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Abstract

We study regret minimization bounds in which the dependence on the number of experts
is replaced by measures of the realized complexity of the expert class. The measures
we consider are defined in retrospect given the realized losses. We concentrate on two
interesting cases. In the first, our measure of complexity is the number of different “leading
experts”, namely, experts that were best at some point in time. We derive regret bounds
that depend only on this measure, independent of the total number of experts. We also
consider a case where all experts remain grouped in just a few clusters in terms of their
realized cumulative losses. Here too, our regret bounds depend only on the number of
clusters determined in retrospect, which serves as a measure of complexity. Our results
are obtained as special cases of a more general analysis for a setting of branching experts,
where the set of experts may grow over time according to a tree-like structure, determined
by an adversary. For this setting of branching experts, we give algorithms and analysis
that cover both the full information and the bandit scenarios.

Keywords: Regret Minimization, Hedge Algorithm, Structured Experts.

1. Introduction

Prediction with expert advice (Vovk, 1990; Littlestone and Warmuth, 1994) is a crisp ab-
stract framework for studying sequential decision problems in nonstochastic settings. In
this paper, we focus on the following special case —also known as decision-theoretic on-
line learning— of the general experts framework. There are N experts (or, equivalently,
actions). At each time step t = 1, 2, . . . a learner selects a distribution pt over the ex-
perts and, simultaneously, an adversary reveals a vector ℓt =

(
ℓ1,t, . . . , ℓN,t

)
∈ [0, 1]N of

expert losses. The learner then incurs a loss of ℓ̂t = pt · ℓt. We use Li,t =
∑t

s=1 ℓi,s and

L̂t =
∑t

s=1 ℓ̂s to denote the total loss of expert i after t prediction steps and the total loss
of the learner after t prediction steps, respectively. The goal of the learner in this repeated
game is to control the regret RT = L̂T − L∗

T over T , irrespective of the adversary’s choices
of ℓt, where L∗

T = minj=1,...,N Lj,T is the total loss of the best expert after T steps.
The distribution chosen by the learner is naturally interpreted as a random choice over

the experts. Crucially, the learner makes this choice given full information of past losses
incurred by every expert. An important variation on this full information setting limits
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the learner’s observations in every round of play only to the loss incurred by the expert it
chose. This is known as the adversarial multi-armed bandit (or simply bandit) setting —see
(Bubeck and Cesa-Bianchi, 2012) for a recent survey.

In these settings, a great deal of attention has been devoted to controlling the dependence
of RT on the time horizon T . The well-known Hedge algorithm of Freund and Schapire
(1995) offers the most basic form of regret control in the full information case. Hedge has a
single parameter η ≥ 0. At time t, the algorithm maintains a weight wi,t > 0 for each expert

i = 1, . . . , N , and uses the distribution pt defined by pi,t = wi,t/Wt, where Wt =
∑N

i=1wi,t.
The weights decrease exponentially in the experts’ losses: wi,t = e−ηLi,t−1 , where Li,0 = 0.
If η is tuned solely as a function of time, we achieve the so-called zero-order regret bounds,
which have the form O(

√
T lnN). More refined bounds, called first-order bounds, are ob-

tained when η is allowed to depend on the performance L∗
T of the best expert. These bounds

take the form O(
√
L∗
T lnN). More recent second-order bounds (Cesa-Bianchi et al., 2007;

Hazan and Kale, 2008; Chiang et al., 2012) replace the dependence on L∗
T by quantities

that measure the variability of the sequence of loss vectors ℓt. In the bandit setting regret
bounds followed a similar evolution, starting from the zero-order bound O

(√
TN lnN

)
on

the expected regret attained by the randomized Exp3 algorithm of Auer et al. (2002).
This thread of research has not only produced better regret bounds and new algorithmic

techniques, but has also allowed the introduction of new and interesting applications. For
example, second-order bounds can be related to volatility, which is used in pricing deriva-
tives (DeMarzo et al., 2006; Gofer and Mansour, 2011). Yet, the progress in improving the
analysis with respect to the number N of experts has so far been more limited. In this
paper, we design prediction algorithms with refined bounds in terms of N . Our algorithms
are able to control regret when N may grow over time, but the experts’ cumulative losses
enjoy specific patterns that naturally occur in practical scenarios. These patterns are cap-
tured by the notion of “branching experts”, in which the addition of new experts to the pool
creates a tree structure. Although our algorithms are designed for this branching experts
setting, when applied to the standard N -expert setting they deliver regret bounds where
the “complexity” term logN associated with the set of N experts does not occur.

For the sake of illustration, consider the following sequential path-planning problem
on a graph (Kalai and Vempala, 2005). The number N of available paths from source to
destination (i.e., experts in the game) is very large, and the loss of a path picked at time
t is the sum over the current costs (at the same time t) of the edges included in the path.
One may expect that in T prediction steps only a small number ΛT of paths have become
“leaders” at any time t ≤ T , where a path i is leader at time t if its cumulative loss Li,t is
the smallest over all paths. We show that a variant of Hedge, played over a growing pool
of leaders,1 achieves a regret bound that only depends on the number of leaders, rather
than on the number of experts. In general, in a game with N experts and ΛT leaders, we
prove that the regret of our modified Hedge is O

(
ΛT (1 + lnL∗

T ) +
√

L∗
TΛT

)
, independent

of N . Our result is actually phrased in a more general model, where the notion of leader is
parameterized by a value α ≥ 0 and ΛT is replaced by Λα,T . This value represents the edge
an expert must have over the loss of the previous leaders in order to become leader itself.

1. Note that in this example a leader can be found efficiently by solving a shortest path problem.
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A second natural scenario we consider is one where the cumulative losses of all experts
remain clustered around the loss values of a few experts. Intuitively, as far as regret is
concerned experts that have similar cumulative losses are interchangeable. Hence, working
with one representative in each cluster is a convenient approximation of the original problem,
and one expects the regret to be controlled by the number of clusters, rather than by the
overall number of experts. As before, we make a reduction to the setting of a growing pool
of experts. We start with a single cluster (all experts start off with zero loss) and then split
a cluster (i.e., increase the pool of experts by at least one) whenever the largest cumulative
loss difference within the cluster exceeds some threshold value α ≥ 0. We prove that the
regret of our Hedge variant is at most of order Nα,T (1 + αNα,T )(1 + lnL∗

T ) +
√
L∗
TNα,T ,

where Nα,T is the number of α-clusters after T steps.
In both of the above settings, of few leading experts and of clustered experts, our

algorithm is essentially optimal: We prove that the main terms of both regret bounds,√
L∗
TΛα,T and

√
L∗
TNα,T , are only improvable by constant factors. The same result is also

proven for the general case of a growing set of experts.
We then turn our attention to the bandit setting. Here, as a motivating scenario for the

growing set of experts, consider a framework where we apply heuristics to solve a sequence of
instances of a hard optimization problem. This task can be naturally cast in a bandit setting,
where just a single heuristic is tested on each instance. Now suppose that new heuristics
become available as time goes by, and we add them to the pool of candidate heuristics in
order to improve our chances. Some of them might be variants of other heuristics in the
pool, and some others might be completely new. In all cases, we would like to control the
regret of the bandit algorithm with respect to the growing pool of heuristics. Now, if a
variant i′ of some heuristic i already in the pool becomes available at time t, then it is
reasonable to compute the regret against a pair of compound experts that use i up to time
t, and from then on either i or its variant i′. On the other hand, if a heuristic k unrelated
to any other in the pool is added at time t, then we want to compare to a pair of compound
experts that use the best heuristic up to time t and then either stick to it, or switch to k.

In this context, we introduce a new nontrivial modification of Exp3, and show that its
expected regret is at most of order

(
1 + (ln f)/(lnNT )

)√
TNT lnNT , where NT is the final

number of experts, and f stands for the product of the degrees of nodes along the branch
leading to the best expert. This factor may be as small as Θ(1) and is always bounded by
KdT , where dT is the number of time steps in which some new expert was added to the
pool, and K is the branching factor of the tree of experts.

2. Branching experts with full information

We consider a modification of prediction with expert advice where the adversary gradually
reveals the experts to the learner. Specifically, the game between adversary and learner
starts with one known expert. As the game progresses, the adversary may choose to reveal
the existence of more experts. Once an expert is revealed, the learner may start using it
by placing some weight on its decisions. The regret of a learner at the end of the game is
measured w.r.t. all revealed experts.

Each newly revealed expert is given some history, in the form of a starting loss closely
related to the cumulative loss of one of the previously revealed experts. In our setup we
therefore consider each newly revealed expert as an approximate clone of an existing expert
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in terms of its cumulative loss. From that point on, the new expert is allowed to freely
diverge from its parent. Let 1, . . . , Nt be the indices of the experts revealed after the first t
rounds, with N0 = 1. This process of approximate cloning results in a tree structure where,
at any time t ≥ 1, the root is the initial expert (the one at time t = 0) and the leaves
correspond to the Nt experts participating in the game at time t. For convenience, when
an expert is cloned, one of the clones is used to represent the continuation of the original
expert (i.e., it is a perfect clone). We now describe the game in more detail.

For each round t = 1, 2, . . . , T

1. For each expert i = 1, . . . , Nt−1, the adversary reveals a set C(i, t) of experts
containing i itself and possibly additional approximate clones. The adversary also
reveals the past losses Lj,t−2, ℓj,t−1 for each j ∈ C(i, t). The new experts are
indexed by Nt−1 + 1, . . . , Nt.

2. The learner chooses pt =
(
p1,t, . . . , pNt,t

)
.

3. The adversary reveals losses ℓt =
(
ℓ1,t, . . . , ℓNt,t

)
, and the learner suffers a loss

ℓ̂t = pt · ℓt.

The reason why the pair Lj,t−2, ℓj,t−1 is revealed instead of its sum Lj,t−2 + ℓj,t−1 is
explained in Footnote 4. We use m(t) = argmini=1,...,Nt

Li,t to denote the index of the best
expert in the first t steps (where we take the smallest such index in case of a tie), so that
L∗
T = Lm(T ),T . The regret is then defined as usual, RT = L̂T − L∗

T . In order to have the
standard expert scenario as a special case of the branching one, we set Lj,t, ℓj,t = 0 for t ≤ 0
and for all j. In the standard expert scenario N1 = |C(1, 1)| corresponds to the number N
of experts. In order to facilitate a comparison to the standard expert bounds, we express
our branching experts bounds in terms of this quantity N1.

In order to elucidate the combinatorial tree structure underlying this notion of regret,
consider the simple case when Lj,t−1 = Li,t−1 for all j ∈ C(i, t), all i = 1, . . . , Nt−1, and
all t. Hence, each new expert j starts off as a perfect clone of its parent expert i. Now, at
each time T the learner is competing with the set of NT compound experts associated with
the paths i0, i1, . . . , iT , where i0 is the “root expert” and it ∈ C(it−1, t) for all t = 1, . . . , T .
This combinatorial interpretation will help in comparing our results to other settings of
compound experts.

When clones are not perfect, we use αi,t−1 = max
{∣∣Lj,t−2 − Lk,t−2

∣∣ : j, k ∈ C(i, t)
}
to

denote the “diameter” of a split.2 Since the learner has no control over αi,t at each split,
he may suffer the sum of those elements from the root to the leaf of the best expert in
the form of regret. Furthermore, the splits increase the number of experts, which means
that upper bounds on the regret must also grow. Interestingly, there are natural scenarios
where the above quantities are small. In these scenarios, described in Section 5, the role of
revealing new experts is taken from the adversary and given to the learner. Specifically, all
the experts are known at the beginning of the game, and it is the learner who decides to
gradually start using some of them. Generally speaking, in such scenarios the vast majority

2. Note that perfect cloning is not equivalent to a split with diameter zero. This discrepancy is due to
technical issues that arise in Section 5.
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of experts are either poor candidates for being the best expert, or perform comparably to
some other experts, making them safe for the learner to ignore. The important observation
to be made is that any algorithm and analysis that hold when the splits are determined
by the adversary may also be used if the splits are determined by the learner. Although
referring to the best overall expert rather than the best revealed expert clearly increases
the regret, this difference will be bounded for the scenarios we consider, and easily taken
into account.

3. Related work

Prediction with expert advice when the pool of experts varies over time has been investi-
gated in the past. The model of “sleeping experts”, or “specialists” (Freund et al., 1997;
Blum and Mansour, 2007), allows a subset At of the experts to be awake at each time step
t, where At is determined by a time-selection function. The regret is then measured against
each expert only on the time steps when it was awake. Although we may view our setting
of branching experts as a special case of sleeping experts (where experts are progressively
woken up), their notion of regret is different from ours, since we compete against com-

pound experts, associated with paths on the expert tree. Therefore, the two settings are
incomparable.

Branching experts can also be viewed as special cases of more general combinatorial
constructions, like the permutation experts of Kleinberg et al. (2010) or the shifting experts
of Herbster and Warmuth (1998). Although in some cases these more general settings
can be extended to accommodate growing sets of experts —see, e.g., (Shalizi et al., 2011),
the resulting regret bounds are much worse than ours, mainly due to the dependence on
ln(NTT ), where NT is the total number of experts in the pool after T steps. Our bounds,
instead, depend in a more detailed way on the structure of the expert tree, and replace
ln(NTT ) with lnΠ, where Π depends on the splits on the branches that the leading experts
belong to, and can thus be much smaller than NT —see discussion in the next paragraph.

In the case of perfect cloning, which was mentioned in Section 2, Hedge may directly
simulate the branching experts if we limit the number of rounds in which splits occur to at
most d, and the maximal degree of a split to at most K, where d and K are preliminarily
available. Taking N1 = 1, this limits the final number of compound experts to at most Kd.
An application of standard Hedge then leads to the regret bound d lnK +

√
2L∗

Td lnK.
Our modified Hedge, called HedC , virtually obtains the same bound (with slightly worse
constants) without preliminary knowledge of the tree structure. However, we may do much
better in cases where there are few splits along the branches where the set of leading experts
occur. In fact, the main term in the regret bound of HedC is of order

√
L∗
T lnΠ, where Π

can be Θ(1) even when NT is exponential in T .
It is also instructive to consider a type of scenario in which any advantage of HedC

over Hedge is removed. Specifically, assume that all the splits are announced in the initial
rounds of the game. In these initial rounds no losses are incurred, and afterwards, the
game proceeds with a fixed number of experts. It is possible to design such a scenario with
N + 1 experts (for a large enough N) such that HedC has regret RT = Ω

(√
L∗
TN
)
while

Hedge has the usual regret RT = O
(
lnN +

√
L∗
T lnN

)
(see Claim 13 in the appendix).

Since Theorem 3 in Section 4 gives an O
(
N +

√
L∗
TN) regret for this case, it is arguably

a worst-case scenario for HedC . Clearly enough, in order to make HedC achieve a similar
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regret as Hedge in this hard case, without losing much of its advantage in the others, it
suffices to add a meta-Hedge algorithm aggregating the two.

In the bandit setting, our modification of Exp3 for branching experts, called Exp3.C, has
an expected regret bound of the order

(
1+(ln f)/(lnNT )

)√
TNT lnNT , containing the factor√

NT (see Section 7). It seems plausible that the modification of Exp3 for shifting experts,
Exp3.S, could be extended to a growing pool of experts along the lines of (Shalizi et al.,
2011). The resulting regret bound would be of the order

√
TNTST ln(NTT ), where ST is

the number of times it 6= it+1 in the path i0, i1, . . . , iT from the root to the best action
iT = m(T ). These two bounds appear to be incomparable.

We now move on to discussing related work in the standard N -expert setting, with
fixed N . There are a few examples of expert algorithms whose regret bound does not
depend on the number of experts. The most trivial example is Follow the Leader (FTL),
namely, the algorithm that deterministically picks the current best expert. It is easy to
see that the regret of FTL is bounded by the number of times the leader changes, no
matter if the same few leaders keep alternating. Another trivial example is Hedge run
with uneven initial weights, which implicitly assumes using a prior that peaks on a small
set containing the best expert. A substantially less trivial example is the NormalHedge
algorithm of Chaudhuri et al. (2009), and its refinement due to Chernov and Vovk (2010).
Except for constant factors, a bound on the cumulative loss of these algorithms can be
written as inf0≤ǫ≤1

(
Lσ(ǫN),T +

√
T ln(1/ǫ)

)
where σ(1), . . . , σ(N) is a permutation of expert

indices such that Lσ(1),T ≤ · · · ≤ Lσ(N),T . This bound is incomparable to our bounds for
few leaders and clustered experts. Indeed, it is easy to find examples where our bounds
dominate NormalHedge’s. (Think of one expert with constant total loss, and the remaining
N − 1 experts with linear losses always clustered around a single value: Then ǫ must be
1/N to ensure sublinear regret, while ΛT and Nα,T can be made constant.)

Finally, we could apply the Fixed Share algorithm of Herbster and Warmuth (1998) for
shifting experts to the few leaders setting. By doing so, we would get a regret bound of
the order of

√
TST ln(NT ) where ST is the number of times the current leader changes.

Now, even in the best case for Fixed Share (i.e., when ST = ΛT − 1) our bound for HedC is
still better by a factor of at least

√
ln(NT ). Using more sophisticated shifting algorithms,

like Mixing Past Posteriors (Bousquet and Warmuth, 2002), may improve on the ST lnN
term in the Fixed Share bound, but it does not affect the other term ST lnT . Recently,
Koolen et al. (2012) gave a surprising Bayesian interpretation to Mixing Past Posteriors.
Finding a similarly efficient Bayesian formulation of our branching experts construction is
an open problem.

The few leaders and the clustered experts settings take advantage of specific “subopti-
malities” in the loss sequence chosen by the adversary. Adaptive procedures able to take
advantage of such suboptimalities were also proposed by Rakhlin et al. (2012). Relating
those results to the ones derived in this paper remains an interesting open problem.

4. Adapting Hedge for the branching setup

The main change that is required to handle the new setup is deciding on weights for newly
revealed experts. We will handle this problem by applying a general mechanism we term a
partial restart. A partial restart redistributes the weights wi,t of existing experts among all
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experts, old and new, without changing the sum of the weights. Following this redistribu-
tion, the usual exponential update step takes place.

Hedge with partial restarts
For each round t = 1, 2, . . . , T

1. Get the new experts Nt−1 + 1, . . . , Nt together with their past losses Lj,t−2, ℓj,t−1

for j = Nt−1 + 1, . . . , Nt.

2. From w1,t−1, . . . , wNt−1,t−1 compute new weights w′
1,t−1, . . . , w

′
Nt,t−1 ≥ 0 such that

W ′
t−1 = Wt−1, where W ′

t−1 =
∑Nt

i=1w
′
i,t−1.

3. Update the new weights: wi,t = w′
i,t−1e

−ηℓi,t−1 , and set pi,t = wi,t/Wt, for each
i = 1, . . . , Nt.

4. Observe losses ℓt =
(
ℓ1,t, . . . , ℓNt,t

)
and suffer loss ℓ̂t = pt · ℓt.

Note that an ordinary (full) restart is equivalent to a partial restart where all experts
are assigned equal weights. A partial restart, in contrast to a full restart, may preserve
more information about the preceding run, depending on how w′

i,t are defined.
If an algorithm is an augmentation of Hedge with partial restarts, its loss is upper

bounded by an expression that depends explicitly on the number of restarts, and only
implicitly on their exact nature. This bound is given in the next lemma.

Lemma 1 Let 0 < η ≤ 1 and let A be an augmentation of Hedge with at most n partial
restarts. Then ln(WT+1/W1) ≤ −(1− e−η)(L̂T − n).

We now describe a specific way of defining the weights w′
i,t out of the weights wi,t, and call

HedC the resulting partially restarting variant of Hedge. The algorithm starts by setting
wj,1 = 1 for every expert j = 1, . . . , N1, where N1 = |C(1, 1)|.3 At time t + 1, its partial
restart stage distributes the weight of a parent expert i among experts in C(i, t+ 1) while
maintaining the same weight proportions as ordinary Hedge. Namely,

w′
j,t = wi,t

e−ηLj,t−1

∑
k∈C(i,t+1) e

−ηLk,t−1
, for every j ∈ C(i, t+ 1)

(recall that Lj,t−1, for j ∈ C(i, t + 1), are all revealed to the algorithm).4 Note that when
|C(i, t + 1)| = 1 —that is, expert i is not cloned at time t + 1, then w′

i,t = wi,t. As a step
towards bounding the regret of HedC , we first lower bound the weights it assigns to experts.

Lemma 2 If i is an expert at time t ≥ 1, and i0, . . . , it = i are the experts along the path
from the root to i in the branching experts tree, then

wit,t ≥ exp

(
−ηLit,t−1 − η

t−1∑

τ=1

αiτ ,τ

)
t−1∏

τ=1

max
{
1, 2
∣∣C(iτ , τ + 1)

∣∣− 2
}−1

.

3. Alternatively, we may set w1,0 = 1 for the single expert existing at time t = 0. This causes a minor
difference in the regret bounds.

4. The two-stage update wi,t → w′

i,t → wi,t+1 is the reason why pairs of losses Lj,t−1 and ℓj,t are provided
for each new expert i = Nt + 1, . . . , Nt+1.
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We can now combine Lemmas 1 and 2 to upper bound the regret of HedC . In what

follows we denote Πt = N1
∏t−1

τ=1max
{
1, 2
∣∣C(iτ , τ + 1)

∣∣ − 2
}

and At =
∑t−1

τ=1 αiτ ,τ , where

i0, . . . , it = m(t) is a path from the root to the best expert at time t. Note that neither Πt

nor At are monotone in t because the index of the best expert m(t) changes over time. We
also denote dt for the number of rounds in 2, . . . , t in which splits occurred.

Theorem 3 Let L′ and Π′ be known upper bounds on L∗
T +AT+1 and ΠT+1, respectively.

If η = ln
(
1 +

√
(2 lnΠ′)/L′), then the regret RT of HedC satisfies

RT ≤ dT +AT+1 + lnΠ′ +
√
2L′ lnΠ′ .

In the standard N -expert setting, αi,t = 0 for all i and t, implying AT+1 = 0. Moreover,
dT = 0 and ΠT+1 = N . Therefore, in this special case Theorem 3 recovers the standard
regret bound of Hedge.

The requirement in Theorem 3 that bounds be known in advance may be relaxed by
using a doubling trick. Since the index of the best expert m(t) changes over time, the
doubling is applied to a bound L′

τ on the quantity maxt≤τ{L∗
t +At+1} and to a bound ντ

on the quantity ln
(
maxt≤τ Πt+1

)
. For any single value of L′

τ , ντ is doubled O(ln νT ) times,

and the total regret of runs is O
((

1 + dT + A
)
ln νT + νT +

√
L′
τνT

)
, where we denote

A = maxt≤T {At+1}. Adding up these values for all doubled values of L′
τ yields a regret

bound of
RT = O

(((
1 + dT +A

)
ln νT + νT

)
lnL′

T+1 +
√
L′
T+1νT

)
. (1)

Note that L′
T+1 ≤ 2max

t≤T
{L∗

t +At+1} ≤ 2(L∗
T +A), where the first inequality holds since

L′
T+1 is doubled only until it exceeds maxt≤T {L∗

t + At+1}. This gives
√
(L′

T+1/2)νT ≤
√
L∗
T νT + 1

2(A+ νT ). Therefore, (1) gives the following.

Corollary 4 Let A = maxt≤T {At+1} and Π = maxt≤T Πt+1. Applying a doubling trick to
HedC yields the regret bound

RT = O
((

1 + ln
(
L∗
T +A

))(
(dT +A) ln lnΠ + lnΠ

)
+
√
L∗
T lnΠ

)
.

Finally, we point out that if K ≥ 2 is the maximal degree of splits in the tree for t > 1,
then Π ≤ N1(2K − 2)dT , and the main term

√
L∗
T lnΠ in the above regret bound becomes

of order
√(

lnN1 + dT lnK
)
L∗
T .

5. Applications

Few leading experts. We consider a best expert scenario with N experts, where the set
of experts that happen to be “leaders” throughout the game is small. The set of all-time
leaders (leader set, for short) includes initially only the first expert. In every round the
current best expert is added to the set iff its current cumulative loss is strictly smaller than
the cumulative loss of all experts in the leader set. We generalize this definition by requiring
that the advantage over all experts in the leader set must be strictly greater than α ≥ 0,
where α is a parameter. Formally, the leader set starts as S1 = {1}, and at the beginning
of each round t > 1, St = St−1 ∪ {m(t − 1)} iff Lm(t−1),t−1 + α < Lj,t−1 for every expert

8



Regret Minimization for Branching Experts

j ∈ St−1. In adversarial branching terms, we will consider such a new leader as “revealed”
at time t. It will branch off the former best expert i in St−1, namely, the one that satisfies
Li,t−2 ≤ Lj,t−2 for every j ∈ St−1 (where the smallest index is taken in a tie). Thus a split
will always have two children: a previous leader and the new one.

We denote the number of leaders in the first T steps by Λα,T . We assume that upper
bounds Λ′

α ≥ Λα,T and L′ ≥ L∗
T are known in advance (although the identities of the

leaders are not), where a doubling trick is used to guess both quantities. The learner may
run HedC while simulating an adversary that reveals experts gradually, making Theorem 3
applicable with the following settings: N1 = 1, dT = Λα,T − 1, At+1 ≤ dT max{α, 1 − α},
and Πt+1 ≤ 2dT . This provides a bound on the regret w.r.t. the best revealed expert. Since
the cumulative loss of the best overall expert is smaller by at most α + 1, we simply need
to add α+ 1 to this bound to get a bound on the regret. We thus obtain the following.

Theorem 5 Let α1 = max{α, 1 − α}. In the few leading experts scenario, the regret RT

of HedC run with parameters η = ln
(
1 +

√
(2 ln 2)(Λ′

α − 1)/(L′ + (Λ′
α − 1)α1)

)
, L′ = L′ +

(Λ′
α − 1)α1, and Π′ = 2Λ

′

α−1 satisfies RT = O
(
Λ′
α(α+ 1) +

√
(Λ′

α − 1)L′
)
.

We point out that there is a tradeoff in the choice of α, since an increase in α causes a
decrease in Λα,T . A doubling trick may again be applied to guess both Λ′

α and L′: When
either bound is violated, the bound is doubled and the algorithm is restarted.

Corollary 6 Applying a doubling trick to HedC in the few leading experts scenario yields

a regret bound of O
(
Λα,T (α+ 1)(1 + lnL∗

T ) +
√

L∗
T Λα,T

)
.

Clustered experts. We next consider a best expert scenario where experts may be di-
vided into a small number of subsets such that the cumulative losses inside each subset are
“similar” at all times. Intuitively, working with one representative of each subset instead
of the individual experts is a good approximation for the original problem. An important
difference is that the number of representatives may be much smaller than the number
of experts, making the regret bound better. Given the approximated regret bound, the
maximal “diameter” of the subsets may be added to obtain a regret bound for the original
problem.

Formally, let α ≥ 0 be pre-determined by the learner, and let Nα,T be the number of
subsets of experts that are α-similar after T steps. Namely, for every t = 1, . . . , T and every
experts i and j in the same subset, |Li,t − Lj,t| ≤ α. As before, we start by assuming we
know upper bounds N ′

α ≥ Nα,T and L′ ≥ L∗
T , and eventually relax this assumption using a

doubling trick.
The learner will implement HedC in conjunction with the following splitting scheme.

Initially, all experts reside in the same cluster. For every t, a cluster is split at the beginning
of time t + 1 iff the difference between the cumulative losses of any two experts inside
it at time t exceeds β = (2N ′

α − 1)α. To split a cluster, we first sort its members by
their cumulative loss at time t. Then we find the largest gap between cumulative loss
values and split there. (If more than one maximal gap exists, we pick one arbitrarily.)
Since β ≥ (2Nα,T − 1)α and all the subsets are α-similar, this gap must be larger than α.
Furthermore, members of any given subset cannot be on both sides of the gap. Next, if the
gap in either of the two parts is larger than β, the process is repeated. Thus, β is an upper

9
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bound on the diameter of each cluster (i.e., the largest difference |Li,T −Lj,T | over pairs of
experts i, j in the cluster) after any number T of steps. In addition, since clusters always
contain entire subsets, the total number of splits after T steps does not exceed Nα,T − 1.

We apply Theorem 3 with the settings N1 = 1, dT ≤ N ′
α−1, and At+1 ≤ βdT ≤ (2N ′

α−
1)(N ′

α−1)α. As for Π′, recall that it upper bounds ΠT+1 =
∏T

τ=1max
{
1, 2|C(iτ , τ+1)|−2

}
,

since N1 = 1. Let n1, . . . , nk be the values of 2|C(iτ , τ +1)| − 2 in the product that are not
zero. We have

ΠT+1 =
k∏

i=1

ni ≤
(
1

k

k∑

i=1

ni

)k

≤
(
2Nα,T − 2

k

)k

≤ exp{(2/e)(Nα,T − 1)}

where the last inequality holds since the function (a/x)x is maximized at x = a/e for every
a > 0. We may thus set Π′ = exp{(2/e)(N ′

α − 1)}. Theorem 3 now yields a bound on the
regret w.r.t. the best revealed expert. We still need to add to this bound the quantity β+1,
which bounds the difference between the cumulative losses of the best revealed expert and
the best overall expert. We obtain the following result for the case of α-similar subsets.

Theorem 7 In the clustered experts scenario, the regret RT of HedC run with parameters

η = ln
(
1+
√
(4/e)(N ′

α − 1)
/(

L′ + (2N ′
α − 1)(N ′

α − 1)α
))

and L′ = L′+(2N ′
α−1)(N ′

α−1)α

satisfies RT = O
(
N ′

α(1 + (2N ′
α − 1)α) +

√
L′(N ′

α − 1)
)
.

If both N ′
α and L′ are unknown, a doubling trick once again may be used.

Corollary 8 Applying a doubling trick to HedC in the clustered experts setting yields a
regret bound of O

(
Nα,T (1 + αNα,T )(1 + lnL∗

T ) +
√
L∗
TNα,T

)
.

Remark 9 If losses contain random noise, the diameter of a set of experts grows gradually
over time, rather than remaining constant. Fix a time horizon T and consider N experts
with i.i.d. Bernoulli random losses. For δ ∈ (0, 1), the diameter of this set is O(

√
T ln(N/δ))

with probability at least 1 − δ. This is shown by combining a “maximal” concentration
inequality with the union bound. Picking α = Θ(

√
T ln(N/δ)) for this case thus yields a

single cluster and O(
√
T ln(N/δ)) regret. A similar argument applies to the few leading

experts scenario.

6. Lower bounds

In this section we prove lower bounds for the branching setup, as well as the few leaders and
clustered experts scenarios of Section 5. We show that the key term in the regret bound
of HedC for the branching setting,

√
L∗
T lnΠ (see Corollary 4), may not be improved in

general. The same holds for the corresponding terms
√

L∗
T Λα,T and

√
L∗
T Nα,T for the

other two scenarios (Corollaries 6 and 8, respectively) if the number of leaders or similar
subsets is at most logarithmic in the number of experts. This condition is clearly necessary,
since otherwise Hedge itself guarantees better regret than HedC .

We use a single construction for all the above scenarios. It involves an oblivious stochas-
tic adversary whose branching tree is a highly unbalanced comb-shaped tree, that is, with
splits occurring only in a single branch. This construction and accompanying lemma are
geared towards the case of subsets of identical experts, but are useful for the other scenarios

10
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as well. The construction proceeds as follows. Given N for the number of experts and K
for the number of unique experts, we define sets S1 ⊃ S2 ⊃ · · · ⊃ SK of experts, where
S1 = {1, . . . , N}, and Si+1 is a random half of Si, which contains the best expert. The
K distinct subsets are Sj \ Sj+1, for j = 1, . . . ,K, where we define SK+1 = ∅. Just as in
proofs for the standard best expert setting (see, e.g., Theorems 4.7 and 4.8 in Chapter 4 of
(Nisan et al., 2007)), this construction prevents any learner from doing better than random.
We comment, however, that additional care is required to control the number of distinct
experts. We make use of the following lemma, proven in the appendix.

Lemma 10 Let ℓi,t ∈ {0, 1} for all i and t, where exactly K loss sequences (ℓi,1, . . . , ℓi,T )
are distinct. Even if K is known to the learner, it holds that

(i) For every T ≤ ⌊log2N⌋, there is an oblivious stochastic adversary that generates N
loss sequences of length T of which K = T +1 are unique, such that the expected regret
of any algorithm satisfies E[RT ] ≥ T/2.

(ii) For every T ≥ 1 + ⌊log2N⌋ and K ≤ 1 + ⌊log2N⌋ there is an oblivious stochastic
adversary that generates N loss sequences of length T , of which K are unique, such
that the expected regret of any algorithm satisfies E[RT ] ≥ 1

4

√
⌊T/(K − 1)⌋(K − 1) =

Ω
(√

T (K − 1)
)
.

With the above lemma handy, we start by considering the branching setup. Given T
and K < T , the adversary may generate N = 2T−1 loss sequences of length T according to
part (ii) of Lemma 10. At time t it maintains sets of experts with identical histories up until
time t, according to the stochastic construction. These sets are the leaves of its branching
tree, which is a comb-shaped tree with K − 1 binary splits along a single splitting branch,
so we have Π = 2K−1. The adversary will be extra helpful and reveal N to the learner in
advance, and also reveal at each time t the current composition of the sets in the leaves.
Even so, by Lemma 10, the regret of any algorithm satisfies E[RT ] = Ω

(√
T (K − 1)

)
=

Ω
(√

L∗
T lnΠ

)
, so the key term

√
L∗
T lnΠ in the regret bound for HedC (Corollary 4) may

not be improved in general.
For α-similar subsets, Lemma 10 clearly gives an Ω

(√
L∗
T (N0,T − 1)

)
expected regret

bound in the α = 0 case, if N0,T ≤ 1 + ⌊log2N⌋ ≤ T . Since the adversary is oblivious, we
also have N0,T ≥ Nα,T and therefore an Ω

(√
L∗
T (Nα,T − 1)

)
bound.

Finally, we may show that for the few leaders scenario, if Λ0,T ≤ 1 + ⌊log2N⌋ ≤ cT , for
some c > 0, then the expected regret is Ω

(√
L∗
T (Λ0,T − 1)

)
. The application of Lemma 10

for this case requires an additional technical step. A closer examination of our stochastic
construction reveals that if a run with K ≤ log2N is stopped at time T/2, then the
expected regret is still Ω

(√
L∗
T (K − 1)

)
, the number of leaders is in {1, . . . ,K}, and the set

of best experts is of size Θ
(√

N
)
. We may then artificially raise the number of leaders to

K ≤ log2N = O
(√

N
)
by sequentially giving ǫ loss to one member of the best expert set,

and a round later to all the others. The remaining rounds may be filled with zero losses for
all experts. Thus, for any Λ ≤ log2N , if we run this modified procedure with K = Λ0,T , we
achieve expected regret of Ω

(√
L∗
T (Λ0,T − 1)

)
and the number of leaders is exactly Λ0,T .

As before, this implies an Ω
(√

L∗
T (Λα,T − 1)

)
as well. The following theorem summarizes

our lower bounds.

Theorem 11 Let T be a known time horizon.

11
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(i) For the branching setting and for any d < T , there is a random tree generation with
dT = d such that the expected regret of any algorithm satisfies E[RT ] = Ω

(√
T lnΠ

)
.

(ii) For any N0,T ≤ 1 + ⌊log2N⌋ ≤ T , there is a random construction of N experts
of which N0,T are distinct, such that the expected regret of any algorithm satisfies
E[RT ] = Ω

(√
T (N0,T − 1)

)
.

(iii) For any Λ0,T ≤ 1 + ⌊log2N⌋ ≤ cT , for some c > 0, there is a random construction
of N experts of which Λ0,T are leaders, such that the expected regret of any algorithm
satisfies E[RT ] = Ω

(√
T (Λ0,T − 1)

)
.

7. Branching experts for the multi-armed bandit setting

In this section we introduce and analyze a variant of the randomized multi-armed bandit
algorithm Exp3 of Auer et al. (2002) for the branching setting. For the sake of simplicity,
we focus on the case of perfect cloning. This means that new actions j ∈ C(i, t + 1) all
start off with the same cumulative loss Li,t as their parent i. This variant, called Exp3.C,
is described below here.

Branching Exp3 (Exp3.C)

Parameters: A sequence η1, η2, . . . of real-valued functions satisfying the assumptions
of Theorem 12.

For each round t = 1, 2, . . .

1. For each action i = 1, . . . , Nt−1, after the adversary reveals the set C(i, t):
If t = 1, then let L̃j,0 = 0 for every j = 1, . . . , N1;

else, if t > 1, then L̃j,t−1 = L̃i,t−2 + ℓ̃i,t−1 +
1

ηt−1
ln |C(i, t)| for every j ∈ C(i, t),

including i.

2. Compute the new distribution over actions pt =
(
p1,t, . . . , pNt,t

)
, where

pi,t =
exp

(
−ηtL̃i,t−1

)

∑Nt

k=1 exp
(
−ηtL̃k,t−1

) .

3. Draw an action It from the probability distribution pt and observe loss ℓIt,t.

4. For each action i = 1, . . . , Nt compute the estimated loss ℓ̃i,t =
ℓi,t
pi,t

I {It = i}.

The main modification with respect to Exp3 is in the way cumulative loss estimates L̃i,t

are computed (step 1 in the pseudo-code). The additional term 1
ηt−1

ln |C(i, t)| in these
estimates serves a role similar to that of the partial restart in the full information case.
There, we divided the weight of a parent expert i among children C(i, t). Here, we increase
the loss estimate of j ∈ C(i, t) to achieve the same effect.

The next theorem bounds the expected regret ERT of Exp3.C against an oblivious
adversary.5 This is defined as ERT = E

[
L̂T

]
− L∗

T , where L̂T = ℓI1,1 + · · · + ℓIT ,T is the

5. Extensions to nonoblivious adversaries are possible, with some assumptions on the adversary’s control
on the quantities C(i, t).

12



Regret Minimization for Branching Experts

random variable denoting Exp3.C’s total loss with respect to the sequence I1, . . . , IT of
random draws.

Theorem 12 Let η1, η2, . . . be a sequence of functions ηt : N → R
+ such that for every

k1 ≤ k2 ≤ . . ., it holds that η1(k1) ≥ η2(k2) ≥ . . . (in what follows, we write ηt = ηt(Nt)
for short). If i0, . . . , iT = m(T ) are the actions on the path from the root to the best action
m(T ), then

ERT ≤ 1

2

T∑

t=1

Ntηt +
T∑

t=1

1

ηt
ln

Nt|C(it, t+ 1)|
Nt+1

+
lnNT+1

ηT
. (2)

If Exp3.C is run with ηt(k) =
√

ln ek
tk

, then

ERT ≤ 2
√
TNT ln eNT

(
1 +

ln
∏T

t=1 |C(it, t+ 1)|
2 ln eNT

)
. (3)
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Appendix A. Missing proofs

Proof of Lemma 1: Recall that wi,t+1 = w′
i,te

−ηℓi,t and W ′
t = Wt for every i = 1, . . . , Nt+1,

t = 1, . . . , T and note that W ′
t > 0. Let p′i,t = w′

i,t/W
′
t for all i = 1, . . . , Nt+1, so that

p′
t = (p′1,t, . . . , p

′
Nt+1,t

) is a probability vector. Hence, for every t,

ln
Wt+1

Wt
= ln

∑Nt+1

i=1 wi,t+1

W ′
t

= ln

∑Nt+1

i=1 w′
i,te

−ηℓi,t

W ′
t

= ln

Nt+1∑

i=1

p′i,te
−ηℓi,t .

Now, if there is no restart at time t+ 1, that is |C(i, t+ 1)| = 1 for all i = 1, . . . , Nt, then
Nt+1 = Nt, w

′
i,t = wi,t, and p′i,t = pi,t, i = 1, . . . , Nt. In this case, by the convexity of

f(x) = ex, we have e−ηℓi,t ≤ 1−
(
1− e−η

)
ℓi,t. Hence we can write

ln

Nt+1∑

i=1

p′i,te
−ηℓi,t = ln

Nt∑

i=1

pi,te
−ηℓi,t

≤ ln

Nt∑

i=1

pi,t
(
1− (1− e−η)ℓi,t

)

≤ −(1− e−η)pt · ℓt
= −(1− e−η)ℓ̂t .

On the other hand, if a restart takes place, then we have

ln

Nt+1∑

i=1

p′i,te
−ηℓi,t ≤ ln

Nt+1∑

i=1

p′i,t
(
1− (1− e−η)ℓi,t

)
≤ −(1− e−η)

Nt+1∑

i=1

p′i,tℓi,t

which is trivially upper bounded by −(1− e−η)(ℓ̂t − 1), since
∑Nt+1

i=1 p′i,tℓi,t ≥ 0 ≥ ℓ̂t − 1.
Thus, if n′ ≤ n is the number of restarts,

ln
WT+1

W1
=

T∑

t=1

ln
Wt+1

Wt
≤ −(1− e−η)

(
L̂T − n′) ≤ −(1− e−η)

(
L̂T − n

)
.

Proof of Lemma 2: Recall that i0, . . . , it is a path from the root i0 to expert it in the
branching experts tree, where iτ ∈ C(iτ−1, τ) for all τ = 1, . . . , t. We first prove by induction
that

wit,t ≥ e−ηLit,t−1

t−1∏

τ=1

(
1 +

(
|C(iτ , τ + 1)| − 1

)
eηαiτ ,τ

)−1
.

For t = 1 both sides equal 1 and the claim is trivial. We next assume the claim holds for t
and prove it for t+ 1. For every t we have that

∑

j∈C(it,t+1)

e−ηLj,t−1 = e−ηLit,t−1

∑

j∈C(it,t+1)

e−η(Lj,t−1−Lit,t−1)

≤ e−ηLit,t−1

(
1 +

(
|C(it, t+ 1)| − 1

)
eηαit,t

)
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where we used αit,t = max
{∣∣Lj,t−1 − Lk,t−1

∣∣ : j, k ∈ C(it, t+ 1)
}
and also it ∈ C(it, t+ 1).

Thus

wit+1,t+1 = w′
it+1,t

e−ηℓit+1,t = wit,t
e−ηLit+1,t

∑
j∈C(it,t+1) e

−ηLj,t−1

≥ wit,te
−η
(
Lit+1,t

−Lit,t−1

)(
1 +

(
|C(it, t+ 1)| − 1

)
eηαit,t

)−1

≥ e−ηLit+1,t

t∏

τ=1

(
1 +

(
|C(iτ , τ + 1)| − 1

)
eηαiτ ,τ

)−1

completing the induction. It is easy to verify that

1 +
(
|C(iτ , τ + 1)| − 1

)
eηαiτ ,τ ≤ max

{
1, 2|C(iτ , τ + 1)| − 2

}
eηαiτ ,τ

and thus

wit,t ≥ e−ηLit,t−1

t−1∏

τ=1

(
max

{
1, 2|C(iτ , τ + 1)| − 2

}
eηαiτ ,τ

)−1

= exp

(
−ηLit,t−1 − η

t−1∑

τ=1

αiτ ,τ

)
t−1∏

τ=1

max
{
1, 2|C(iτ , τ + 1)| − 2

}−1
.

Proof of Theorem 3: By Lemma 2 we have that

ln
WT+1

W1
≥ ln

wm(T ),T+1

N1
≥ −ηL∗

T − ηAT+1 − lnΠT+1 ≥ −η
(
L∗
T +AT+1

)
− lnΠ′ .

In addition, by Lemma 1, ln(WT+1/W1) ≤ −(1− e−η)(L̂T − dT ). Combining the upper and
lower bounds for ln(WT+1/W1) and rearranging, we have

L̂T − dT ≤ η
(
L∗
T +AT+1

)
+ lnΠ′

1− e−η
.

The rest of the proof is similar to the standard proof of Hedge and is given here for com-
pleteness. Denote ν = lnΠ′ and L = L∗

T +AT+1. It is easily verified that η ≤ 1
2(e

η − e−η)
for every η ≥ 0, and therefore,

L̂T − dT ≤
1
2(e

η − e−η)L+ ν

1− e−η
=

ν

1− e−η
+

L
2
(eη + 1) .

Recall that we set η such that eη = 1 +
√
2ν/L′, and therefore

RT = L̂T +AT+1 − L ≤ dT +AT+1 +
ν

1− e−η
+

L
2
(eη − 1)

≤ dT +AT+1 +
ν

1− e−η
+

L′

2
(eη − 1)

= dT +AT+1 +
(
1 +

√
L′/(2ν)

)
ν +

L′

2

√
2ν/L′

= dT +AT+1 + ν +
√
2L′ν
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completing the proof.

Proof of Lemma 10: (i) Consider the following loss sequence generation. At each time t,
the adversary focuses only on the set St of experts, where St = {1 ≤ i ≤ 2⌊log2 N⌋ : ∀τ <
t, ℓi,τ = 0} (initially, S1 includes all the experts 1 ≤ i ≤ 2⌊log2 N⌋). The set St is then divided
randomly into two equal-sized sets, where the first set is given loss 1 at time t and the other
loss 0. All other experts are given loss 1. Even if the learner has the benefit of knowing St

before deciding on pt, its expected loss at time t is 1/2. (The learner only stands to lose
if it puts weight outside St.) Therefore, in any case, E[L̂T ] ≥ T/2, while L∗

T = 0, implying
that E[RT ] ≥ T/2. There are exactly T + 1 distinct experts in the above construction.

(ii) Consider the following construction of loss sequences by an adversary. Let τ =
⌊T/(K − 1)⌋ and divide the time range 1, . . . , τ(K − 1) into K − 1 time slices of size
τ . Times (τ(K − 1), T ] may be ignored, since the adversary may assign ℓi,t = 0 for every
1 ≤ i ≤ N and t ∈ (τ(K−1), T ], so the regret of any algorithm is unaffected. The adversary
defines sets S1 ⊃ S2 ⊃ · · · ⊃ SK of experts, where initially S1 = {1, . . . , N}. For time slice
j, all experts not in Sj incur τ times the loss 1. Denote S1

j for the first ⌊|Sj |/2⌋ experts

in Sj and S2
j = Sj \ S1

j . The adversary generates two {0, 1}-valued loss sequences of size τ

by making 2τ i.i.d. draws from the uniform distribution on {0, 1}. Experts in S1
j incur the

losses in the first sequence, and experts in S2
j incur the losses in the second sequence. If the

sequences are identical, the adversary modifies its choice by picking instead the sequences
{0, . . . , 0, 1} and {0, . . . , 0, 0} and assigning one of them randomly to the experts in S1

j and

the other to experts in S2
j . Sj+1 is then defined as the set between S1

j and S2
j with the

smallest cumulative loss, or S1
j in case of a tie. Note that we end up with exactly K distinct

loss sequences, and Sj always contains an expert with the smallest cumulative loss at any
time.

We may assume w.l.o.g. that in time slice j, the algorithm puts weight only on Sj , and

we denote Rj for its regret on the j-th time slice. We also denote R̂j for the regret if we
had not made the modification for identical sequences. By Lemma 14 (see below), we have
E[R̂j ] ≥ √

τ/4, since the expected loss of the algorithm on the time slice is τ/2. Denote Bj

for the event that the sequences in slice j are identical and B̄j for its complement. We have√
τ/4 ≤ E[R̂j ] = E[R̂j | B̄j ]P(B̄j) + E[R̂j | Bj ]P(Bj) = E[R̂j | B̄j ]P(B̄j), since the regret is

0 if the sequences are identical. In addition, we have

E[Rj ] = E[Rj | B̄j ]P(B̄j) + E[Rj | Bj ]P(Bj)

= E[R̂j | B̄j ]P(B̄j) + E[Rj | Bj ]P(Bj)

≥ E[R̂j | B̄j ]P(B̄j) ≥
√
τ/4

where the first inequality is true because when Bj occurs, R
j ≥ 0 (one sequence is all zeros).

Sj always contains an expert with minimal cumulative loss, so

E[RT ] =
K−1∑

j=1

E[Rj ] ≥ 1

4

√
τ(K − 1) =

1

4

√
⌊T/(K − 1)⌋(K − 1) = Ω

(√
T (K − 1)

)
.

Proof of Theorem 12: Note first that if splits always occur uniformly for all actions i (i.e, for
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all t we have that |C(i, t+ 1)| is the same for all i = 1, . . . , Nt), then Nt+1 = Nt|C(i, t+ 1)|
implying ln

(
Nt|C(i, t+ 1)|

/
Nt+1

)
= 0. Hence we would get

ERT ≤ 1

2

T∑

t=1

Ntηt +
lnNT+1

ηT
.

In particular, for the standard bandit setting, where N1 = · · · = NT+1 = N , we get

ERT ≤ N

2

T∑

t=1

ηt +
lnN

ηT

and recover the original result.
To prove (3) from (2), we first note that ln Nt

Nt+1
≤ 0 for all t. In addition, without loss

of generality, NT = NT+1 (otherwise we add an artificial round). We obtain

ERT ≤ 1

2

T∑

t=1

√
Nt ln eNt

t
+

1

ηT

T∑

t=1

ln |C(it, t+ 1)|+
√

TNT (lnNT )2

ln eNT

≤ 1

2

√
NT ln eNT

T∑

t=1

1√
t
+

√
TNT

ln eNT

ln
T∏

t=1

|C(it, t+ 1)|+
√
TNT ln eNT

≤ 2
√
TNT ln eNT +

√
TNT

ln eNT

ln
T∏

t=1

|C(it, t+ 1)|

= 2
√
TNT ln eNT

(
1 +

ln
∏T

t=1 |C(it, t+ 1)|
2 ln eNT

)

where we used the fact that
∑T

t=1
1√
t
≤
∫ T

0
1√
t
dt = 2

√
T .

The proof of (2) is an adaptation of the proof of (Bubeck and Cesa-Bianchi, 2012, The-
orem 3.1) —indicated with [BS3.1] for short, which is divided into five steps. Here we just
focus on the main differences. In the following, we write Ei∼pt to denote the expectation
w.r.t. the random draw of i from the distribution pt specified by the probability vector
pt =

(
p1,t, . . . , pNt,t

)
. Moreover, given any action k ∈ NT , we use k also to index any action

i on the path from the root to k. This is OK because, since we have perfect cloning, we
have that Lk,T = ℓi1,1 + · · · + ℓiT ,T where i1, . . . , iT are the actions on the path from the
root i0 to iT = k.

The first two steps of the proof are identical to [BS3.1]:

T∑

t=1

ℓIt,t −
T∑

t=1

ℓk,t =
T∑

t=1

Ei∼pt ℓ̃i,t −
T∑

t=1

EIt∼pt ℓ̃k,t . (4)

Now we rewrite Ei∼pt ℓ̃i,t as follows

Ei∼pt ℓ̃i,t =
1

ηt
lnEi∼pt exp

(
−ηt

(
ℓ̃i,t − Ek∼pt ℓ̃k,t

))
− 1

ηt
lnEi∼pt exp

(
−ηtℓ̃i,t

)
. (5)
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Following the second step in the proof of [BS3.1] we obtain

lnEi∼pt exp
(
−ηt(ℓ̃i,t − Ek∼pt ℓ̃k,t)

)
≤ η2t

2pIt,t
(6)

Next, we study the second term in (5). This relies on the specific properties of Exp3.C.

Let Φ0(η) = 0 and Φt(η) =
1
η
ln 1

Nt+1

∑Nt+1

i=1 exp
(
−ηL̃i,t

)
. By definition of pt, and recalling

that L̃j,t = L̃i,t for every j ∈ C(i, t+ 1) and every i = 1, . . . , Nt, we have

− 1

ηt
lnEi∼pt exp

(
−ηtℓ̃i,t

)
= − 1

ηt
ln

∑Nt

i=1 exp
(
−ηtL̃i,t−1

)
exp

(
−ηtℓ̃i,t

)

∑Nt

i=1 exp
(
−ηtL̃i,t−1

)

= − 1

ηt
ln

∑Nt

i=1 |C(i, t+ 1)| exp
(
−ηtL̃i,t

)

∑Nt

i=1 exp
(
−ηtL̃i,t−1

)

= − 1

ηt
ln

∑Nt+1

i=1 exp
(
−ηtL̃i,t

)

∑Nt

i=1 exp
(
−ηtL̃i,t−1

)

= Φt−1(ηt)− Φt(ηt) +
1

ηt
ln

Nt

Nt+1
. (7)

Putting together (4), (5), (6) and (7) we obtain

T∑

t=1

ℓIt,t −
T∑

t=1

ℓk,t ≤
T∑

t=1

ηt
2pIt,t

+
T∑

t=1

(
Φt−1(ηt)− Φt(ηt)

)
+

T∑

t=1

1

ηt
ln

Nt

Nt+1
−

T∑

t=1

EIt∼pt ℓ̃k,t .

The first term is easy to bound in expectation since by the rule of conditional expectations
we have

E

T∑

t=1

ηt
2pIt,t

= E

T∑

t=1

EIt∼pt

ηt
2pIt,t

=
1

2

T∑

t=1

Ntηt .

For the second term we again proceed similarly to the proof of [BS3.1],

T∑

t=1

(
Φt−1(ηt)− Φt(ηt)

)
=

T−1∑

t=1

(
Φt(ηt+1)− Φt(ηt)

)
− ΦT (ηT )

since Φ0(η1) = 0. Note that

−ΦT (ηT ) =
lnNT+1

ηT
− 1

ηT
ln




NT+1∑

i=1

exp
(
−ηT L̃i,T

)



≤ lnNT+1

ηT
− 1

ηT
ln
(
exp

(
−ηT L̃k,T

))

=
lnNT+1

ηT
+

T∑

t=1

(
ℓ̃k,t +

1

ηt
ln |C(k, t+ 1)|

)
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and thus we have

E

[
T∑

t=1

ℓIt,t −
T∑

t=1

ℓk,t

]
≤ 1

2

T∑

t=1

Ntηt + E

T−1∑

t=1

(
Φt(ηt+1)− Φt(ηt)

)

+

T∑

t=1

1

ηt
ln

Nt|C(k, t+ 1)|
Nt+1

+
lnNT+1

ηT
.

The proof is concluded by showing that Φ′
t(η) ≥ 0. Since, ηt+1 ≤ ηt this would give

Φt(ηt+1)− Φt(ηt) ≤ 0. In fact, the proof of this claim goes along the same lines as [BS3.1],
and is therefore omitted.

Appendix B. Additional claims

Claim 13 There exists a scenario with N + 1 experts s.t. for a large enough N , HedC has
regret RT = Ω

(√
L∗
TN
)
while Hedge has regret RT = O

(
lnN +

√
L∗
T lnN

)
.

Proof Consider the following special scenario. The adversary initially reveals N + 1
experts, one in every round, without any losses, in a comb-shaped branching tree. The
adversary next gives losses 0 to the last revealed expert and 1 to the others for t rounds,
and afterwards gives loss 1 to all experts for τ rounds. Suppose further that N , t, and τ
are known in advance.

We now consider the regret of HedC . We have L∗
T = τ , so η = ln

(
1 +

√
(2 ln 2)N/τ

)
,

and it is easily seen that the regret is lower bounded by
(
1− pN+1,t+N

)
t, where

pN+1,t+N =
2−N

2−N + (1− 2−N )e−ηt
=

1

1 + (2N − 1)e−ηt
≤ eηt

2N
= exp(ηt−N ln 2) .

Taking t =
⌊
(N ln 2− 1)/η

⌋
ensures the regret is lower bounded by t/2. Since

N ln 2− 1

η
≥ N ln 2− 1√

(2 ln 2)N/τ
≥ (N/2) ln 2√

(2 ln 2)N/τ
≥
√
Nτ(ln 2)/8

the result follows.

Lemma 14 If X = Z1 + . . . + Zn and Y = Zn+1 + . . . + Z2n, where Zi are independent
Bernoulli variables with p = 1

2 , then E[min(X,Y )] ≤ 1
2n− 1

4

√
n.

Proof We have that

E[min(X,Y )] = E

[
1

2
(X + Y − |X − Y |)

]

=
1

2
E[X] +

1

2
E[Y ]− 1

2
E[|X − Y |]

=
n

2
− 1

2
E[|X − Y |] ,
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so we need only determine the value of E[|X − Y |]. Now, σi = 2Zi − 1, for 1 ≤ i ≤ 2n, are
independent Rademacher variables, and 1

2(σj − σj+n) = Zj − Zj+n, for 1 ≤ j ≤ n. Thus,

|X − Y | = |∑n
j=1(Zj − Zj+n)| = 1

2 |
∑2n

i=1 aiσi|, where |ai| = 1 for every i. By Khinchine’s
inequality (see, e.g., Cesa-Bianchi and Lugosi (2006), Lemma A.9),

E

[∣∣∣∣∣

2n∑

i=1

aiσi

∣∣∣∣∣

]
≥ 1√

2

√√√√
2n∑

i=1

a2i =
√
n .

Thus,

E[min(X,Y )] =
n

2
− 1

2
E[|X − Y |] = n

2
− 1

4
E

[∣∣∣∣∣

2n∑

i=1

aiσi

∣∣∣∣∣

]
≤ 1

2
n− 1

4

√
n .
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