
JMLR: Workshop and Conference Proceedings vol 30 (2013) 1–23

Horizon-Independent Optimal Prediction with Log-Loss in
Exponential Families

Peter Bartlett bartlett@cs.berkeley.edu
University of California at Berkeley,
Queensland University of Technology

Peter Grünwald Peter.Grunwald@cwi.nl
CWI P.O. Box 94079 NL-1090 GB Amsterdam The Netherlands
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Abstract

We study online learning under logarithmic loss with regular parametric models. Hedayati
and Bartlett (2012b) showed that a Bayesian prediction strategy with Jeffreys prior and
sequential normalized maximum likelihood (SNML) coincide and are optimal if and only
if the latter is exchangeable, and if and only if the optimal strategy can be calculated
without knowing the time horizon in advance. They put forward the question what families
have exchangeable SNML strategies. This paper fully answers this open problem for one-
dimensional exponential families. The exchangeability can happen only for three classes of
natural exponential family distributions, namely the Gaussian, Gamma, and the Tweedie
exponential family of order 3/2.
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1. Introduction

We work in the setting of online learning under logarithmic loss. Let x1, x2, . . ., be a
sequence of outcomes from X revealed one at a time. We use xt to denote (x1, x2, · · · , xt),
and xnm to denote (xm, xm+1, · · · , xn) . At round t, after observing xt−1, a forecaster assigns a
probability distribution on X , denoted p

(
· | xt−1

)
. Then, after xt is revealed, the forecaster

incurs the log loss -ln p
(
xt | xt−1

)
. The performance of the strategy is measured relative to

the best in a reference set of strategies (experts). The difference between the accumulated
loss of the prediction strategy and the best expert in the reference set is called the regret
(Cesa-Bianchi and Lugosi, 2006). The goal is to minimize the regret in the worst case over
all possible data sequences.

In this paper our set of experts are i.i.d. exponential families of distributions, exam-
ples of which include normal, Bernoulli, multinomial, Gamma, Poisson, Pareto, geometric
distributions and many others. If there is a known time horizon n of the game (sequence
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length), a well-known result in the literature states that the minimax regret is achieved
by the normalized maximum likelihood strategy, NML for short (Shtarkov, 1987; Rissanen,
1996). If the parameter space of a d-dimensional exponential family is constrained to a com-
pact subset of the parameter space, NML achieves regret d

2 ln n+O(1). For unconstrained
parameter spaces, the NML strategy is often not defined because it relies on finiteness of
the Shtarkov sum (or integral) and in many application this sum is infinite. In these cases
NML can be replaced by the conditional normalized maximum likelihood strategy (CNML),
which acts like NML, except that a small initial segment of the sequence is observed before
prediction starts and then the NML strategy is calculated conditioned on that initial seg-
ment. Whereas NML is optimal in the sense of achieving minimax regret (whenever it is
finite), CNML is optimal in the sense that it achieves minimax conditional regret. Unfor-
tunately both CNML and (whenever it is defined) the original NML suffer from two major
drawbacks: the horizon n of the problem needs to be known in advance, and the strategy
can be computationally expensive since it involves marginalizing over all possible future
subsequences up to iteration n. These drawbacks motivated researchers to come up with an
approximation to CNML, known as sequential normalized maximum likelihood, or SNML
for short (Takimoto and Warmuth, 2000a; Rissanen and Roos, 2007; Roos and Rissanen,
2008).

SNML predictions coincide with those of the CNML distribution under the assumption
that the current iteration is the last iteration. Therefore, SNML can be viewed as an
approximation to CNML for which the time horizon of the game does not need to be
known. Kotlowski and Grünwald (2011) showed that for general exponential families SNML
is optimal up to an O (1)–term. Interestingly, acting short-sighted and looking only one step
ahead does not hurt much.

A natural question to ask is if there are cases in which looking one step ahead in the
prediction game is exactly the best one can do, even if the time horizon is known? In
other words, when do SNML and CNML coincide? We believe answering this question
is of fundamental importance for online learning at least from the two following reasons.
First, we know that in a general sequential decision process, obtaining the optimal strategy
requires recursive solution of the Bellman equation by a backward induction. A positive
answer to the question above implies that we can avoid the backward induction altogether,
because the optimal strategy becomes time-horizon independent: we get the same, optimal
strategy no matter how far to the future we look. Thus, we only need to analyze the worst
case regret with respect to the current outcome to be predicted.

Secondly, it has been shown (Kotlowski and Grünwald, 2011; Hedayati and Bartlett,
2012a,b; Harremoës, 2013) that when CNML and SNML coincide, then they become Bayesian
strategies and the prior of the Bayesian strategy must be Jeffreys prior. In other words, if
CNML is time-horizon independent, then the Bayesian strategy with Jeffreys prior is the
(conditional) minimax strategy. Hedayati and Bartlett (2012a,b) showed that this happens
if and only if SNML strategy is exchangeable. Testing the exchangeability of the sequential
strategy is, however, hard, and does not lead to a simple characterization of exponential fam-
ilies for which CNML=SNML holds. Therefore, Hedayati and Bartlett (2012b) put forward
the following question: in the case of exponential families, what families have exchangeable
sequential normalized maximum likelihood strategies?
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In this paper we give a complete answer to the CNML=SNML question, when the
reference set of experts is a single-parameter exponential family. We show that there are
essentially only three exponential families with time-horizon independent minimax strategy
(and hence optimal Bayesian strategy with Jeffreys prior and optimal SNML). These families
are Gamma, Gaussian, and Tweedie 3/2 families (but also included are those families, which
can be obtained by a fixed transformation of variable from any of the three above, e.g.
Pareto, Laplace, Rayleigh and many others). This means that only in these families, a
Bayesian strategy with Jeffreys prior is equivalent to SNML and both are equivalent to
CNML and hence optimal in the minimax conditional regret sense. More interestingly this
implies that only in these three families CNML becomes independent of the horizon, so that
one–stead ahead lookup becomes equivalent to n–step ahead lookup, where n is the amount
of data the player is eventually going to observe.

The paper is organized as follows. We introduce the mathematical context for our results
in Section 2. We then give our main result in Section 3, showing that Gamma, Gaussian and
Tweedie 3/2 family are the only families with time-horizon independent minimax strategies.
Short versions of the proofs are given in Section 3, and detailed proofs can be found in the
appendix.We end with a short discussion in Section 4.

2. Set-Up

We work in the setup of Hedayati and Bartlett (2012b) and use their definitions and notation
except that we follow Grünwald (2007) in the distinction between NML and CNML.

A sequential prediction strategy (or just ‘strategy’ for short) p is any sequential prob-
ability assignment that, given a history xt−1, defines p

(
·
∣∣xt−1

)
, the conditional density of

xt ∈ X with respect to a fixed underlying measure λ on X . As an example, we usually take
λ to be the counting measure if X is discrete; and if X = Rd, λ is taken to be Lebesgue
measure.

A prediction strategy defines a joint distribution p on sequences of elements of X in the
obvious way,

p (xn) =
n∏
t=1

p
(
xt
∣∣xt−1

)
.

Conversely, any probability distribution p (xn) on the set X n defines a prediction strategy
induced by its conditional distributions p

(
·
∣∣xt−1

)
for 1 ≤ t ≤ n (Cesa-Bianchi and Lugosi,

2006; Grünwald, 2007).
We try to come up with strategies which predict as well as the best element of a reference

set of ’experts’, which we take to be 1-dimensional i.i.d. natural exponential families. For
these families X can be identified with a subset of R and the set of ’experts’ is a set of
distributions {pθ | θ ∈ Θ} on R, each of which is of the form

pθ(x) = h(x)eθx−A(θ), θ ∈ Θ. (1)

Here h is a reference measure, given as a density relative to the underlying measure λ. Here
A is the cumulant generating function given by A(θ) = ln

∫
eθx dh(x). The so-called natural

parameter space of the family is the set

Θfull = {θ ∈ R |A(θ) <∞} (2)
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We will generally work with potentially restricted families with parameters sets Θ that may
be proper subsets of Θfull and that we always require to have nonempty interior (so for
example, we do not consider finite subfamilies). Families with Θ = Θfull are called full.

The families are extended to n outcomes by taking product distributions: pθ (xn) =∏n
t=1 pθ (xt). In this way each member of the family defines a prediction strategy pθ such

that pθ
(
xt
∣∣xt−1

)
:= pθ (xt) with pθ (xt) given by (1). Note that we never assume that data

are i.i.d.; only the set of predictors we compare ourselves to treat it as i.i.d.
According to the standard general definition of exponential families (Barndorff-Nielsen,

1978), we can have θf(x) instead of θx in the exponent of (1), for an arbitrary fixed function
f . Families with f(x) = x are called natural exponential families relative to random vector
X (defined as X(x) = x).

However, as long as f is smooth and 1-to-1, a general exponential family with statistic
f(x) can always re-expressed as a natural exponential family relative to a different random
variable Y = f (X) (i.e. it defines exactly the same distributions on the underlying space),
so our restriction to natural families is actually quite mild; see also the discussion right after
our main result Theorem 11.

Given a fixed horizon n and a parameter space Θ, the NML strategy (Shtarkov, 1987;
Rissanen, 1996) is defined via the joint probability distribution

p
(n)
nml (x

n) =
supθ∈Θ pθ (xn)∫

Xn supθ∈Θ pθ (yn) dλn (yn)
, (3)

provided that the so-called Shtarkov integral in the denominator exists. To ensure that the
NML-distribution exists we will assume that the parameter space is closed. For t ≤ n, the
conditional probability distribution is

p
(n)
nml

(
xt
∣∣xt−1

)
=

p
(n)
nml

(
xt
)

p
(n)
nml (x

t−1)
(4)

where p
(n)
nml

(
xt
)

and p
(n)
nml

(
xt−1

)
are marginalized joint probability distributions of p

(n)
nml(x

n):

p
(n)
nml

(
xt
)

=

∫
Xn−t

p
(n)
nml (x

n) dλn−t
(
xnt+1

)
.

Note that the expression for the conditional distribution of a full-length complement of a
sequence xnt+1 given the initial part of the sequence xt then simplifies to:

p
(n)
nml

(
xnt+1

∣∣xt ) =
p

(n)
nml (x

n)

p
(n)
nml (x

t)
=

supθ∈Θ pθ (xn)∫
Xn−t supθ∈Θ pθ (xtyn−t) dλn−t (yn−t)

. (5)

In many cases the NML strategy is undefined, due to the normalization factor (Shtarkov
integral) being infinite. In such cases, by conditioning on a fixed initial sequence of length
m the problem usually goes away. The resulting conditional NML (CNML) distribution
achieves the minimax conditional regret (Grünwald, 2007, Chapter 11). CNML is defined
via the conditional probability distribution in the following way

p
(n)
cnml

(
xnm+1 |xm

)
=

supθ∈Θ pθ (xn)∫
Xn−m supθ∈Θ pθ (xmyn−m) dλn−m (yn−m)

. (6)
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Note that (6) coincides with (5), so CNML can be considered a generalization of NML. NML
and CNML are costly due to the amount of marginalization at each round. Furthermore
they are horizon–dependent, i.e. the predictions to be made depend on the amount of
data that will eventually be seen. Grünwald (2007) discusses in detail why this can be
problematic. Two alternative strategies which avoid these issues are the Bayesian strategies
with Jeffreys prior and the sequential normalized maximum likelihood strategy, SNML for
short, as developed by Rissanen and Roos (2007); Roos and Rissanen (2008). SNML is
defined via the conditional probability distribution in the following way

psnml
(
xt
∣∣xt−1

)
= p

(t)
cnml

(
xt
∣∣xt−1

)
.

Kotlowski and Grünwald (2011) showed that SNML provides a reasonably good approxi-
mation of CNML. At each point in time t − 1, the SNML strategy for predicting the next
outcome xt may be viewed as the strategy that would lead to minimax optimal conditional
regret if the next step was the last round of the game. Hence, it is essentially a last-step
minimax strategy in the sense of Takimoto and Warmuth (2000b).

The other alternative, the Bayesian strategy with Jeffreys prior, is also defined via its
conditional distributions as

pπ
(
xt
∣∣xt−1

)
=

∫
θ∈Θ

pθ (xt) dπ
(
θ
∣∣xt−1

)
.

Here π
(
θ
∣∣xt−1

)
is the posterior distribution based on prior π(·) and π(·) is Jeffreys prior

defined to be proportional to I(θ)1/2 with I being the Fisher information. A well-known
result in the literature says that if the parameter space is effectively smaller than the
natural parameter space then the Bayesian strategy with Jeffreys prior is asymptotically
minimax optimal (See chapters 7 and 8 in Grünwald (2007)). The nice thing about these
two alternatives is that unlike CNML they are defined naturally via conditional probability
distributions that are much easier to compute. In general Jeffreys prior cannot be nor-
malized (i.e.

∫
I(θ)1/2 dθ = ∞) but for all models used in applications its posterior after

just one single observation is proper (i.e. well-defined) and can be used for predictions; see
below Lemma 4 for details (note though that there exist pathological models where no finite
number of observations will give a proper Jeffreys posterior (Harremoës, 2013)).

Hedayati and Bartlett (2012b) proved that these two alternatives are exactly the same as
CNML and hence optimal if and only if SNML is exchangeable. Let p be any time horizon-
independent sequential prediction strategy conditioned on an initial sequence xm, which for
any n > m and any xnm+1, assigns a joint probability distribution p

(
xnm+1 |xm

)
. We say

that p is exchangeable if for any n > m, any xn ∈ X n, the joint probability p
(
xnm+1 |xm

)
assigned to xnm+1 is invariant under any permutation σ on {1, . . . , n} which leaves the initial
part of data xm unchanged.

Thus, exchangeability of SNML means that the joint distribution of SNML conditioned
on initial data xm is invariant under any permutation of the data sequence xnm+1. Exchange-
ability of SNML is usually hard to check. The natural question to ask is whether there exists
an equivalent characterization that can be easily read off of the distribution or not? In this
paper we show that there are only three types of exponential family distributions that have
exchangeable SNML. For none of the these three families the denominator in Equation 3 is
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finite. Hence, for all one-dimensional exponential families in which NML is defined it will
be horizon dependent and can neither agree with SNML nor with a Bayesian strategy.

3. Main Results

We now provide a sequence of lemmas and theorems that lead up to our main result,
Theorem 11. We provide a full proof of Lemma 3 and the final Theorem 11 in the main
text, since, while not at all the most difficult ones, these results contain the key ideas for
our reasoning. All other results are followed by a short proof sketch/idea; full proofs of
these results are in the appendix. We first provide a number of definitions that will be used
repeatedly.

3.1. Definitions

From now on, whenever we refer to an ‘exponential family’, unless we explicitly state oth-
erwise, we mean a an i.i.d. natural 1-dimensional family as in (1).

Our analysis below involves various parameterizations of natural exponential families, in
particular the natural, the mean (see below) and the geodesic (only used in the appendix)
parameterization. We typically use Θ for (a subset of) the natural parameter space, M
for (a subset of) the corresponding mean-value space and B for the geodesic space, but if
statements hold for general diffeomorphic parameterizations we use Γ to denote (subsets
of) the parameter space (natural, mean and geodesic parameterizations are all instances of
‘diffeomorphic’ parameterizations (Grünwald, 2007, page 611)). We then denote parameters
by γ and we let γ̂(xn) be the maximum likelihood estimate for data xn. If xn has no or
several ML estimates, γ̂(xn) is undefined. We let Γ̂n be the subset of ML estimates for data
of length n, i.e. the set of γ ∈ Γ such that γ = γ̂(xn) for some data xn of length n, and we
let Γ̂◦ be the set of γ in the interior of Γ that are contained in Γ̂n for some n. (recall that we
always assume that Γ is closed). We will also used symbols M̂n, M̂

◦, B̂n, B̂
◦, . . . to denote

corresponding sets in particular parameterizations. D (γ0‖ γ1) := D (pγ0‖ pγ1) denotes the
KL divergence of γ1 to γ0.

We recall the standard fact that every natural exponential family can be parameterized
by the mean value of X: for each θ in the natural parameter space Θ, we can define
µθ := Epθ [X]; then the mapping from θ to µθ is 1-to-1 and strictly increasing, and the image
µ(Θ) is the mean-value parameter space M . We use µ̂ (xn) for the maximum likelihood
estimator in the mean-value parameter space. We will frequently use the variance function
V (µ) which maps the mean of the family to its variance, i.e. V (µ) is the variance of pµ.
We note that the Fisher information I(µ) in the mean-value parameterization is the inverse
of V (µ) (Grünwald, 2007, Chapter 18). We also introduce the standard deviation σ as a

function of the mean by σ (µ) = V (µ)
1/2 .

Definition 1 (convex core) Consider a natural exponential family as in (1). Let x0 =
inf {x : x ∈ support of h}, and x1 = sup {x : x ∈ support of h}. The convex core is the
interval from x0 to x1 with x0 included if and only if h has a point mass in x0, and with x1

included if and only if h has a point mass in x1. We denote this the convex core by cc.

For example for a Bernoulli model, the convex core is [0, 1], with 0 and 1 included. The
intuition is that the convex core includes mean–values that can be achieved by distributions
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corresponding to natural parameter values ∞ and/or -∞, in the cases where these are
well–defined.

Definition 2 (maximal) An exponential family with maximal mean-value parameter
space is an exponential family where the mean value parameter space equals the convex core
cc.

For example, truncated exponential families such as Bernoulli [0.2, 0.8] do not satisfy
the maximal mean-value condition.

3.2. Lemmas that Abstractly Characterize SNML-Exchangeability

We now present three lemmas, which give an abstract characterization of SNML exchange-
ability. Then in Section 3.3 we will make these concrete, leading to our main theorem.

We let m be the smallest n such that for all xn ∈ X n,
∫
pγ (xn) I (γ)

1/2 dγ < ∞ and∫
Xk−n supγ∈Γ pγ

(
xn, yk−n

)
dλk−n

(
yk−n

)
<∞ for k ≥ n, i.e. such that Jeffreys’ posterior

π (γ |xn ) :=
pγ (xn) I(γ)1/2∫
pγ(xn)I (γ)

1/2 dγ

is proper (integrates to 1) for any conditioning sequence of length equal to or longer than
m, and that the conditional minimax regret is finite. In most applications m = 1. Note
that this implies that CNML and SNML conditioned on an initial sequence of length m
exist (Harremoës, 2013), so that all three prediction strategies (Bayes with Jeffreys, CNML
and SNML) are well-defined. From now on, each time we mention CNML/SNML we mean
“CNML/SNML conditioned on an initial sequence of length m”.

We call the distribution pγ regular if, for all xn with γ̂ (xn) = γ,

µγ = µ̂ (xn) = Epγ [X] = n-1
n∑
i=1

xi,

i.e. in the mean-value parameter space, the ML estimator is equal to the observed average.
This is always the case if the ML estimate is in the interior of Γ (Grünwald, 2007, Chapter
18), but if the ML estimate is on the boundary there can be exceptions, e.g. if Γ is a
truncated parameter set. The following lemma is central:

Lemma 3 Consider a natural exponential family as in (1) where the parameter set Γ is
an interval. If the SNML distribution for such a family is exchangeable then for all n > m
there is a constant Cn such that for all regular γ0 ∈ Γ̂n, we have:∫

Γ
e-nD(γ0‖γ)I(γ)

1/2 dγ = Cn. (7)

If furthermore the family has maximal mean-value parameter space, then the SNML distri-
bution for such a family is exchangeable if and only if for all n > m there is a constant Cn
such that for all γ0 ∈ Γ̂n ∫

Γ
e-nD(γ0‖γ)I(γ)

1/2 dγ = Cn. (8)
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The essence of Lemma 3 is that Cn remains constant as γ0 varies. This will be key to
proving our main result.
Proof Hedayati and Bartlett (2012b) showed that, if Γ is an interval, then SNML ex-
changeability is equivalent to that Bayes with Jeffreys prior and CNML coincide. Thus,
equivalently, we must have, for all x1, · · · , xn ∈ X n, and all t, such that n > t ≥ m,

pπ
(
xnt+1

∣∣xt) = p
(n)
cnml

(
xnt+1

∣∣xt) . (9)

Since

pπ
(
xnt+1

∣∣xt) =

∫
Γ
pγ
(
xnt+1

)
dπ
(
θ
∣∣xt ) =

∫
Γ
pγ
(
xnt+1

) pγ
(
xt
)
I(γ)1/2∫

Γ pγ′ (x
t) I (γ′)

1/2 dγ′
dγ,

and

p
(n)
cnml

(
xnt+1

∣∣xt) =
pγ̂(xn) (xn)∫

Xn−t pγ̂(xt,yn−t) (xtyn−t) dλn−t (yn−t)

in the diffeomorphic parametrization Γ, (9) is equivalent to∫
Γ
pγ (xn) I(γ)

1/2 dγ = C
(
n, xt

)
× pγ̂(xn) (xn) , (10)

where

C
(
n, xt

)
=

∫
Γ pγ′

(
xt
)
I (γ′)

1/2 dγ′∫
Xn−t pγ̂(xt,yn−t) (xtyn−t) dλn−t (yn−t)

.

We now prove that C
(
n, xt

)
= Cn, i.e. it may depend on n but it does not depend on

x1, . . . , xn. The key observation is that (10) is satisfied for any t ≥ m, in particular for
t = m, so that C

(
n, xt

)
cannot depend on xnm+1. However, since C

(
n, xt

)
and all other

terms in (10) are invariant under any permutation of xt, we conclude that C
(
n, xt

)
does

not depend on the whole sequence xn.
Now we divide both sides of (10) by pγ̂(xn)(x

n) and we exponentiate inside the integral.
This gives: ∫

Γ
e

- ln
pγ̂(xn)(x

n)

pγ (xn) I(γ)
1/2 dγ = Cn. (11)

We have thus shown that, assuming Γ is an interval, SNML exchangeability is equivalent
to the condition that (11) holds for a fixed Cn, for all xn ∈ X n.

Now for Part (1), Let γ0 = γ̂ (xn). We now use the celebrated robustness property of
exponential families (Grünwald, 2007, Section 19.3, Eq. 19.12)). This property says that
for all γ0 such that pγ0 is regular, for all xn with γ̂(xn) = γ, we have

nD (γ0‖ γ) = ln
pγ̂(xn) (xn)

pγ (xn)
; (12)

the result follows.
For Part (2), we note that, if the mean-value parameter space is maximal, then it must

be an interval, and all points in this space must be regular (Grünwald, 2007, Section 19.3,
Eq. 19.10). The only-if direction follows immediately by Part (1). To see the converse,
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we note that if the mean-value parameter space is maximal, then the maximum likelihood
estimator exists and is unique for all xn ∈ X n (see Csiszár and Matús (2003)), and all γ ∈ Γ
are regular. Hence Equation (12) holds for all xn ∈ X n so that (8) implies that (11) holds
for all xn ∈ X n and therefore that SNML exchangeability holds.

We will also need a second lemma relating SNML exchangeability to maximality:

Lemma 4 Consider a natural exponential family as in (1). If the family is SNML ex-
changeable, then the mean-value parameter space is maximal.

Proof Sketch In our definition of exponential families we require that the parameter set
Γ has non-empty interior, thus we may assume that it contains an interval. We can then
show by approximating the integral in (7) by a Gaussian integral using standard Laplace-
approximation techniques (as in e.g. (Grünwald, 2007, Chapter 7)) that, for general 1-

dimensional exponential families, the integral in (7) converges to (2π/n)
1/2 for any γ0 in

the interior of Γ. If SNML exchangeability holds, then we can show using Lemma 3 and
continuity that this must also hold for all boundary points of Γ. But if the parameter space
is not maximal, then the same standard Laplace approximation of the integral in (7) gives

that the integral converges to (1/2) (2π/n)
1/2 and we have a contradiction.

3.3. Preparing and Stating the Main Theorem

In the following we will use the Tweedie exponential families of order 3/2 Jørgensen (1997).
These are natural exponential families characterized by a variance function of the form
V (µ) = kµ3/2, where µ is the mean and V (µ) is the variance function defined earlier (i.e.
V (µ) is the variance of pµ). Each of the elements is a compound Poisson distribution. It is
obtained as follows. Let Xi denote i.i.d. exponentially distributed random variables with
mean ν and let N denote an independent Poisson distributed random variable with mean
νk-2. Then the elements in the exponential family are distributions of random variables of
the form

Z =

N∑
i=1

Xi

for different values of the parameter ν (Jørgensen, 1997). It is interesting to note that such
distributions have a point mass in 0 so that the left tail gives a finite contribution to the
Shtarkov integral but the right tail is light and gives an infinite contribution to the Shtarkov
integral. Hence this family does not have finite minimax regret.

Lemma 5 The following three types of exponential families are SNML exchangeable: The
full Gaussian location families with fixed σ2 > 0, the full Gamma distributions with shape
parameter k > 0, and the full Tweedie family of order 3/2.

Proof Sketch It is straightforward to check that all three families have maximal mean-
value parameter space. The result now follows by checking that (8) holds for these families,
which is relatively straightforward by taking derivatives of the cumulant generating function.
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Remark 6 What we call “Gamma” here includes also Pareto, Laplace, Rayleigh, Levy,
Nakagami and many other families of distribution that are derived from the Gamma family
by a smooth one–to–one transformation. As the next lemma shows smooth one–to–one
transformations preserve SNML exchangeability.

Lemma 7 Suppose {pγ( · )| γ ∈ Γ} indexes an exponential family for a r.v. X that is SNML
exchangeable. Let Y = f (X) for some smooth one–to–one function f and let qγ( · ) be the
density of Y under pγ( · ). Then the family {qγ (·)| γ ∈ Γ} is SNML exchangeable as well.

Proof Sketch This is (almost) immediate from the definition of exchangeability.

Example 1 As an example consider a random variable X with a Gamma distribution of
the form Gamma (1/2, c/2) with density( c

2π

)1/2
x-

1/2e-
xc
2 .

Now if X goes through the one–to–one transformation f (X) = 1/X then

1

X
∼ Inverse-Gamma (1/2, c/2)

with density ( c

2π

)1/2
x-

3/2e-
c
2x .

This is the same as the density of a Levy (0, c) . Hence Levy (0, c) is also SNML exchange-
able. It is indeed easy to directly verify the SNML exchangeability of Levy (0, c) using
Lemma 3.

Theorem 8 Consider a natural exponential family as in (1). A necessary condition for
SNML exchangeability is that the standard deviation as function of the mean satisfies the
differential equation (

dσ

dµ

)2

+ 3σ
d2σ

dµ2
= const(µ). (13)

Proof Sketch By Lemma 4 we may assume that the family has maximal mean-value
parameter space. A fifth-order (!) Taylor expansion of (8) rewritten in the geodesic pa-
rameterization (see (25) in the appendix) gives terms of different order in n, and each term
should be constant. Equation 13 corresponds to the first non-trivial term in the expansion.

Theorem 9 Consider a natural exponential family as in (1) with maximal mean-value
parameter space. A necessary condition for SNML exchangeability is that the variance
function is given by

V (µ) = (kµ+ `)2 (14)

or
V (µ) = (kµ+ `)

3/2 (15)

for some constants k and `.

10
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Proof Sketch The differential equation (13) can be rephrased in terms of the variance
function. Two solutions are (14) or (15). Other potential solutions are ruled out by a
higher-order (in fact 7th-order!!) expansion.

Now we are ready to state our main theorem. We need one more definition: we say that
a full exponential family of form (1) is a linear transformation of another full exponential
family if, for some fixed a, b, it is the set of distributions given by (1), with each occurrence
of x replaced by ax+ b.

Remark 10 By Remark 6, linear transformations preserve SNML exchangeability. In a
Gaussian location family translating by b replaces a distribution by another distribution
of the same exponential family and the Gaussian location families are the only families
with this property. Scaling of a Gamma distribution by positive a gives another Gamma
distribution in the same exponential family and the Gamma families are the only exponential
families with this property.

Theorem 11 The only natural 1-dimensional i.i.d. exponential families that have ex-
changeable SNML are the following three:

• The full Gaussian location families with arbitrary but fixed σ2 > 0.

• The full Gamma exponential family with fixed shape parameter and linear transfor-
mations of it.

• The full Tweedie exponential family of order 3/2 and linear transformations of it.

Before we prove this theorem, let us briefly discuss its generality.
As we already indicated below (1), every exponential family defined with respect to a

sufficient statistic f(X) can be re-expressed as a natural family with respect to X as long
as f is smooth and 1-to-1. Thus the theorem also determines SNML exchangeability for
general 1-dimensional i.i.d. exponential families with such f. Namely, if such a family, when
mapped to a natural family, becomes the Gamma, Gaussian or Tweedie 3/2 family, then it
is SNML exchangeable; otherwise it is not. The former is the case, for, for example, the
Pareto and other families mentioned in Remark 6; the latter is the case, for, for example,
the Bernoulli and Poisson distributions.
Proof Lemma 5 says that these three families are SNML exchangeable. As we know that
SNML exchangeability can only happen for families with maximal mean-value parameter
space (Lemma 4), we focus on these families only. Thus, it is left to show that no other
family with maximal mean-value parameter space is SNML exchangeable.

Theorem 9 gives the necessary condition for SNML exchangeability in terms of the
variance function. Now we look at each case separately. The first part of the disjunction
is the Equation 14, where the variance function is quadratic. Exponential families with
quadratic variance functions have been classified by Morris (1982). His result is that modulo
linear transformations the only exponential families with quadratic variance functions are
Gaussian, Poisson, Gamma, binomial, negative binomial, and the exotic hyperbolic secant
distribution. Of these only the Gaussian and the Gamma families have the desired form.
We note that the exponential distributions are special cases of Gamma distributions.

11
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Now we get to the second case where the variance function is given by Equation 15.
If c1 = 0 we get an exponential family where the variance is constant, i.e. the family
is the Gaussian translation family. Then the term k corresponds to a translation of the
exponential family and we may assume that k = 0. If c1 6= 0 we can scale up or down and
obtain the equation

V (µ) = 2µ
3/2. (16)

There exists an exponential family with this variance function, namely the Tweedie family
of order 3/2 with V (µ) = 2µ3/2. Since exponential families are uniquely determined by their
variance function Morris (1982), the Tweedie family of order 3/2 is the only family satisfying
(16).

4. Discussion

The present paper has focused on 1-dimensional exponential families with non-empty inte-
rior parameter spaces. Any model that admits a 1-dimensional sufficient statistic can be
embedded in a one dimensional exponential family. One can prove that SNML exchange-
ability implies that the parameter space must have non-empty interior, thus strengthening
our results further, but the limited space did not allow us to go into this problem here.

We do not have any general results for the multidimensional case, but we can make a
few observations: products of models that are SNML exchangeable are also exchangeable.
All multidimensional Gaussian location models can be obtained in this way by a suitable
choice of coordinate system. The only other SNML exchangeable models we know of in
higher dimensions are Gaussian models where the mean is unknown and the scaling of
the covariance matrix is unknown. This can be seen from the fact that a sum of squared
Gaussian variables has a Gamma distribution. The Tweedie family of order 3/2 does not
seem to play any interesting role in higher dimensions, because it cannot be combined with
the other distributions.

One of the consequences of this paper is that for 1-dimensional exponential families,
NML (if it is defined without conditioning) will always be horizon dependent. We conjecture
that this conclusion will hold for arbitrary models. Only conditional versions of NML allow
the kind of consistency that we call SNML exchangeability, and even after conditioning,
SNML exchangeability is restricted to a few but very important models.
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Appendix

In the proofs we introduce τ as short for 2π.
Proof [Proof of Lemma 4] Without loss of generality consider the mean-value parameter
space. Assume that the given exponential family is SNML-exchangeable and, without loss
of generality, that the parameter space contains an interval [µ0, µ1] with µ0 < µ1. By
Lemma 3 we have for all n, and all regular points in x ∈ M̂n ∩ [µ0, µ1] that∫

[µ0,µ1]

e-nD(x‖µ)

σ (µ)
dµ = Cn (17)

is independent of x. Note that all points in the interior of [µ0, µ1] must be regular (Grünwald,
2007, Section 19.3, Eq. 19.10).

By a standard Laplace approximation of the integral in (17) (done by a Taylor approx-
imation of the KL divergence, D (x‖µ) ≈ 1

2 (x− µ)2 V (x)-1, so that for large n the integral
becomes approximately Gaussian) we get, for each closed interval Mc that is a subset of the
convex core, that for each x in the interior of Mc,∫

Mc

e-nD(x‖µ)

σ(µ) dµ(
τ
n

)1/2 → 1 (18)

and ∫
{µ∈Mc:µ≥x}

e-nD(x‖µ)

σ(µ) dµ(
τ
n

)1/2 → 1

2
. (19)

For a precise statement and proof of these results, see e.g. (Grünwald, 2007, Theorem
8.1 combined with Eq. (8.14)). Combining (18) with (17), taking Mc = [µ0, µ1], it follows
that Cn → (τ/n)1/2. Now for each ε > 0 there is an n such that x ∈ M̂n∩M and |x−µ0| < ε.
Hence by continuity the equality (17) also holds for x = µ0, so we get∫

[µ0,µ1]
e-nD(µ0‖µ)

σ(µ) dµ(
τ
n

)1/2 → 1. (20)

14
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Now assume by means of contradiction that the convex core cc includes an x′ < µ0 with
x′ 6∈ M (M being the parameter space of the family), and let M ′ = [x′, µ1]. Then µ0 is in
the interior of M ′ and so, taking Mc = M ′, (19) with x = µ0 gives that the same integral
as in (20) converges to 1/2; we have arrived at a contradiction.

In the same way, one proves that there can be no x′ > µ1 with x′ in the convex core.
Thus, the interval must coincide with the convex core, which is what we had to prove.

Proof [Lemma 5] For each of the families it is sufficient to prove that∫
cc

e-nD(γ0‖γ)

σ (γ)
dγ

does not depend on γ0 ∈ cc where cc denotes the convex core of the family.
In the Gaussian location family with variance σ2 we have D (γ0‖ γ) = D (0 ‖γ − γ0 ), and

V (γ) = σ2, so the integral is invariant because of the invariance of the Lebesgue integral.
The scaling property of the Gamma families imply that D (γ0‖ γ) = D (1 ‖γ/γ0 ) . For the

Gamma family with shape parameter k we have V (γ) = γ2/k. Hence the integral equals∫ ∞
0

e-nD(γ0‖γ)

(γ2/k)
1/2

dγ = k
1/2

∫ ∞
0

e-nD(1‖γ/γ0 )

γ
dγ

= k
1/2

∫ ∞
0

e-nD(1‖t)

t
dt,

where we have used the substitution t = γ/γ0. Hence the integral does not depend on γ0.
We consider the Tweedie family of order 3/2. Then the divergence can be calculated as

D (µ0‖µ1) =

∫ µ1

µ0

µ− µ0

2µ3/2
dµ

=
[
µ

1/2 + µ0µ
-1/2
]
µ1
µ0

= µ
1/2
1 + µ0µ

-1/2
1 − 2µ

1/2
0

=

(
µ

1/2
1 − µ

1/2
0

)2

µ
1/2
1

.

Therefore we have to prove that the following integral is constant

∫ ∞
0

exp (-nD (γ0‖γ))σ (γ)-1 dγ =

∫ ∞
0

exp

-n

(
γ1/2 − γ1/2

0

)2

γ1/2

 γ-3/4 dγ

=

∫ ∞
0

exp

-

(
nγ1/2 − nγ1/2

0

)2

nγ1/2

 γ-3/4 dγ.

15



Bartlett Grünwald Harremoës Hedayati Kot lowski

The substitution γ = t4n-2 gives

4

n1/2

∫ ∞
0

exp

-

(
t2 − nγ1/2

0

)2

t2

 dt.

This integral is independent of γ0, which proves the theorem.

Proof [Lemma 7] Since the family pγ( · ) is SNML exchangeable, for any n > m the following
joint distribution is invariant under permutations of xn that leaves xm invariant:

psnml
(
xnm+1

∣∣xm) =

n∏
t=m+1

supγ pγ(xt)∫
X supγ pγ(xt−1, x) dx

(21)

Now under the Y = f(X) transformation the density of Y becomes

qγ(y) = pγ(f -1(y))

∣∣∣∣d f−1(y)

d y

∣∣∣∣ . (22)

For the ease of notation we let v(y) =
∣∣∣d f -1(y)

d y

∣∣∣ . Hence qγ(y) = pγ
(
f -1 (y)

)
v(y) and

psnml
(
ynm+1

∣∣ ym) =
n∏

t=m+1

supγ qγ(yt)∫
X supγ qγ (yt−1, y) dy

=
n∏

t=m+1

supγ qγ (f(x1) · · · f(xt))∫
X supγ qγ (f(x1) · · · f(xt−1), y) dy

=
n∏

t=m+1

supγ pγ (x1 · · ·xt)
∏t
j=1 v(yj)∫

X supγ pγ (x1 · · ·xt−1, f−1(y))
∏t−1
j=1 v(yj)v(y) dy

=

n∏
t=m+1

supγ pγ(xt)v(yt)∫
X supγ pγ(xt−1, f−1(y))v(y) dy

=
n∏

t=m+1

supγ pθ(x
t)v(yt)∫

X supγ pγ(xt−1, x) dx

= psnml
(
xnm+1

∣∣xm) n∏
t=m+1

v(yt) .

Hence psnml
(
ynm+1

∣∣ ym) too is invariant under any permutation of yn leaving ym invariant,
and hence exchangeable. Note that in the last but one equation we used the change of
variable f -1(y) = x and the fact that v(y)dy = dx .

Now we are ready to state the next theorem which is simply a disjunction of two con-
ditions necessary for SNML exchangeability in a parameterization called geodesic. The
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geodesic parameterization is the parameterization in which the Fisher information is con-
stant. We will denote parameters in this parameterization by β with parameter set B. We
can reparameterize from the natural parameter space Θfull to the geodesic space by setting:

β =

∫ θ

θ0

I(s)
1/2 ds (23)

=

∫ µ

µ0

1

σ (t)
dt, (24)

so that dβ = I(θ)1/2 dθ = dµ/σ (µ). Note that this is a bijection. This allows us to replace
the integration measure in the condition of Lemma 3 and we get a condition equivalent to
(8): for any n > m the following is independent of β0 ∈ B̂n∫

B
e-nD(β0‖β) dβ. (25)

Proof [Theorem 8] We denote the integral in Equation 25 by s(β0, n). We may assume the
family has maximal mean-value parameter space, so that (25) must hold for all β0 ∈ B̂n, all
n. First we will establish the following relation between the geodesic parametrization and
the mean value parameterization

∂

∂β
(. . .) =

dµ

dβ

∂

∂µ
(. . .)

= σ (µ)
∂

∂µ
(. . .),

because dβ
dµ = σ-1 (µ). We use the fact that D (β0‖β) = D (µ0‖µ), where µ = µ (β) and

µ0 = µ (β0) are corresponding parameters in different parametrizations.

D (β0‖β) = µ0 · (θ0 − θ) +A (θ)−A (θ0)

∂D (β0‖β)

∂β
= (µ− µ0) · σ-1,

∂2D (β0‖β)

∂β2
= 1− (µ− µ0) · σ-1 dσ

dµ
. (26)

Hence D2 = 1, where Dn denotes ∂nD(β0‖β)
∂βn

∣∣∣
β=β0

throughout this section.

A Taylor expansion of Equation 25 as function of n gives that certain Taylor coefficients
must equal zero and an elaborate calculation of the Taylor coefficient leads to Equation 13.

Using a fifth-order Taylor expansion we will show the following:

s(β0, n) = Φ + n-3/2 · 3τ 1/2 · u (β0) +O
(
n-2
)

(27)

where

u (β0) =
5

2
·
(
D3

3!

)2

− D4

4!
, (28)

Φ = τ
1/2

n1/2
is a Gaussian integral (scaled by n), and the n−2 remainder term may be negative

or positive. Condition 13 easily follows from Equation 27 as follows: take β0, β1 in B̂◦. By
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Equation 25 we must have that s(β0, n)− s(β1, n) = 0 for all large n. But by Equation 27
this difference is equal to

cn-3/2 · (u(β0)− u(β1)) +O(n-2)

for a constant c > 0 independent of β0 and β1. Since this must be 0 for all large n and since
u(·) does not depend on n, this can only be true if u(β0) = u(β1). Since we can do this for
any β0 and β1, Condition 13 follows.
Now we proceed to prove the claim in Equation 27. Define A = [β0 − c, β0 + c] for some
fixed c > 0, taken small enough so that A is a subset of the interior of B (this is why needed
to restrict to B̂◦ rather than B̂n). We can write

s(β0, n) = f(β0, n) + g(β0, n) + h(β0, n) (29)

where we define:

f :=

∫
β∈A

e-nD(β0‖β) dβ,

g :=

∫
β>β0+c

e-nD(β0‖β) dβ h :=

∫
β<β0−c

e-nD(β0‖β) dβ

(We write f instead of f(β0, n) whenever β0 and n are clear from context; similarly for g, h).
We have

g ≤ sup
β′>β0+c

e-(n−m)D(β0‖β′)
∫
β>β0+c

e-mD(β0‖β) dβ ≤ c2e-c3nc4 (30)

for some constants c2, c3, c4 > 0. Here we used that D (β0‖β′) is increasing in β′ so that
the sup is achieved at β0 + c, and the fact that by definition m was chosen such that the
integral with mD (β0‖β) in the exponent is finite. We can bound h similarly. Thus, the
error we make if we neglect the integral outside the set A is negligible, and we can now
concentrate on approximating f , the integral over A. We can write

f (β0, n) =

∫
A

e-n 1
2

(β0−β)2
(

e-n
D3
3!

(β0−β)3e-n
D4
4!

(β0−β)4e-n·O(β0−β)5
)

dβ (31)

where the constant in front of the 5th-order term is bounded because we require A to be a
compact subset of the interior of B. The fourth- and fifth-order terms in the integral can
itself be well approximated by a first-order Taylor approximation of ex and we can rewrite
f as ∫

A
e-n 1

2
(β0−β)2

(
e-n

D3
3!

(β0−β)3(1 + V )(1 +W )
)

dβ

where V = -nD4
4! (β0 − β)4 +O

(
n2 (β0 − β)8

)
and W = O

(
n (β0 − β)5

)
. Similarly, the sec-

ond factor in the integral can be well-approximated by a second order Taylor approximation
of ex = 1 + x+ (1/2)x2 +O(x3) so that we can further rewrite f as∫

A e-n 1
2

(β0−β)2(1 + U)(1 + V )(1 +W ) dβ =∫
A e-n 1

2
(β0−β)2(1 + U + V +W + UV + UW +WV + UVW ) dβ
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where

U = -n
D3

3!
(β0 − β)3 +

1

2
n2

(
D3

3!

)2

(β0 − β)6 +O
(
n3 (β0 − β)9

)
.

Writing ΦA :=
∫
A e-n 1

2
(β0−β)2 dβ we can thus further rewrite f as

f = ΦA +

∫
A

e-n 1
2

(β0−β)2 (U + V +R1 +R2) dβ

where R1 and R2 are remainder terms,

R1 = UV =O
(
n2 |β0 − β|7

)
+O

(
n3 (β0 − β)10

)
+O

(
n4 |β0 − β|13

)
+O

(
n3 |β0 − β|11

)
+O

(
n4 (β0 − β)14

)
+O

(
n5 |β0 − β|17

)
and

R2 = W (1 + U + V + UV )) = O
(
n |β0 − β|5

)
.

Since
∫∞
−∞ |x|

me-nx2 dx = O
(
n(-m−1)/2

)
, we have

∫
A e-n 1

2
(β0−β)2 (R1 +R2) dβ = O

(
n-2
)
,

and hence we get

f = ΦA +

∫
A

e-n 1
2

(β0−β)2 (U + V ) dβ +O
(
n−2

)
.

Now, using the fact that
∫ a
−a x

3e-nx2 dx = 0 for all a > 0, the integral over the first term in
U is 0. The final terms in U and V can be dealt with as the remainder terms above, and
we can rewrite f further as

f = ΦA +

∫
A

e-n 1
2

(β0−β)2

(
1

2
n2

(
D3

3!

)2

(β0 − β)6 − nD4

4!
(β0 − β)4

)
dβ +O

(
n−2

)
.

If we integrate over the full real line rather than A then the error we make is of order
O(e-cn) ≤ O(n-2). The integrals over the real line can be evaluated whence we get:

f = Φ +
n2

2

(
D3

3!

)2

·

(
15
τ 1/2

n7/2

)
− nD4

4!
·

(
3
τ 1/2

n

)
+O(n−2)

= Φ + n-3/2 · τ 1/2 ·

(
15

(
D3

3!

)2

− 6
D4

4!

)
+O

(
n−2

)
. (32)

Combining with (29) and (30) that there exists a constant, such that for all n ≥ m, all
β0 ∈ B̂◦,

5 (D3)2 − 3D4 = const(β0). (33)
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We rephrase condition (33) in terms of the mean value parameterization, we calculate higher
derivatives of the divergence based on (26)

∂3D (β0‖β)

∂β3
= -

dσ

dµ
+ (µ− µ0) ·

(
σ-1

(
dσ

dµ

)2

− d2σ

dµ2

)
,

∂4D (β0‖β)

∂β4
=

(
dσ

dµ

)2

− 2σ
d2σ

dµ2
+ (µ− µ0) ·

(
-σ-1

(
dσ

dµ

)3

+ 2
dσ

dµ

d2σ

dµ2
− σd3σ

dµ3

)
,

∂5D (β0‖β)

∂β5
= -

(
dσ

dµ

)3

+ 2σ
dσ

dµ

d2σ

dµ2
− 3σ2 d3σ

dµ3

+ (µ− µ0) ·

(
σ-1

(
dσ

dµ

)4

− 3

(
dσ

dµ

)2 d2σ

dµ2
+ 2σ

(
d2σ

dµ2

)2

+ σ
dσ

dµ

d3σ

dµ3
− σ2 d4σ

dµ4

)
,

∂6D (β0‖β)

∂β6
=

(
dσ

dµ

)4

− 4σ

(
dσ

dµ

)2 d2σ

dµ2
− 3σ2 dσ

dµ

d3σ

dµ3
+ 4σ2

(
d2σ

dµ2

)2

− 4σ3 d4σ

dµ4

+ (µ− µ0) · (. . . ) .

Then

D3 = -
dσ

dµ
,

D4 =

(
dσ

dµ

)2

− 2σ
d2σ

dµ2
,

D5 = -

(
dσ

dµ

)3

+ 2σ
dσ

dµ

d2σ

dµ2
− 3σ2 d3σ

dµ3
,

D6 =

(
dσ

dµ

)4

− 4σ

(
dσ

dµ

)2 d2σ

dµ2
− 3σ2 dσ

dµ

d3σ

dµ3
+ 4σ2

(
d2σ

dµ2

)2

− 4σ3 d4σ

dµ4
,

where, as before, µ0 = µ (β0). Further we get

5 (D3)2 − 3D4 = 5

(
−dσ

dµ

)2

− 3

((
dσ

dµ

)2

− 2σ
d2σ

dµ2

)

= 2

(
dσ

dµ

)2

+ 6σ
d2σ

dµ2
.

Plugging the above into (33) and rearranging the terms gives the following differential
equation for σ (

dσ

dµ

)2

+ 3σ
d2σ

dµ2
= const(µ). (34)

This is a necessary condition for exchangability.

Proof [Theorem 9]
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We also need to take a closer look at higher-order terms in the Taylor expansion of the
integral (25) and obtain a stronger necessary condition for exchangeability. As in the proof
Theorem 8, we expand the integral over A = [β0 − c, β0 + c]:

f (β0, n) =

∫
A

e-n 1
2

(β0−β)2

(
6∏

k=3

e-n
Dk
k!

(β0−β)k

)
e-nO((β0−β)7) dβ

=

∫
A

e-n 1
2

(β0−β)2

(
7∏

k=3

(1 +Xk)

)
dβ ,

where

X3 = -n
D3

3!
(β0 − β)3 +

1

2
n2

(
D3

3!

)2

(β0 − β)6 +
1

3!
n3

(
D3

3!

)3

(β0 − β)9

+
1

4!
n4

(
D3

3!

)4

(β0 − β)12 +O
(
n5(β0 − β)15

)
,

X4 = -n
D4

4!
(β0 − β)4 +

1

2
n2

(
D4

4!

)2

(β0 − β)8 +O
(
n3 (β0 − β)12

)
,

X5 = -n
D5

5!
(β0 − β)5 +O

(
n2 (β0 − β)10

)
,

X6 = -n
D6

6!
(β0 − β)6 +O

(
n2 (β0 − β)12

)
,

X7 = -O
(
n (β0 − β)7

)
.

We assume that condition (33) is satisfied, so that O
(
n-3/2

)
term in the expansion (cf.

Equation 27) is constant in β0. Since if we integrate over the full real line rather than A
then the error we make is of order O (e-cn), and (β0 − β)m under Gaussian integral over the
full real line results in O

(
n-(m+1)/2

)
if m is even, and 0 if m is odd, there will be no terms

of order O
(
n-2
)
. Therefore, we need to look for terms of order O

(
n-5/2

)
. There are five of

them and their sum must be independent of β0 (using similar argument as for the O
(
n-3/2

)
term in the proof of Theorem 8):

1

4!
n4

(
D3

3!

)4

(β0 − β)12 +
1

2
n2

(
D4

4!

)2

(β0 − β)8 − n
D6

6!
(β0 − β)6

− 1

2
n3

(
D3

3!

)2 D4

4!
(β0 − β)10 + n2D3

3!

D5

5!
(β0 − β)8 = const (β0) .

All the terms appear in the Gaussian integral. Given the fact that for even m,∫
e-n 1

2
(β0−β)2 (β0 − β)m dβ = (m− 1)!!τ

1/2n-m+1
2 ,

we can rewrite the condition on O
(
n-5/2

)
term as:

11!!

4!(3!)4
D4

3 +
7!!

2(4!)2
D2

4 −
5!!

6!
D6 −

9!!

2(3!)24!
D2

3D4 +
7!!

3!5!
D3D5 = const (β0) ,
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where we also skipped the n-5/2 terms and used the fact that D2 = 1 in the geodesic
parameterization. Evaluating the factorials and multiplying by a constant gives:

385D4
3 + 105D2

4 − 24D6 − 630D2
3D4 + 168D3D5 = const(β0). (35)

In order to evaluate D3, D4, D5, and D6 we calculate the derivatives of σ under the condition
that the differential equation (34) is satisfied for some constant c

2

(
dσ

dµ

)2

+ 6σ
d2σ

dµ2
= 3c,

d2σ

dµ2
=

1

2
σ-1c− 1

3
σ-1

(
dσ

dµ

)2

,

d3σ

dµ3
= -

5

6
σ-2 dσ

dµ
c+

5

9
σ-2

(
dσ

dµ

)3

,

d4σ

dµ4
=

25

9
σ-3c

(
dσ

dµ

)2

− 5

3
σ-3

(
dσ

dµ

)4

− 5

12
σ-3c2.

We plug this into (35), and get:

D2 = 1,

D3 = -
dσ

dµ
,

D4 =
5

3

(
dσ

dµ

)2

− c,

D5 = -
10

3

(
dσ

dµ

)3

+
7c

2

dσ

dµ
,

D6 =
2 · 35

9

(
dσ

dµ

)4

− 215c

2 · 9

(
dσ

dµ

)2

+
8

3
c2.

We plug this into (35), and get:

385D4
3 + 105D2

4 − 24D6 − 630D2
3D4 + 168D3D5

= 385

(
−dσ

dµ

)4

+ 105

(
5

3

(
dσ

dµ

)2

− c

)2

− 24

(
2 · 35

9

(
dσ

dµ

)4

− 215c

2 · 9

(
dσ

dµ

)2

+
8

3
c2

)

−630

(
-
dσ

dµ

)2
(

5

3

(
dσ

dµ

)2

− c

)
+ 168

(
-
dσ

dµ

)(
-
10

3

(
dσ

dµ

)3

+
7c

2

dσ

dµ

)

= 385

(
dσ

dµ

)4

+ 105 ·
(

5

3

)2(dσ

dµ

)4

+ 105 · c2 − 35 · 2 · 5
(

dσ

dµ

)2

c− 8 · 2 · 35

3

(
dσ

dµ

)4

+
4 · 215c

3

(
dσ

dµ

)2

− 82c2

−210 · 5
(

dσ

dµ

)4

+ 630

(
dσ

dµ

)2

c+ 56 · 10

(
dσ

dµ

)4

− 84 · 7c
(

dσ

dµ

)2

.
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Collecting the terms gives(
385 + 105 ·

(
5

3

)2

− 8 · 2 · 35

3
− 210 · 5 + 56 · 10

)(
dσ

dµ

)4

−
(

35 · 2 · 5− 4 · 215

3
− 630 + 84 · 7

)
c

(
dσ

dµ

)2

+
(
105− 82

)
c2

= -
64

3
c

(
dσ

dµ

)2

+ 41c2

Interestingly all term with (dσ/dµ)4 have disappeared and we get:

-
64

3
c

(
dσ

dµ

)2

+ 41c2 = const(µ). (36)

Assume that c 6= 0. Equation (36) is satisfied only when

dσ

dµ
= const(µ),

which has a general solution of the form:

σ (µ) = kµ+ `

for some constants c1 and k and we get

V (µ) = (kµ+ `)2 .

Assume c = 0. We now solve (34). The differential equation can be rewritten as

d2

dµ2

(
σ

4/3
)

= 0.

Hence there exists constants k and ` such that

σ
4/3 = kµ+ `

or equivalently
V (µ) = (kµ+ `)

3/2 .
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