ > 0, and let α ∈ [0, 1). Let ` : {±1} × Ŷ→R̄+ be a λ-
strongly proper composite loss. Then ∃ a constant Cα > 0 such that for any distribution D
on X × {±1} satisfying noise assumption NA(α) and any f : X→Ŷ,

regretAUC
D [f ] ≤ Cα

p(1− p)

(
2

λ

) 1+α
2+α (

regret`D[f ]
) 1+α

2+α
.

Proof Let c : {±1}× [0, 1]→R̄+ be a λ-strongly proper loss and ψ : [0, 1]→Ŷ be a (strictly
increasing) link function such that `(y, ŷ) = c(y, ψ−1(ŷ)) for all y ∈ {±1}, ŷ ∈ Ŷ. Let D be
a distribution on X × {±1} satisfying noise assumption NA(α) and let f : X→Ŷ. Then we

11
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have,

regretAUC
D [f ] = regretAUC

D [ψ−1 ◦ f ] , since ψ is strictly increasing

≤ Cα,2
p(1− p)

(
EX

[(
ψ−1(f(X))− η(X)

)2]) 1+α
2+α

,

by Theorem 13, taking q = 2

≤ Cα,2
p(1− p)

(
2

λ
EX

[
Lc(η(X), ψ−1(f(X)))−Hc(η(X))

]) 1+α
2+α

,

since c is λ-strongly proper

=
Cα,2

p(1− p)

(
2

λ
EX

[
L`(η(X), f(X))−H`(η(X))

]) 1+α
2+α

=
Cα,2

p(1− p)

(
2

λ

) 1+α
2+α (

regret`D[f ]
) 1+α

2+α
.

The result follows by setting Cα = Cα,2.

For α = 0, as noted above, there is no restriction on D, and so the above result gives
the same dependence on regret`D[f ] as that obtained from Theorem 12. On the other hand,
as α approaches 1, the exponent of the regret`D[f ] term in the above bound approaches 2

3 ,
which improves over the exponent of 1

2 in Theorem 12.

7. Conclusion and Open Questions

We have obtained upper bounds on the AUC regret of a scoring function in terms of the
(non-pairwise) regret associated with a broad class of proper (composite) losses that we have
termed strongly proper. This class includes several widely used losses such as exponential,
logistic, squared and squared hinge losses as special cases. An important consequence is
that standard algorithms minimizing a (non-pairwise) strongly proper loss, such as logistic
regression and boosting algorithms (assuming a universal function class and appropriate
regularization), are in fact AUC-consistent; this explains previous empirical observations
of good AUC performance of these algorithms. While our main contribution is in deriving
quantitative regret bounds for the AUC in terms of such commonly used surrogate losses,
the definition and characterization of strongly proper losses may also be of interest in its
own right, and may find applications elsewhere.

The strongly proper composite losses that we have considered, such as the exponential,
logistic, squared and spherical losses, are also margin-based classification-calibrated losses,
which means the AUC regret can also be upper bounded in terms of the regret associated
with pairwise versions of these losses via the reduction to pairwise classification (Section 3.1).
A natural question that arises is whether it is possible to characterize conditions on the
distribution under which algorithms based on one of the two approaches (minimizing a
pairwise form of the loss as in RankBoost/pairwise logistic regression, or minimizing the
standard loss as in AdaBoost/standard logistic regression) lead to faster convergence than
those based on the other. We hope the tools and results established here may help in
studying such questions in the future.
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Appendix A. Proof of Corollary 11

Proof Let η̂ : X→[0, 1]. By Theorem 10, we have

regretAUC
D [ η̂ ] ≤ 1

2p(1− p)
EX,X′

[∣∣η(X)− η(X ′)
∣∣ · 1((η̂(X)− η̂(X ′))(η(X)− η(X ′)) ≤ 0

)]
.

The result follows by observing that for any x, x′ ∈ X ,

(η̂(x)− η̂(x′))(η(x)− η(x′)) ≤ 0 =⇒ |η(x)− η(x′)| ≤ |η̂(x)− η(x)|+ |η̂(x′)− η(x′)| .

To see this, note that the statement is trivially true if η(x) = η(x′). If η(x) > η(x′), then
we have

(η̂(x)− η̂(x′))(η(x)− η(x′)) ≤ 0 =⇒ η̂(x) ≤ η̂(x′)

=⇒ η(x)− η(x′) ≤ (η(x)− η̂(x)) + (η̂(x′)− η(x′))

=⇒ η(x)− η(x′) ≤ |η(x)− η̂(x)|+ |η̂(x′)− η(x′)|
=⇒ |η(x)− η(x′)| ≤ |η̂(x)− η(x)|+ |η̂(x′)− η(x′)| .

The case η(x) < η(x′) can be proved similarly. Thus we have

regretAUC
D [ η̂ ] ≤ 1

2p(1− p)
EX,X′

[∣∣η̂(X)− η(X)
∣∣+
∣∣η̂(X ′)− η(X ′)

∣∣]
=

1

p(1− p)
EX

[∣∣η̂(X)− η(X)
∣∣] .
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Appendix B. Additional Examples of Strongly Proper Losses

In general, given any concave function H : [0, 1]→R+, one can construct a proper loss
c : {±1} × [0, 1]→R̄+ with Hc = H as follows:

c(1, η̂) = H(η̂) + (1− η̂)H ′(η̂) (5)

c(−1, η̂) = H(η̂)− η̂H ′(η̂) , (6)

where H ′(η̂) denotes any superderivative of H at η̂. It can be verified that this gives
Lc(η, η̂) = H(η̂) + (η − η̂)H ′(η̂) for all η, η̂ ∈ [0, 1], and therefore Hc(η) = H(η) for all η ∈
[0, 1]. Moreover, if H is such that H(η̂)+(1− η̂)H ′(η̂) ∈ R+ ∀η̂ ∈ (0, 1] and H(η̂)− η̂H ′(η̂) ∈
R+ ∀η̂ ∈ [0, 1), then the loss c constructed above is also regular. Thus, starting with any
λ-strongly concave function H : [0, 1]→R+ satisfying these regularity conditions, any proper
composite loss ` formed from the loss function c constructed according to Eqs. (5-6) (and
any link function ψ) is λ-strongly proper composite.

Example 4 (Spherical loss) Consider starting with the function Hspher : [0, 1]→R de-
fined as

Hspher(η) = 1−
√
η2 + (1− η)2 .

Then

H ′spher(η) =
−(2η − 1)√
η2 + (1− η)2

and

−H ′′spher(η) =
1

(η2 + (1− η)2)3/2
≥ 1 ∀η ∈ [0, 1] ,

and therefore Hspher is 1-strongly concave. Moreover, since Hspher and H ′spher are both
bounded, the conditions for regularity are also satisfied. Thus we can use Eqs. (5-6) to
construct a 1-strongly proper loss cspher : {±1} × [0, 1]→R as follows:

cspher(1, η̂) = Hspher(η̂) + (1− η̂)H ′spher(η̂) = 1− η̂√
η̂2 + (1− η̂)2

cspher(−1, η̂) = Hspher(η̂)− η̂H ′spher(η̂) = 1− 1− η̂√
η̂2 + (1− η̂)2

.

Therefore by Theorem 12, we have for any f : X→[0, 1],

regretAUC
D [f ] ≤

√
2

p(1− p)

√
regretspher

D [f ] .

The loss cspher above corresponds to the spherical scoring rule described in (Gneiting and

Raftery, 2007). Clearly, any (strictly increasing) link function ψ : [0, 1]→Ŷ for Ŷ ⊆ R̄
applied to cspher will then yield a 1-strongly proper composite loss `spher,ψ : {±1}×Ŷ→R for
which the same regret bound as above holds; see (Buja et al., 2005; Reid and Williamson,
2010) for a discussion on canonical link functions, which ensure the resulting composite
loss is convex.
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