
JMLR: Workshop and Conference Proceedings vol 30 (2013) 1–22

Polynomial Time Optimal Query Algorithms for Finding
Graphs with Arbitrary Real Weights

Sung-Soon Choi sungsoonc@gmail.com

Cadence Design Systems, Inc.

Abstract

We consider the problem of finding the edges of a hidden weighted graph and their
weights by using a certain type of queries as few times as possible, with focusing on two
types of queries with additive property. For a set of vertices, the additive query asks
the sum of weights of the edges with both ends in the set. For a pair of disjoint sets of
vertices, the cross-additive query asks the sum of weights of the edges crossing between the
two sets. These queries are related to DNA sequencing and finding Fourier coefficients of
pseudo-Boolean functions, and have been paid attention to in computational learning.

In this paper, we achieve an ultimate goal of recent years for graph finding, by construct-
ing the first polynomial time algorithms with optimal query complexity for the general class
of graphs with n vertices and at most m edges in which the weights of edges are arbitrary

real numbers. The algorithms are randomized and their query complexities are O
(

m logn
logm

)
which improve the best known bounds by a factor of logm.

To build a key component for graph finding, we consider coin weighing with a spring
scale which itself has been paid attention to in a long history of combinatorial search. We
construct the first polynomial time algorithm with optimal query complexity for the general
case in which the weight differences between counterfeit and authentic coins are arbitrary
real numbers. We also construct the first polynomial time optimal query algorithm for
finding Fourier coefficients of a certain class of pseudo-Boolean functions.

Keywords: Graph finding, coin weighing, Fourier coefficients, pseudo-Boolean functions,
query complexity

1. Introduction

Graph finding. In graph finding, we are given a graph of which vertices are known a priori
but edges are unknown. The problem is to find the edges by using a certain type of queries
on the edges, as few times as possible. This paper focuses on two types of queries with
additive property, additive and cross-additive queries. For a set of vertices, the additive
query asks the number of edges with both ends in the set, and for a pair of disjoint sets of
vertices, the cross-additive query asks the number of edges crossing between the two sets.
For weighted graphs, as in this paper, the queries are generalized to ask the sum of weights
of the relevant edges and the problem is extended to finding the edges of a given graph
and their weights. Our primary concern is to construct polynomial time algorithms with
optimal query complexity for a significant class of weighted graphs.1

1. Hereafter, ‘optimal’ means the relevant bound matches a lower bound up to a constant factor.

c© 2013 S.-S. Choi.

Choi

Additive query was motivated by shotgun sequencing which is one of the most popular
methods for DNA sequencing; a main process of shotgun sequencing is reduced to graph
finding with additive queries (Grebinski and Kucherov, 1998; Beigel et al., 2001). Cross-
additive query is related to finding Fourier coefficients of pseudo-Boolean functions (Choi
and Kim, 2010; Choi et al., 2011a) on which there will be a discussion later. Graph finding
for the two queries may be regarded as an extension of coin weighing with a spring scale.
A discussion on coin weighing will also be given later. For other types of queries, see (Alon
and Asodi, 2005; Alon et al., 2004; Angluin and Chen, 2004, 2006; Hein, 1989; King et al.,
2003; Reyzin and Srivastava, 2007a,b).

Until a few years ago, most studies on additive queries were conducted for unweighted
graphs (Grebinski and Kucherov, 1998, 2000; Grebinski, 1998; Reyzin and Srivastava, 2007a;
Choi and Kim, 2008, 2010; Mazzawi, 2010). In recent years, there have been an increasing
number of studies on weighted graphs. For weighted graphs with n vertices and at most m
edges of real weights with a mild condition, Choi and Kim (2010) non-constructively proved
a non-adaptive optimal O

(m logn
logm

)
query bound, provided that m is at least a polylog of n.

Bshouty and Mazzawi extended this to arbitrarily small m (2011b), to arbitrary real weights
(2011a), and to constant-bounded hypergraphs (2010b). It was not clear from these results,
however, how to design polynomial time algorithms with optimal query complexity. Thus,
the design of such an algorithm, especially for the general class of graphs with arbitrary
real weights, has been considered as an ultimate goal of recent years, at least for practical
applications.

In this research direction, for graphs with positive real weights, Bshouty and Mazzawi
(2010a) presented a deterministic polynomial time algorithm with near optimal O

(m logn
logm +

m log logm
)

query complexity. Then, Choi et al. (2011b) constructed a randomized poly-

nomial time algorithm with optimal O
(m logn

logm

)
query complexity. For graphs with integer

weights of constant-bounded absolute values, they also gave a randomized polynomial time
algorithm using O

(m logn
logm

)
queries. Kim (2012) extended this to real weights of which ab-

solute values are bounded below and above by positive constants. (These algorithms are all
adaptive.)

In this paper, we give a construction of a randomized polynomial time algorithm using
O
(m logn

logm

)
queries for graphs with arbitrary real weights. This bound is optimal for all

m by an information-theoretic lower bound argument. It improves the best known bound
O(m log n) which can be obtained from (Choi et al., 2011a) by a factor of logm. To the best
of our knowledge, this is the first polynomial time algorithm with optimal query complexity.

To get the result on additive queries, we rather consider cross-additive queries. Since a
cross-additive query may be answered by three additive queries (see (Choi and Kim, 2010)
for more detail), the result on additive queries immediately follows from the following.

Problem 1 (Graph finding) Input: a weighted graph G for which the only information
given is that (i) G has the vertex set {1, . . . , n} and at most m edges, and (ii) the weights of
edges of G are arbitrary non-zero real numbers. Output: the edges of G and their weights.

Theorem 1 One can construct a randomized polynomial time adaptive algorithm which
solves Problem 1 with probability 1− o(1) by using O

(m logn
logm

)
cross-additive queries.

2

Polynomial Time Optimal Query Algorithms for Finding Graphs

This bound is also optimal for all m, and improves the best known bound O(m log n) from
(Choi et al., 2011a) by a factor of logm.

Coin weighing. To build a key component for graph finding, we consider coin weighing
with a spring scale. In the problem, a set of coins are given among which there are some
counterfeit coins. Each counterfeit coin has a different weight from the weight of authentic
coins which is known a priori (and so may be assumed to be 0). The problem is to find the
counterfeits by using a spring scale as few times as possible. Given any set of coins, the
scale gives the total weight of the coins in the set.

Coin weighing has been paid attention to in a long history of combinatorial search. In
the early stages, studies mainly focused on the 0/1 weight cases (i.e., the cases in which
the weights of counterfeits are all the same) and some extensions to integer weights. See
(Söderberg and Shapiro, 1963; Erdős and Rényi, 1963; Cantor, 1964; Lindström, 1964, 1965,
1971; Cantor and Mills, 1966; Moser, 1970) for the results on the simplest 0/1 case with an
arbitrary number of counterfeits. For two other famous cases, the 0/1 case with bounded
number of counterfeits, and the case of non-negative integer weights with bounded total
weight, see (Lindström, 1975; Capetanakis, 1979a,b; Tsybakov and Mikhailov, 1978; Massey,
1981; Uehara et al., 2000; Du and Hwang, 1993; Grebinski and Kucherov, 2000; Bshouty,
2009) and (Pippenger, 1981; Ruszinkó and Vanroose, 1997; Grebinski and Kucherov, 2000;
Bshouty, 2009), respectively.

A few recent studies shed light on optimal bounds for real weights. When there are
at most m counterfeits among n coins and the weights of counterfeits are real numbers
with a mild condition, Choi and Kim (2010) proved a non-adaptive optimal O

(m logn
logm

)
query bound. Bshouty and Mazzawi (2011a) extended this to arbitrary real weights. These
studies, however, did not cover the design of polynomial time algorithms. As a study
toward polynomial time optimal query algorithms, for counterfeits of positive real weights,
Bshouty and Mazzawi (2010a) constructed a deterministic polynomial time algorithm using
O
(m logn

logm +m log logm
)

coin weighings. Then, Choi et al. (2011b) constructed a randomized

polynomial time algorithm with optimal O
(m logn

logm

)
query complexity. For integer weights

of constant-bounded absolute values, they also presented a randomized polynomial time
algorithm of O

(m logn
logm

)
query bound, and Kim (2012) extended this to real weights of which

absolute values are lower- and upper-bounded by positive constants. (These algorithms are
all adaptive.)

In this paper, for arbitrary real weights, we construct a randomized polynomial time
algorithm using O

(m logn
logm

)
weighings. This bound is optimal for all m by an information-

theoretic argument, and improves the best known bound O(m log n
m) from some recent

results in compressed sensing, e.g., those based on expander graphs (Berinde et al., 2008;
Indyk and Ruzic, 2008; Gilbert and Indyk, 2010)2, by a factor of log n if nε ≤ m ≤ n1−ε

for a fixed constant ε > 0. To the best of our knowledge, this is the first polynomial time
algorithm with optimal query complexity for the general case in the long history of coin
weighing.

Problem 2 (Coin weighing) Input: a set of coins for which the only information given is
that (i) the total number of coins is n and among them, there are at most m counterfeits,

2. Notice that not all the results for compressed sensing yield the same bounds for coin weighing due to
the restriction in the measurements in coin weighing.

3

Choi

(ii) all of the authentic coins have the same weight which is known a priori, and (iii) the
weight difference between each counterfeit and an authentic coin is an arbitrary non-zero
real number. Output: the counterfeits and their weights.

Theorem 2 One can construct a randomized polynomial time adaptive algorithm which
solves Problem 2 with probability 1 − o(1) by using O

(m logn
logm

)
coin weighings, where the

error probability may be reduced to O
(

1
mc

)
for any large constant c > 0.

Finding Fourier coefficients of pseudo-Boolean functions. Cross-additive query
was motivated by the problem of finding Fourier coefficients of bounded pseudo-Boolean
functions. A pseudo-Boolean function is a real-valued function defined on the set of binary
strings of fixed length. It is k-bounded if it can be expressed as a sum of subfunctions
each depending on at most k input bits.3 Finding the Fourier coefficients of a k-bounded
function is reduced to a series of hypergraph finding problems with (generalized) cross-
additive queries, e.g., see (Choi and Kim, 2010) for k = 2.

Finding Fourier coefficients of k-bounded functions has important meanings in research
areas including evolutionary computation and population genetics. For more details, see
(Choi and Kim, 2010). After some initial studies (Kargupta and Park, 2001; Heckendorn
and Wright, 2004; Choi et al., 2009), Choi et al. (2008, 2011a) gave a randomized adap-
tive polynomial time algorithm with O(m log n) query complexity for k-bounded functions
with n input bits and at most m non-zero Fourier coefficients, for constant k. For the
2-bounded functions with a mild condition on Fourier coefficients, Choi and Kim (2010)
non-constructively proved a non-adaptive optimal O

(m logn
logm

)
query bound, provided that

m is at least a polylog of n.
In this paper, we have a (first) polynomial time optimal query algorithm for 2-bounded

functions with arbitrary real Fourier coefficients. This follows from Theorems 1 and 2 and
the reduction from this problem to a combination of graph fining with cross-additive queries
and coin weighing (Choi and Kim, 2010).

Problem 3 (Fourier coefficients) Input : a function f for which the only information given
is that (i) f is a 2-bounded pseudo-Boolean function defined on {0, 1}n, (ii) f has at most
m non-zero Fourier coefficients, and (iii) the non-zero Fourier coefficients of f are arbitrary
real numbers. Output : the Fourier coefficients of f .

Theorem 3 One can construct a randomized polynomial time adaptive algorithm which
solves Problem 3 with probability 1− o(1) by using O

(m logn
logm

)
function evaluations.

The rest of the paper is organized as follows. In the next section, described are some
preliminary results for understanding our result. Then, we prove Theorem 2 (coin weighing)
and Theorem 1 (graph finding) in Sections 3 and 4, respectively.

3. Thus by definition, a k-bounded (pseudo-Boolean) function is a multilinear polynomial of degree k or
less defined on the hypercube, and vice versa.

4

Polynomial Time Optimal Query Algorithms for Finding Graphs

2. Preliminaries

2.1. Fourier-Based Search Matrix

A search matrix is a 0/1 matrix which maps each 0/1 vector of fixed length to a different
output vector. Bshouty (2009) introduced a method to construct a 2ν×ν2ν−1 search matrix
for any integer ν ≥ 1, which is optimal in the number of rows, and to decode it efficiently
based on Fourier analysis of a relevant Pseudo-Boolean function. The method may be
abstracted as follows, for use in various settings of coin weighing. In the following, for a
set S of coins, w(S) is the weight of S, i.e., the sum of weights of all coins in S. Unless
specified otherwise, log means the logarithm to base 2.

Proposition 4 (Bshouty, 2009) Let A1, . . . , Aq be disjoint sets of coins and let ν be the
smallest integer satisfying ν2ν−1 ≥ q. Then, one can use 2ν coin weighings in a non-
adaptive way to find the following in polynomial time in q: For each i = 1, . . . , q, real
numbers xi, aik, k = 1, . . . , i− 1 and an integer `i with 0 ≤ `i < ν such that

w(Ai) = xi −
i−1∑
k=1

aikw(Ak)−
`i∑
k=1

w(Ai+k)

2k
.

In particular, the number 2ν of weighings is at most (4+o(1))q
log q , where o(1) approaches to 0

as q increases.

For example, it is straightforward to use the proposition to get a polynomial time optimal
query algorithm for the simplest 0/1 weight case: Let c1, . . . , cn be n given coins. Re-
garding each ci as a set, inductively on i = 1, . . . , n, use the proposition to find the value

xi −
∑i−1

k=1 aikw(ck). Then, we see w(ci) = bxi −
∑i−1

k=1 aikw(ck)c as 0 ≤
∑`i

k=1
w(ci+k)

2k
<∑∞

k=1
1
2k

= 1. By the proposition (with q = n) again, the number of weighings is 2ν =

O
(

n
logn

)
, which is optimal.

2.2. Guess-and-Fix Strategy

Many recent algorithms for coin weighing (Bshouty, 2009; Bshouty and Mazzawi, 2010a;
Choi et al., 2011b) are advanced forms of a simple algorithm called the divide-and-weigh for
non-negative real weights. Initially in the algorithm, the set of all given coins is weighed. If
the weight is zero, the algorithm is terminated, and otherwise, let S0 be the collection con-
taining only the set. Letting n be the number of coins, incrementally on t = 1, . . . , dlog ne,
divide each Si ∈ St−1 into two subsets Si1 and Si2 of equal size (up to one), and weigh Si1’s
one by one and accordingly, find the weights of Si2’s by w(Si2) = w(Si)−w(Si1). Then, let
St be the collection of Sij ’s j = 1, 2 with non-zero weights. Since each set in Sdlogne contains
only one counterfeit, all counterfeits and their weights are found from the sets in Sdlogne.
The query complexity of this algorithm is O

(
m log n

m

)
when the number of counterfeits is

at most m. See (Uehara et al., 2000) for a proof idea.
A guess-and-fix strategy was proposed in the Bshouty-Mazzawi (BM) algorithm (Bshouty

and Mazzawi, 2010a) to find the weights of subsets obtained by division in each iteration
of the divide-and-weigh, overall more efficiently. To this end, it iteratively chooses a group
of subsets, guesses their weights, checks the correctness of the guesses, and fixes incorrect
ones (if exist). More specifically, in the tth iteration, let St−1 = {S1, . . . , Sq} and w.l.o.g.

5

Choi

assume that Si’s are in a non-increasing order of the weights. To find w(Sij)’s j = 1, 2, an
(integer) interval I ⊆ {1, . . . , q} starting from 1 is initially chosen. Then, w(Si1)’s i ∈ I are
guessed sequentially, assuming that each Si, i ∈ I is not split, i.e., the counterfeits in Si are
inherited to only one of Si1 and Si2. Under the assumption, each w(Si1) i ∈ I must be one
of the two values, w(Si) and 0. Hence, as in the above 0/1 weight case, Proposition 4 is
used to guess w(Si1)’s i ∈ I with O

(q
log q

)
weighings as follows:

Inductively on i = 1, . . . , |I|, the guess for w(Si1), say u(Si1) is set to be w(Si) if xi −∑i−1
k=1 aiku(Sk1) ≥ w(Si), and it is set to be 0 otherwise. It is not hard to see that if Si’s

are not split for all i ∈ I, then u(Si1)’s are correct, i.e., u(Si1) = w(Si1) for all i ∈ I, from

the fact that 0 ≤
∑`i

k=1
w(Si+k,1)

2k
≤
∑`i

k=1
w(Si+k)

2k
≤
∑`i

k=1
w(Si)

2k
< w(Si). After getting

u(Si1) i ∈ I, the weights of Si2 i ∈ I are guessed to be u(Si2) = w(Si) − u(Si1). We will
call this the guess operation for the interval I.

Then, the check-and-fix operation for I follows: First, it is checked whether u(Sij) i ∈ I j =
1, 2 are all correct, simply by weighing all the sets with 0-guesses (Sij ’s with u(Sij) = 0)
together to see whether the total weight is 0. If the 0-guesses are all correct, which means
that w(Sij) i ∈ I j = 1, 2 are all found, then choose an interval I ′ next to I. (I ′ starts
from |I| + 1.) Otherwise, find the first incorrect 0-guess via binary search and fix the
corresponding pair, say u(Si∗j) j = 1, 2. Then, choose an interval I ′ next to the fixed pair.
(I ′ starts from i∗ + 1.) Now, the guess and check-and-fix operations are repeated for I ′.

The efficiency of the guess-and-fix strategy comes from the guess operations with optimal
query complexity. By the proposition, once the O

(q
log q

)
weighings are conducted for the

initial interval, the guess operations for the other intervals may be conducted without
additional weighings. Hence, the BM algorithm usesO

(
m

logm

)
weighings for guess operations

in each iteration, as the size |St| of St is at most m for each t. On the other hand, it uses
a fixed interval size Θ(logm) (except in few cases), and so O

(
m

logm

)
weighings are required

for check operations (not for fix operations) in each iteration. From these, the first term
in its query complexity O

(m logn
logm + m log logm

)
follows. The second term comes from the

facts that O(log logm) weighings are used (for binary search) for each fix operation, and
the number of guesses to be fixed over all iterations is O(m) (as it is at most twice the
number of sets split during the algorithm execution).

The algorithm of (Choi et al., 2011b) uses a random division of coin sets so that with
high probability (w.h.p.) the number of sets split in the tth iteration is bounded above by
exponentially decreasing values in t for enough number of t’s in the beginning. According
to this, it uses an adaptive interval size 2t in the tth iteration. These features yield expo-
nentially decreasing costs for fix operations, over a number of iterations in the beginning,
to eliminate the second term in the query complexity of the BM algorithm.

3. Coin Weighing Algorithm

3.1. Algorithm Overview and Main Ideas

Allowing negative weights brings a few obstacles to directly applying the algorithms for
non-negative weights. At first, a set of weight 0 may contain two or more counterfeits of
which weights cancel out one another, and so we may not always discard the coins in the
set from further consideration. To overcome this, we use an idea in (Choi et al., 2011b)

6

Polynomial Time Optimal Query Algorithms for Finding Graphs

for bounded integer weights. Our algorithm consists of two phases. In the first phase, it
iterates Θ(log logm) rounds in each of which, whenever a set of weight 0 is found, it keeps
the coins in the set aside to examine them again in the next rounds (or in the next phase).
In each round, among the counterfeits not found so far, the algorithm finds a portion of
the counterfeits, excluding at most 2

3 portion of them. After the first phase, there remain
O
(

m
logm

)
counterfeits not found. In the second phase, the algorithm finds them one by one

by a randomized binary search which uses O(log n) weighings per counterfeit.
In each round (of the first phase), an upper bound q is given on the number of counterfeits

not found so far. (Specifically, q is set to be m
(

2
3

)r−1
in the rth round for r = 1, 2,)

Then, the algorithm finds counterfeits with O
(q logn

log q

)
weighings, leaving behind at most 2

3q
ones. To this end, the coins not found so far are initially distributed into q sets: Each coin
is put into one of q sets uniformly at random (u.a.r.) and independently of other coins. The
q sets are weighed one by one, and only the sets of non-zero weights are put into S0. Now,
incrementally on t = 1, 2, . . . , in the tth iteration, the algorithm divides each Si ∈ St−1

into two subsets Sij j = 1, 2 such that each coin in Si is independently put into one of
Sij , each with probability 1

2 . Then, it finds w(Sij)’s based on a new type of guess-and-fix
strategy, which we will present below, and puts only the sets of non-zero weights into St.
After Θ(log n) iterations, only the sets of size one remain, and the coins therein are the
counterfeits to be found in the round.

It turns out that counterfeit coins except at most 2
3q ones are isolated in the initial

distribution, and so the number of counterfeits not found in the round is at most 2
3q. Also,

the query complexity for the guess-and-fix strategy is upper-bounded by an exponentially
decreasing sequence starting from O

(q logn
log q

)
for an enough number of initial iterations, from

which a desired query complexity follows for the round.

Randomized guess-and-fix. For sets Si ∈ St−1 and their subsets Sij j = 1, 2 in the tth

iteration, we propose a randomized guess-and-fix strategy to find w(Sij)’s of which query
complexity is properly bounded.

At first, we give a new construction scheme of search matrices which will be used
for sets of coins with arbitrary real weights. The following abstracts the essence of the
scheme, for coin weighing. Hereafter, for positive integers x and y, we define L(x, y) :=∑x

j=0 min(j, y)
(
x
j

)
.

Lemma 5 Let A1, . . . , Aq be disjoint sets of coins. Let y be a positive integer and let ν be
the smallest positive integer satisfying L(ν, y) ≥ 2q. Then, one can use 2ν coin weighings
in a non-adaptive way to find the following in polynomial time in q: For each i = 1, . . . , q,
real numbers xi, aik, k = 1, . . . , i− 1 and an integer `i with 0 ≤ `i < min(ν, y)/2 such that

w(Ai) = xi −
i−1∑
k=1

aikw(Ak)−
`i∑
k=1

w(Ai+k)

4k
.

In particular, for a universal constant α > 0, the number 2ν of weighings is at most
(
1 +

α√
log 2q

)
max

(
4q
y ,

8q
log 2q

)
for sufficiently large q.

Proof See Appendix A.

As seen in the below, we use different y’s depending on t to control a tradeoff between the

7

Choi

number of weighings for constructing equations for guessing and an upper bound on the
number of certain incorrect guesses.

Lemma 5 is used for guessing w(Sij)’s as follows. W.l.o.g., assume that Si’s are labeled
in a non-increasing order of |w(Si)|’s. Writing qt := |St−1|, use the lemma with Ai =
Si1 i = 1, . . . , qt (and a positive integer y) to get the equations for w(Si1)’s. Given w(Si)’s,
we guess w(Si1)’s inductively on i = 1, . . . , qt: The guess u(Si1) for w(Si1) is set to be w(Si)
if |xi −

∑i−1
k=1 aiku(Sk1)| ≥ |w(Si)|/2, and it is set to be 0 otherwise. The guess for w(Si2)

is set to be w(Si)− u(Si1).

If Si is not split for all i, then u(Sij)’s are correct for all i, as |
∑`i

k=1
w(Si+k,1)

4k
| ≤∑`i

k=1
|w(Si+k)|

4k
≤
∑`i

k=1
|w(Si)|

4k
< |w(Si)|/2. For an interval I ⊆ [1, . . . , qt], we may guess

w(Si1)’s for i ∈ I in the same way if w(Si)’s for i ∈ I and w(Sk1)’s for k < min(I) are given.
Though a guessing operation is now available for arbitrary real weights, there are two

problems which should be addressed when we apply the (deterministic) guess-and-fix strate-
gies for non-negative real weights to arbitrary real weights.

(i) Ambiguity in the meaning of weight zero: The task of checking whether a group of
sets are all of weight 0 plays a crucial role in the check-and-fix operations of the previous
strategies. Unlike for non-negative weights, for conducting the task, it is not always enough
to weigh the sets together to see whether the total weight is 0 (similarly to when checking
whether a group of coins are all authentic, mentioned above).

(ii) Unboundedness of the weights of the sets obtained by division: Unlike for non-negative
weights, w(Si1) may be arbitrarily larger than w(Si) in absolute value. Thus, the guess for
w(Si1), based on the equation in Lemma 5, may be incorrect even when Si is not split and

the guesses for w(Sk1) with k < i are correctly given, as the term
∑`i

k=1
w(Si+k,1)

4k
may be

arbitrarily large in absolute value.

For the checking task in (i), it seems natural to consider a random testing procedure as
follows.

procedure Check-All-Zeros (S: a group of coin sets, K: a positive integer)
repeat K times

generate a uniform random subset S ′ of S
weigh the union of the sets in S ′ to find its weight wS′

if wS′ 6= 0, return False
return True

For making the existing check-and-fix operations work for arbitrary real weights, it might
be an initial try to use Check-All-Zeros (with proper K) for each checking task in the
operations and bound the overall error probability by union bound. It turns out, however,
that over the operations, the task is to be conducted too often, say Ω(m) times. Thus, K
should be Ω(logm) to use union bound, which yields a non-optimal query complexity.

Our strategy to overcome (i) and (ii) is to allow some constant error probability for
each checking task, but also to check the correctness of previously conducted tasks on a
regular basis. More specifically in the tth iteration, we choose intervals I ⊆ [1, . . . , qt] of
size 2t (or less in few cases) and guess w(Si1)’s for i ∈ I. For small constant ε > 0, we
use Check-All-Zeros with K ≥ log(t+1

ε) inside the check-and-fix operations so as to

8

Polynomial Time Optimal Query Algorithms for Finding Graphs

get an error probability at most ε for each check-and-fix operation. In addition, before
starting the guess/check-and-fix operation for an interval I (except the one starting 1), we
check the correctness of the all 0-guesses for the sets located before I by using Check-All-
Zeros with K ≥ log

(
1
ε

)
. The error probability for this is also at most ε. If the procedure

reveals the existence of an incorrect 0-guess before I, then the most recent guess/check-
and-fix operations (for the last interval) are rolled back. Otherwise, the guess/check-and-fix
operation is conducted for the interval I.

As will be seen, the whole guess-and-fix process to find the weights of sets obtained by
division in an iteration, may be regarded as a series of transitions on a Markov chain (MC)
with a unique absorbing state in which each transition corresponds to a guess/check-and-fix
operation or a roll-back operation. In particular, by setting K appropriately for ε as above,
each transition going one step closer to the absorbing state occurs with probability at least
1 − ε. Thus, based on a large deviation inequality for a sum of (geometric-like) random
variables, the number of weighings for the check-and-fix and roll-back operations is w.h.p.
within a constant factor of the distance between the starting and absorbing states in the
MC.

The distance in the MC depends on the number of leading incorrect guesses induced by
the equations from a search matrix which is used for guessing in the iteration. Suppose that
in the tth iteration, let St−1 = {S1, . . . , Sqt} where |w(S1)| ≥ · · · ≥ |w(Sqt)|, and we get the
equations from Lemma 5 with Ai = Si1 i = 1, . . . , qt to guess w(Si1)’s. Then, the guess for
w(Si1), based on the equation for w(Si1), is called a leading incorrect guess if it is incorrect
when the guesses for w(Sk1) k < i are correctly given, along with the value of w(Si).

We should notice that for each Sk, there are max1≤j≤qt `j or less i’s with i < k such
that w(Si1) depends on w(Sk1) in the equation for w(Si1) in the lemma. Thus, the number
of leading incorrect guesses in the iteration is at most (1 + max1≤j≤qt `j) times the number
of Sk’s split. Since max1≤j≤qt `j < y, we may set y appropriately to bound the number
of leading incorrect guesses. We will set y = d1.1te in the tth iteration. It turns out that
for an upper bound q on the number of counterfeits in a round, the number of sets split
in the tth iteration of the round is O(q2t + q

3
4) (w.h.p.). Hence, we get an exponentially

decreasing upper bound on the number of leading incorrect guesses, and consequently, an
exponentially decreasing upper bound on the distance of the MC, in the tth iteration for an
enough number of small t’s.

In this way, it is possible to get a proper bound on the number of weighings for check-
and-fix and roll-back operations in each iteration. The number of weighings for constructing
equations for guessing is also properly bounded.

3.2. Algorithm Description

We present the pseudocode of the algorithm. It consists of a main procedure, Find-
Counterfeits, and five subprocedures (including Check-All-Zeros presented in Section
3.1). The main procedure takes a set C of n coins with at most m counterfeits, and returns
the set Cct of counterfeits and their weights (u(c))c∈Cct found by the algorithm. (In the
pseudocode, for a set S of coins, u(S) is used to represent the weight of S computed by
the algorithm. As before, w(S) represents the real weight of S.) The values of n and m

9

Choi

may be accessed by any procedure in the pseudocode. All other variables are local to the
procedures in which they appear.

In the main procedure, the variables Cct and Cun contain the counterfeits found so far
and the coins unknown so far, respectively. The for and repeat loops correspond to the
first and second phases of the algorithm. The rth iteration of the for loop implements the
rth round of the first phase, and calls Find-Portion-of-Counterfeits with an upper
bound m(2

3)r−1 on the number of counterfeits in Cun to find some of the coins in Cun and
their weights. The repeat loop iteratively calls Find-One-Counterfeit which finds a
counterfeit in Cun by a randomized binary search, until there is no counterfeit left in Cun.

The procedure Find-Portion-of-Counterfeits implements each round in the first
phase of the algorithm. Given a set C of coins and a positive integer q, it finds a portion
of the counterfeits in C, starting with the random distribution of the coins in C into q sets.
For t ≤ d2 log qe, the tth iteration of the for loop implements the randomized guess-and-fix
strategy to find w(Sij) j = 1, 2 for each Si ∈ St−1 by using Check-All-Zeros, Guess, and
Find-First-Incorrect. In particular, the if block of lines 11–14 implements a roll-back
operation (with checking previous 0-guesses). The if block of lines 15–28 implements a
guess/check-and-fix operation. For t > d2 log qe, roll-back and check-and-fix operations are
not conducted in the tth iteration of the for loop. For integers a, b with a ≤ b, the notation
[a, b] means the integer interval between a and b. For an integer interval I, pre(I) denotes
the integer interval between 1 and min(I)− 1.

The procedure Guess computes the guesses for w(Sij) i ∈ I, j = 1, 2, based on the
equations for w(Si1) i ∈ I in Lemma 5 and the values

(
u(Si)

)
i∈I and

(
u(Si1)

)
i∈pre(I)

.

procedure Find-Counterfeits (C: a set of n coins with at most m counterfeits)
Cct ← ∅ and Cun ← C
for r from 1 to dlog logme(
Cr, (u(c))c∈Cr

)
← Find-Portion-of-Counterfeits

(
Cun,m

(
2
3

)r−1)
Cct ← Cct ∪ Cr and Cun ← Cun \ Cr

repeat(
c, u(c)

)
← Find-One-Counterfeit(Cun)

if
(
c, u(c)

)
= Null, exit

Cct ← Cct ∪ {c} and Cun ← Cun \ {c}
return

(
Cct, (u(c))c∈Cct

)
procedure Find-One-Counterfeit (C: a set of coins)

repeat d2 logme times
generate a uniform random subset S of C, and weigh S to find its weight wS
if wS 6= 0,

find a counterfeit c in S and its weight w(c) by a deterministic binary search
return (c, w(c))

return Null

10

Polynomial Time Optimal Query Algorithms for Finding Graphs

procedure Find-Portion-of-Counterfeits (C: a set of n coins, q: a positive integer)
// ε is fixed to be 1

16

1 put each coin in C into one of q (initially empty) sets u.a.r. and independently
2 weigh each of the q sets, say S, and if w(S) 6= 0, put S into S0 and u(S)← w(S)
3 for t from 1 to d2 log qe+ dlog ne
4 let qt := |St−1|, and if qt = 0, return (∅,Null)
5 label the sets in St−1, say S1, . . . , Sqt so that |u(S1)| ≥ · · · ≥ |u(Sqt)|
6 if t ≤ d2 log qe
7 divide each Si ∈ St−1 into Si1 and Si2 u.a.r. and independently of other sets
8 use Lemma 5 with Ai = Si1, i = 1, . . . , qt and y = d1.1te to find

(
xi, (aik)k<i

)
i∈[1,qt]

for w(Si1)’s
9 I1 ←

[
1,min(2t, qt)

]
and h← 1

10 repeat d9
(q

2t + q
3
4

)
min(d1.1te, log q)e times

11 if Ih = ∅ or min(Ih) > 1
12 U ←

{
Sij : u(Sij) = 0, i ∈ pre(Ih), j = 1, 2

}
13 if Check-All-Zeros

(
U ,dlog 1

εe
)
6= True

14 h← h− 1 and skip the rest of the current iteration of the repeat loop
15 if Ih 6= ∅
16 if min(Ih) = 1
17

(
u(Sij)

)
i∈Ih,j=1,2

← Guess
(
Ih,
(
u(Si), xi, (aik)k<i

)
i∈Ih

,Null
)

18 else
19

(
u(Sij)

)
i∈Ih,j=1,2

← Guess
(
Ih,
(
u(Si), xi, (aik)k<i

)
i∈Ih

,
(
u(Si1)

)
i∈pre(Ih)

)
20 U ←

{
Sij : u(Sij) = 0, i ∈ Ih, j = 1, 2

}
21 if Check-All-Zeros

(
U ,dlog t+1

ε e
)

= True
22 if max(Ih) = qt, Ih+1 ← ∅
23 else Ih+1 ←

[
max(Ih) + 1,min

(
max(Ih) + 1 + 2t, qt

)]
24 else
25 (i∗, j∗, wi∗j∗) ← Find-First-Incorrect(U ,t)
26 u(Si∗j∗)← wi∗j∗ and u(Si∗j∗)← u(Si∗)− wi∗j∗ for j∗ := j∗ + 1 (mod 2)

27 if i∗ = qt, Ih+1 ← ∅ else Ih+1 ←
[
i∗ + 1,min(i∗ + 1 + 2t, qt)

]
28 h← h+ 1
29 else
30 divide each Si ∈ St−1 into Si1 and Si2 of equal size (up to one) in a deterministic

way
31 use Lemma 5 with Ai = Si1, i = 1, . . . , qt and y = d1.1te to find

(
xi, (aik)k<i

)
i∈[1,qt]

for w(Si1)’s
32

(
u(Sij)

)
i∈[1,qt],j=1,2

← Guess
(
[1, qt],

(
u(Si), xi, (aik)k<i

)
i∈[1,qt]

,Null
)

33 St ←
{
Sij : u(Sij) 6= 0, i ∈ [1, qt], j = 1, 2

}
34 Cfd ←

⋃
S∈Sd2 log qe+dlogne

S, and for each S ∈ Sd2 log qe+dlogne, u(c)← u(S) for c ∈ S
35 return

(
Cfd, (u(c))c∈Cfd

)

11

Choi

procedure Guess
(
I: an integer interval,

(
u(Si), xi, (aik)k<i

)
i∈I ,

(
u(Si1)

)
i∈pre(I)

)
for i from min(I) to max(I)
s← xi −

∑i−1
k=1 aiku(Sk1)

if |s| ≥ |u(Si)|/2, u(Si1)← u(Si) and u(Si2)← 0 else u(Si1)← 0 and u(Si2)← u(Si)
return

(
u(Sij)

)
i∈I,j=1,2

procedure Find-First-Incorrect (U : a group of sets Sij , t: a positive integer)
// ε is fixed to be 1

16
U0 ← U
while |U0| > 1

U1 ←
{
Sij : i is in the first d |U0|2 e among the first indices of the sets in U0

}
U2 ← U0 \ U1

if Check-All-Zeros
(
U1,dlog t+1

ε e
)
6= True, U0 ← U1 else U0 ← U2

weigh the set Si∗j∗ in U0 to find its weight wi∗j∗ , and return (i∗, j∗, wi∗j∗)

3.3. Analysis

We analyze the error bound and the query complexity of the proposed algorithm. It is clear
that the algorithm is of polynomial time. We first present a lemma which will be used for
showing both the error bound and the query complexity.

Lemma 6 Suppose that C is a set of coins among which there are at most q counterfeits.
Then, with probability 1 − O

(
1
q

)
, Find-Portion-of-Counterfeits(C,q) returns a set of

counterfeits in C along with their weights which excludes at most 2
3q counterfeits in C.

Proof See Appendix B.

Error bound. The following shows the error bound of the algorithm.

Lemma 7 Suppose that C is a set of coins among which there are at most m counterfeits.
Then, with probability 1−O

(logm
m

)
, Find-Counterfeits(C) returns the set of counterfeits

in C and their weights.

Proof Inside the call Find-Counterfeits(C), the overall error probability in the for loop

is O
(∑dlog logme

r=1 1/
((

2
3

)r−1
m
))

= O
(logm

m

)
by Lemma 6. On the other hand, the error

probability in each iteration of the repeat loop is clearly O
(

1
m2

)
and so the overall error

probability in the repeat loop is O
(

1
m

)
. From these, the lemma follows.

We should remark that the error bound may be further reduced to O
(

1
mc

)
for arbitrarily

large constant c > 0 if we increase by constant factors the number d2 log qe in the number
of iterations of the for loop in Find-Portion-of-Counterfeits as well as the number
d2 logme of iterations of the repeat loop in Find-One-Counterfeit. As seen in the
below, such a modification does not affect the (asymptotic) query complexity.

Query complexity. We first prove the following by using Lemma 5.

12

Polynomial Time Optimal Query Algorithms for Finding Graphs

Lemma 8 Suppose that C is a set of n coins among which there are at most q counter-
feits. Then, the number of coin weighings used in Find-Portion-of-Counterfeits(C,q)
is O

(q logn
log q

)
.

Proof We first consider the number of weighings for constructing equations for guessing.
By Lemma 5, for a universal constant α > 0, the number of weighings is at most

(
1 +

α√
log 2q

)∑d2 log qe+dlogne
t=1 max

(4q
d1.1te ,

8q
log 2q

)
. Since

∑d2 log qe+dlogne
t=1

4q
d1.1te ≤

∑∞
t=1

4q
1.1t = O(q)

and
∑d2 log qe+dlogne

t=1
8q

log 2q = O
(q logn

log q

)
, the number of weighings is O

(q logn
log q

)
.

Next, consider the number of weighings for roll-back and check-and-fix operations.
For each t with 1 ≤ t ≤ d2 log qe, at most log 16 + (t + 1)dlog (16(t+ 1))e = 4 + (t +
1)dlog (16(t+ 1))e weighings are used in each iteration of the repeat loop, in the tth iteration

of the for loop. Hence, the total number is at most
∑d2 log qe

t=1 d9(q2t+q
3
4) min(d1.1te, log q)e(4+

(t+ 1)dlog (16(t+ 1))e). This bound is O(q) from the following facts:∑d2 log qe
t=1

q
2t min(d1.1te, log q)t log (t+ 1) ≤ q

∑d2 log qe
t=1

1.1t+1
2t t log (t+ 1) = O(q),

and
∑d2 log qe

t=1 q
3
4 min(d1.1te, log q)t log (t+ 1) ≤

∑d2 log qe
t=1 q

3
4 (log q)t log (t+ 1) = O(q).

From these bounds, the lemma follows.

We now get the query complexity of the algorithm.

Lemma 9 Suppose that C is a set of n coins among which there are at most m counterfeits.
Then, with probability 1−O

(logm
m

)
, Find-Counterfeits(C) uses O

(m logn
logm

)
coin weighings.

Proof By Lemma 6, with probability 1−O
(logm

m

)
, (i) Cun contains at most (2

3)r−1m coun-
terfeits in the beginning of the rth iteration of the for loop (inside Find-Counterfeits)
for r = 1, . . . , dlog logme, and (ii) it contains O

(
m

logm

)
counterfeits right after the loop.

Under this condition, by (i) and Lemma 8, the number of coin weighings over the iterations

of the for loop is O
(∑dlog logme

r=1
(2
3

)r−1m logn

log ((2
3

)r−1m)

)
= O

(m logn
logm

)
. Also by (ii), the total number

of iterations of the repeat loop is O
(

m
logm

)
, and in each of the iterations, O(logm+ log n)

weighings are used (inside Find-One-Counterfeit). Thus, the number of coin weighings
over the iterations of the repeat loop is O

(m logn
logm

)
.

4. Graph Finding Algorithm

Choi et al. (2011b) proposed an algorithmic framework for graph finding with additive
queries based on a coin weighing algorithm, for positive real and bounded-integer weights.
We modify the framework for cross-additive queries and combine it with the coin weighing
algorithm in the previous section to give an algorithm for Theorem 1. The algorithm and
analysis appear in the full version.

5. Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant
funded by the Korean Government (MOE) (No. 2011-0025650), and by NSF award CCF-
1115703.

13

Choi

References

N. Alon and V. Asodi. Learning a hidden subgraph. SIAM Journal on Discrete Mathematics,
18(4):697–712, 2005.

N. Alon, R. Beigel, S. Kasif, S. Rudich, and B. Sudakov. Learning a hidden matching.
SIAM Journal on Computing, 33(2):487–501, 2004.

D. Angluin and J. Chen. Learning a hidden graph using O(log n) queries per edge. In
Proceedings of the 17th Annual Conference on Learning Theory (COLT 2004), pages
210–223, Banff, Canada, 2004.

D. Angluin and J. Chen. Learning a hidden hypergraph. Journal of Machine Learning
Research, 7:2215–2236, 2006.

R. Beigel, N. Alon, M. S. Apaydin, L. Fortnow, and S. Kasif. An optimal procedure for
gap closing in whole genome shotgun sequencing. In Proceedings of the Fifth Annual
International Conference on Computational Molecular Biology (RECOMB 2001), pages
22–30, 2001.

R. Berinde, A. C. Gilbert, P. Indyk, H. J. Karloff, and M. J. Strauss. Combining geometry
and combinatorics: A unified approach to sparse signal recovery. Allerton, 2008.

N. H. Bshouty. Optimal algorithms for the coin weighing problem with a spring scale. In
Proceedings of the 22nd Annual Conference on Learning Theory (COLT 2009), Montreal,
Canada, 2009.

N. H. Bshouty and H. Mazzawi. Toward a deterministic polynomial time algorithm with
optimal additive query complexity. In Proceedings of the 35th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2010), pages 221–232, Brno,
Czech Republic, 2010a.

N. H. Bshouty and H. Mazzawi. Optimal query complexity for reconstructing hypergraphs.
In Proceedings of the 27th International Symposium on Theoretical Aspects of Computer
Science (STACS 2010), pages 143–154, Nancy, France, 2010b.

N. H. Bshouty and H. Mazzawi. On parity check (0, 1)-matrix over Zp. In Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms (SODA 2011), pages 1383–1394, San
Francisco, USA, 2011a.

N. H. Bshouty and H. Mazzawi. Reconstructing weighted graphs with minimal query com-
plexity. Theoretical Computer Science, 412(19):1782–1790, 2011b.

D. G. Cantor. Determining a set from the cardinalities of its intersections with other sets.
Canadian Journal of Mathematics, 16:94–97, 1964.

D. G. Cantor and W. H. Mills. Determination of a subset from certain combinatorial
properties. Canadian Journal of Mathematics, 18:42–48, 1966.

J. Capetanakis. Tree algorithms for packet broadcast channels. IEEE Transactions on
Information Theory, 25(5):505–515, 1979a.

14

Polynomial Time Optimal Query Algorithms for Finding Graphs

J. Capetanakis. Generalized TDMA: The multi-accessing tree protocol. IEEE Transactions
on Communications, 27(10):1476–1484, 1979b.

S. S. Choi and J. H. Kim. Optimal query complexity bounds for finding graphs. In Proceed-
ings of the 40th ACM Symposium on Theory of Computing (STOC 2008), pages 749–758,
Victoria, Canada, 2008.

S. S. Choi and J. H. Kim. Optimal query complexity bounds for finding graphs. Artificial
Intelligence, 174(9–10):551–569, 2010.

S. S. Choi, K. Jung, and J. H. Kim. Almost tight upper bound for finding Fourier coefficients
of k-bounded pseudo-Boolean functions. In Proceedings of the 21st Annual Conference
on Learning Theory (COLT 2008), pages 123–134, Helsinki, Finland, 2008.

S. S. Choi, K. Jung, and B. R. Moon. Lower and upper bounds for linkage discovery. IEEE
Trans. on Evolutionary Computation, 13(2):201–216, 2009.

S. S. Choi, K. Jung, and J. H. Kim. Almost tight upper bound for finding Fourier coefficients
of k-bounded pseudo-Boolean functions. Journal of Computer and System Sciences, 77
(6):1039–1053, 2011a.

S. S. Choi, J. H. Kim, and J. Oh. Randomized polynomial time algorithms for finding
weighted graphs with optimal additive query complexity. Manuscript, 2011b.

D. Du and F. K. Hwang. Combinatorial group testing and its application. In V. 3 of Series
on applied mathematics, chapter 10. World Science, 1993.

P. Erdős and A. Rényi. On two problems of information theory. Publications of the Math-
ematical Institute of the Hungarian Academy of Sciences, 8:241–254, 1963.

A. Gilbert and P. Indyk. Sparse recovery using sparse matrices. Proceedings of the IEEE,
98(6):937–947, 2010.

V. Grebinski. On the power of additive combinatorial search model. In Proceedings of
the 4th Annual International Conference on Computing and Combinatorics (COCOON
1998), pages 194–203, Taipei, Taiwan, 1998.

V. Grebinski and G. Kucherov. Reconstructing a Hamiltonian cycle by querying the graph:
Application to DNA physical mapping. Discrete Applied Mathematics, 88:147–165, 1998.

V. Grebinski and G. Kucherov. Optimal reconstruction of graphs under the additive model.
Algorithmica, 28:104–124, 2000.

R. B. Heckendorn and A. H. Wright. Efficient linkage discovery by limited probing. Evolu-
tionary Computation, 12(4):517–545, 2004.

J. J. Hein. An optimal algorithm to reconstruct trees from additive distance data. Bulletin
of Mathematical Biology, 51(5):597–603, 1989.

15

Choi

P. Indyk and M. Ruzic. Near-optimal sparse recovery in the L1 norm. In Proceedings of
the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008),
pages 199–207, 2008.

H. Kargupta and B. Park. Gene expression and fast construction of distributed evolutionary
representation. Evolutionary Computation, 9(1):1–32, 2001.

J. H. Kim. Finding weighted graphs by combinatorial search. arXiv:1201.3793, 2012.

V. King, L. Zhang, and Y. Zhou. On the complexity of distance-based evolutionary tree
reconstruction. In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2003), pages 444–453, 2003.

B. Lindström. On a combinatory detection problem I. Publications of the Mathematical
Institute of the Hungarian Academy of Sciences, 9:195–207, 1964.

B. Lindström. On a combinatorial problem in number theory. Canadian Mathematical
Bulletin, 8(4):477–490, 1965.

B. Lindström. On Möbius functions and a problem in combinatorial number theory. Cana-
dian Mathematical Bulletin, 14(4):513–516, 1971.

B. Lindström. Determining subsets by unramified experiments. In J. N. Srivastava, editor,
A Survey of Statistical Designs and Linear Models, pages 407–418. North Holland, 1975.

J. L. Massey. Collision-resolution algorithms and random-access communications. In
G. Longo, editor, Multi-user communications systems, CISM Courses and Lecture Notes
No. 265, pages 73–137. Springer, Wien and New York, 1981.

H. Mazzawi. Optimally reconstructing weighted graphs using queries. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pages 608–615, Austin,
USA, 2010.

C. McDiarmid. On the method of bounded differences. In J. Siemons, editor, Surveys in
Combinatorics, London Mathematical Society Lecture Note Series 141, pages 148–188.
Cambridge University Press, 1989.

L. Moser. The second moment method in combinatorial analysis. In Combinatorial Struc-
tures and Their Applications. Proceedings of the Calgary International Conference on
Combinatorial Structures and Their Applications held at the University of Calgary. June
1969, pages 283–384. Gordon and Breach, New York, 1970.

N. Pippenger. Bounds on the performance of protocols for a multiple-access broadcast
channel. IEEE Trans. on Information Theory, 27(2):145–151, 1981.

L. Reyzin and N. Srivastava. Learning and verifying graphs using queries with a focus
on edge counting. In Proceedings of the 18th International Conference on Algorithmic
Learning Theory (ALT 2007), pages 285–297, Sendai, Japan, 2007a.

L. Reyzin and N. Srivastava. On the longest path algorithm for reconstructing trees from
distance matrices. Information Processing Letters, 101(3):98–100, 2007b.

16

Polynomial Time Optimal Query Algorithms for Finding Graphs

M. Ruszinkó and P. Vanroose. How an Erdös-Rényi-type search approach gives an explicit
code construction of rate 1 for random access with multiplicity feedback. IEEE Trans.
on Information Theory, 43(1):368–373, 1997.

S. Söderberg and H. S. Shapiro. A combinatory detection problem. American Mathematical
Monthly, 70:1066–1070, 1963.

B. Tsybakov and V. Mikhailov. Free synchronous packet access in a broadcast channel with
feedback. Problemy Peredachi Informassi, 14(4):259–280, 1978.

R. Uehara, K. Tsuchida, and I. Wegener. Identification of partial disjunction, parity, and
threshold functions. Theoretical Computer Science, 210(1–2):131–147, 2000.

Appendix A. Proof of Lemma 5

To prove Lemma 5, we use the following lemma. Recall that for positive integers x and y,
L(x, y) =

∑x
j=0 min(j, y)

(
x
j

)
.

Lemma 10 For positive integers x and y, L(x, y) ≥
(
1− 1√

x

)
min(x2 , y)2x.

Proof We consider only the case that x is even. The proof for odd x may be obtained in
a similar way.

First, consider the case that y ≤ x
2 . We see that L(x, y) =

∑y
j=0 j

(
x
j

)
+
∑x

j=y+1 y
(
x
j

)
=∑x

j=0 y
(
x
j

)
−
∑y

j=0(y − j)
(
x
j

)
. Since

∑y
j=0(y − j)

(
x
j

)
/(y2x) is increasing in y for 1 ≤ y ≤ x

2 ,

and
∑x

2
j=0(x2 − j)

(
x
j

)
= x

4

(
x
x
2

)
, we have

∑y
j=0(y − j)

(
x
j

)
/(y2x) ≤

∑x
2
j=0(x2 − j)

(
x
j

)
/(x2 2x) =

x
4

(
x
x
2

)
/(x2 2x) =

(
x
x
2

)
/2x+1 and so L(x, y) = y2x −

∑y
j=0(y − j)

(
x
j

)
≥ y2x − y2x

(
x
x
2

)
/2x+1 ≥(

1− 1√
x

)
y2x. Here, the last inequality follows from Stirling’s formula.

Now, consider the case that y > x
2 . For y ≥ x, we see L(x, y) =

∑x
j=0 j

(
x
j

)
= x

2 2x ≥(
1− 1√

x

)
x
2 2x. For x

2 < y < x, L(x, y) =
∑x

j=0 j
(
x
j

)
−
∑x

j=y(j−y)
(
x
j

)
= x

2 2x−
∑x

j=y(j−y)
(
x
j

)
,∑x

j=y(j− y)
(
x
j

)
≤
∑x

j=x
2
(j− x

2)
(
x
j

)
= x

4

(
x
x
2

)
, and so L(x, y) ≥ x

2 2x− x
4

(
x
x
2

)
≥
(
1− 1√

x

)
x
2 2x.

Proof of Lemma 5 The main idea is to construct a 2ν × L(ν, y) search matrix M each
column of which is the vector of the 2ν values of a Boolean function defined on {−1,+1}ν .
More specifically, for each a ∈ {0, 1}ν \ {0ν}, let λa := min

(
|a|, y

)
, where 0ν is the vector

consisting of ν zeros and |a| is the number of 1’s in a, and for k = 1, . . . , λa, define fa,k :
{−1,+1}ν → {0, 1} as follows:

fa,k(x) =

((
2

k∏
i=1

xji + 1

2
− 1
)
xjk+1

xjk+2
· · ·xj|a| + 1

)/
2

for x ∈ {−1,+1}ν , where j1 < j2 < · · · < j|a| are the positions of 1’s in a. (The functions
of this type were introduced in (Bshouty, 2009).) Then, we repeat the following for each
a ∈ {0, 1}ν \ {0ν} in a non-increasing order of |a|. Choose the left-most λa columns in M
among the ones not chosen so far, and put the value vectors of fa,k’s from k = 1 to λa into the

17

Choi

λa columns, in the increasing order of column indices. We see that the number of columns
in M is

∑
a∈{0,1}ν\{0ν} λa =

∑
a∈{0,1}ν\{0ν}min(|a|, y) =

∑ν
j=0 min(j, y)

(
ν
j

)
= L(ν, y).

Let w :=
(
w(A1), 0, w(A2), 0, . . . , w(Aq), 0, 0, . . . , 0

)>
which is a vector of size L(ν, y)

with L(ν, y)− q zeros, and for each a ∈ {0, 1}ν \ {0ν} and k = 1, . . . , λa, let wa,k be the ith

coordinate of w such that the ith column in M corresponds to fa,k. (If such i is odd and
at most 2q− 1, wa,k = w(A(i+1)/2) and otherwise, wa,k = 0.) Then, Mw is the 2ν-vector of
the values of a pseudo-Boolean function f : {−1,+1}ν → {0, 1, 2, . . .} defined as

f(x) =
∑

a∈{0,1}ν\{0ν}

λa∑
k=1

wa,kfa,k(x)

for x ∈ {−1,+1}ν .
To get the desired equation for each w(Ai) (or equivalently, for the corresponding wa,k),

we use a Fourier transform of f with regard to the basis functions χa : {−1,+1}ν →
{−1,+1} for a ∈ {0, 1}ν defined as χa(x) =

∏
i:ai=1 xi for x ∈ {−1,+1}ν . More specifically,

for any a ∈ {0, 1}ν , the Fourier coefficient f̂(a) of χa in f is

f̂(a) =
∑

b∈{0,1}ν\{0ν}

λb∑
k=1

wb,kf̂b,k(a)

=
∑
b)a

λb∑
k=1

wb,kf̂b,k(a) +

λa∑
k=1

wa,kf̂a,k(a)

=
∑
b)a

λb∑
k=1

wb,kf̂b,k(a) +

λa∑
k=1

wa,k
2k

.

Here, a vector in {0, 1}ν is regarded as the set of the positions of 1’s in the vector, for set
comparison. The second equality follows from the fact that for any b ∈ {0, 1}ν with b 6⊃ a,
f̂b,k(a) = 0 for k = 1, . . . , λb. The third equality follows from the fact that for k = 1, . . . , λa,

f̂a,k(a) = 2−k. Thus for each w(Ai), if w(Ai) corresponds to wa,k, we have the equation

w(Ai) = wa,k = 2k
(
f̂(a)−

∑
b)a

λb∑
j=1

wb,j f̂b,j(a)−
k−1∑
j=1

wa,j
2j

)
−
λa−k∑
j=1

wa,k+j

2j
.

By the way of mapping the Boolean functions to the columns in M mentioned above, we see
that wb,j for b) a and j = 1, . . . , λb and wa,j for j < k correspond to some w(Ai′)’s with
i′ < i or 0, and for j = 1, . . . , λa − k, wa,k+j corresponds to 0 for odd j and to w(Ai+j/2)
or 0 for even j. Since λa − k < λa ≤ min(ν, y), we have a desired equation for w(Ai). In
particular, the values f̂(a) for a ∈ {0, 1}ν may be all found in polynomial in q (by the fast
Fourier transform of f) with 2ν non-adaptive coin weighings (for computing Mw). The
values f̂b,j(a) for a, b ∈ {0, 1}ν and j = 1, . . . , λb may be all found in polynomial in q as well
(by the definition of fb,j), without any weighing. Thus, we may use 2ν non-adaptive coin
weighings to get desired equations for w(Ai)’s in polynomial time in q.

Finally to bound 2ν , we assume ν ≥ 2 and see that L(ν − 1, y) < 2q by the choice
of ν for L(ν, y). Also by Lemma 10, we see L(ν − 1, y) ≥

(
1 − 1√

ν−1

)
min(ν−1

2 , y)2ν−1

18

Polynomial Time Optimal Query Algorithms for Finding Graphs

and so
(
1 − 1√

ν−1

)
min(ν−1

2 , y)2ν−1 < 2q. This means that
(
1 − 1√

ν−1

)
ν−1

2 2ν−1 < 2q or(
1 − 1√

ν−1

)
2ν−1 < 2q

y . From this and by using a calculus, we may see that there is a

constant α > 0 such that 2ν ≤
(
1 + α√

log 2q

)
max

(
4q
y ,

8q
log 2q

)
for sufficiently large q. �

Appendix B. Proof of Lemma 6

To prove Lemma 6, we need a few lemmas. We start with a lemma on the distribution of
coins in Find-Portion-of-Counterfeits. (A similar analysis was given in (Choi et al.,
2011b).)

Lemma 11 Suppose that C is a set of coins among which there are at most q counterfeits.
Then, the following holds inside the call Find-Portion-of-Counterfeits(C,q):
(a) With probability 1− e−Ω

(
q1/2
)
, for all t = 0, . . . , d2 log qe − 1,

(the number of sets in St with two or more counterfeits) ≤ q

2t+1
+ q3/4.

(b) With probability 1−O
(

1
q

)
, for all t = d2 log qe, . . . , d2 log qe+ d2 log ne − 1,

(the number of sets in St with two or more counterfeits) = 0.

(c) With probability 1− e−Ω(q), the number of counterfeits each of which belongs to a set in
S0 with two or more counterfeits is at most 2

3q.

To prove (a) and (c), we use a martingale inequality from (McDiarmid, 1989) as follows.

Lemma 12 (McDiarmid, 1989) Let X = (X1, . . . , X`) be a family of independent random
variables with Xi taking values in a finite set Ai for each i. Suppose that the real-valued
function f defined on

∏
iAi satisfies

|f(x)− f(x′)| ≤ ci

whenever the vectors x and x′ differ only in the i-th coordinate. Then for any λ ≥ 0,

Pr [|f(X)− E[f(X)]| ≥ λ] ≤ 2e−2λ2/
∑
i c

2
i .

Proof of Lemma 11 For (a), first notice that each S in St is a random set obtained
by putting each coin in C into S with probability 1

q2t independently of other coins. More
precisely, letting q0 be the number of counterfeits in C, the number of sets in St with two or
more counterfeits is the same as the number of sets with two or more counterfeits among
q2t random sets into one of which each of q0 counterfeits is put uniformly at random and
independently of other counterfeits. Thus, if we denote the number of sets by F ,

E[F] ≤ q2t ×
(
q0

2

)(
1

q2t

)2

≤ q

2t+1
.

Label the counterfeits and the random sets as 1 through q0 and as 1 through q2t, respectively.
Let X1, . . . , Xq0 be the random variables such that Xi = k if the counterfeit i is put into

19

Choi

the set k. Then, F is a function depending only on the independent random variables Xi’s,
and the value of F changes by at most 1 when only one of Xi’s changes. Thus, Lemma 12
with λ = q3/4 and ci = 1 for i = 1, . . . , q0 gives

Pr
[
F ≥ q

2t+1
+ q3/4

]
≤ 2e−2q

3
2 /q0 ≤ 2e−2q

1
2 ,

and (a) follows by union bound.
For (b), we should notice that if there is no set with two or more counterfeits in Sd2 log qe,

then the same is true in St for any t > d2 log qe. Thus, (b) follows from the following:

Pr[∃ a set in Sd2 log qe with two or more counterfeits] ≤ q2d2 log qe×
(
q0

2

)(
1

q2d2 log qe

)2

≤ 1

2q
.

For (c), we may assume that q0 is not zero. Then, for each counterfeit c in C,

Pr[c is the only counterfeit in S for some S ∈ S0] = (1− 1/q)q0−1 ≥ (1− 1/q)q−1 ≥ 1/e,

and so the expected number of counterfeits each of which belongs to a set in S0 with two
or more counterfeits is at most (1 − 1/e)q0 ≤ (1 − 1/e)q. Thus, we have that the number
is at most 2q/3 with probability 1− e−Ω(q) by using Lemma 12 (in a similar way as in the
proof of (a)). �

The following gives a large-deviation inequality for a sum of independent positive-integer-
valued random variables of which probability masses are bounded above by a geometrically
decreasing sequence. It will be used in the next lemma to prove the error bound for Find-
Portion-of-Counterfeits.

Lemma 13 Let X1, . . . , X` be positive-integer-valued independent random variables such
that for some 0 < α < 1 and β > 0, each Xi satisfies Pr[Xi = k] ≤ βαk for k = 1, 2, . . .,
and let X :=

∑`
i=1Xi. Then for any δ > 0,

Pr
[
X ≥ (1 + δ)

`

1− α

]
≤
(

βα

1− α
· 1 + δ

eδ

)`
.

Proof Let Y1, . . . , Y` be independent geometric random variables with parameter 1−α, and
let Y :=

∑`
i=1. Then, for each i = 1, . . . , ` and k = 1, 2, . . ., Pr[Xi = k] ≤ βα

1−α(1−α)αk−1 =
βα

1−α Pr[Yi = k], and so

Pr
[
X ≥ (1 + δ)

`

1− α

]
≤
(βα

1− α

)`
Pr
[
Y ≥ (1 + δ)

`

1− α

]
.

The lemma follows from the fact that

Pr
[
Y ≥ (1 + δ)

`

1− α

]
≤
(

1 + δ

eδ

)`
.

This inequality is proven by a standard technique using the moment generating function of
Y . In more detail, for any t with 0 < t < ln 1

α ,

Pr
[
Y ≥ (1 + δ)

`

1− α

]
≤ E[etY]

e
t(1+δ)`
1−α

=

(
(1− α)et

(1− αet)e
t(1+δ)
1−α

)`
.

20

Polynomial Time Optimal Query Algorithms for Finding Graphs

Here, the inequality follows by Markov inequality for t > 0, and the equality follows from

the fact that E[etY] =
∏`
i=1 E[etYi] =

(
(1−α)et

1−αet

)`
for t < ln 1

α . By choosing t = ln δ+α
α(1+δ) , we

have

(1− α)et

(1− αet)e
t(1+δ)
1−α

= (1 + δ)

(
1− δ(1− α)

δ + α

) δ+α
1−α
≤ (1 + δ)e−δ

and get the inequality in the above, as desired.

In the following, we bound the error probability for Find-Portion-of-Counterfeits by
considering the absorption time of a Markov chain.

Lemma 14 Suppose that C is a set of coins among which there are at most q counter-
feits. Also, suppose that inside the call Find-Portion-of-Counterfeits(C,q), for fixed
t between 1 and d2 log qe and for each Si ∈ St−1, u(Si) is equal to the weight of Si in the

beginning of the for loop of lines 3–33. Then with probability 1 − e−Ω(q1/2), u(Sij) is equal
to the weight of Sij for all i, j in the end of the loop.

Proof We may consider the process of computing (and updating) u(Sij)’s in lines 9–28 as
a series of transitions on an MC defined as follows: Each state in the chain corresponds to
a situation right after an interval is selected by the algorithm (for initial setting or through
a roll-back or a guess/check-and-fix operation). It is specified by a pair of an interval I and
the weights of Si1, i ∈ pre(I) being stored when I is selected.

The repeat loop starts with the state (I1,Null). (Notice that pre(I1) is empty as
min(I1) = 1.) Suppose that Ih is now selected, and the weight of Si1 for i ∈ pre(Ih) being
currently stored is u̇(Si1). Then, in a pass of the repeat loop of lines 10–28, the algorithm
moves from the state

(
Ih,
(
u̇(Si1)

)
i∈pre(Ih)

)
to the state

(
Ih−1,

(
u̇(Si1)

)
i∈pre(Ih−1)

)
if a roll-

back occurs, and moves to the state
(
Ih+1,

(
u̇(Si1)

)
i∈pre(Ih+1)

)
otherwise, where u̇(Si1) for

i ∈ Ih is the weight of Si1 computed in this pass. Notice that the only absorbing state
in this MC is

(
∅,
(
u̇(Si1)

)
i∈[1,qt]

)
with u̇(Si1) = w(Si1) for all i. This corresponds to the

situation in which all incorrect guesses, if existed, have been fixed.
Consider the royal road, i.e., the path from the starting state to the absorbing one which

is obtained by the series of transitions occurring in the case that Check-All-Zeros works
correctly every time it is called inside the repeat loop. Let `R be the distance between
the starting and absorbing states on the royal road. Let s0 be the starting state, and
for k = 1, . . . , `R, let sk be the kth state from the starting state on the royal road. For
k = 1, . . . , `R, let Xk be the number of transitions made until sk is reached from the first
visit of sk−1. Letting X :=

∑`R
k=1Xk, we show that for a constant C > 0, say C = 9,

Pr
[
X ≥ C

(q
2t

+ q
3
4

)
min(d1.1te, log q)

]
= e−Ω

(
q
1
2

)
from which the lemma follows. (Here, we do not optimize C.)

The distance `R is bounded above by the number of leading incorrect guesses (for tran-
sitions with fixing incorrect guesses) plus d q2t e (for transitions without fixing guesses). The

number of leading incorrect guesses is at most
(q

2t + q
3
4

)
min(d1.1te, log q) with probability

21

Choi

1− e−Ω(q1/2) by Lemma 11 (a), Lemma 5, and the arguments at the bottom of Section 3.1.

Thus, with probability 1− e−Ω(q1/2) , we have `R ≤ 3
2

(q
2t + q

3
4

)
min(d1.1te, log q).

On the other hand, notice that for k = 1, . . . , `R, once sk is visited, sk0 is not visited any
more for any k0 < k. From the setting of K values for Check-All-Zeros in the repeat
loop and in Find-First-Incorrect, we use the reflection principle for random walks to
see that for a positive integer z and ε = 1

16 ,

Pr[Xk = z]

{
≤ 1

z

(
z
z+1
2

)
ε
z−1
2 if z is odd,

= 0 otherwise.

In particular, for odd z, we have 1
z

(
z
z+1
2

)
ε
z−1
2 = 2

z+1

(z−1
z−1
2

)
ε
z−1
2 ≤ 2z−1ε

z−1
2 = 2

(
1
2

)z
. Thus,

under the condition that `R ≤ 3
2

(q
2t + q

3
4

)
min(d1.1te, log q), we use Lemma 13 with α = 1

2 ,

β = 2, and 2(1 + δ)`R = C
(q

2t + q
3
4

)
min(d1.1te, log q) to see that the probability of

X ≥ C
(
q
2t + q

3
4

)
min(d1.1te, log q) is e−Ω(q3/4), e.g., for C = 9. (We omit the detail.)

Thus, the desired inequality follows by considering the probability of the condition as well.

Now we prove Lemma 6.

Proof of Lemma 6 Consider inside the call Find-Portion-of-Counterfeits(C,q).
First, the following holds with probability 1 − O

(
1
q

)
− e−Ω(q1/2) − e−Ω(q): (i) each of the

counterfeits in C except at most 2
3q ones is the only counterfeit belonging to a set in S0, and

(ii) for all t = 1, . . . , d2 log qe+dlog ne, St contains all and only the sets S such that S is a set
of non-zero weight obtained by the division of a set in St−1, and for all S ∈ St, u(S) is the
same as the weight of S. We may get this by using Lemma 11 (c), Lemma 14 (inductively
on t = 1, . . . , d2 log qe), and Lemma 11 (b) (on t = d2 log qe+ 1, . . . , d2 log qe+ dlog ne), the
latter of which implies that no set in St is split for all t = d2 log qe, . . . , d2 log qe+dlog ne−1.
This means that with probability 1 −O

(
1
q

)
, each c ∈ Cfd is a counterfeit, u(c) is the same

as the weight of c, and the size of C \ Cfd is at most 2
3q. This completes the proof. �

22

	Introduction
	Preliminaries
	Fourier-Based Search Matrix
	Guess-and-Fix Strategy

	Coin Weighing Algorithm
	Algorithm Overview and Main Ideas
	Algorithm Description
	Analysis

	Graph Finding Algorithm
	Acknowledgments
	Proof of Lemma 5
	Proof of Lemma 6

