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Abstract

We design differentially private algorithms for statistical model selection. Given a data set and
a large, discrete collection of “models”, each of which is a family of probability distributions, the
goal is to determine the model that best “fits” the data. This is a basic problem in many areas of
statistics and machine learning.

We consider settings in which there is a well-defined answer, in the following sense: Suppose
that there is a nonprivate model selection procedure f which is the reference to which we compare
our performance. Our differentially private algorithms output the correct value f (D) whenever f is
stable on the input data set D. We work with two notions, perturbation stability and subsampling
stability.

We give two classes of results: generic ones, that apply to any function with discrete output
set; and specific algorithms for the problem of sparse linear regression. The algorithms we describe
are efficient and in some cases match the optimal nonprivate asymptotic sample complexity.

Our algorithms for sparse linear regression require analyzing the stability properties of the
popular LASSO estimator. We give sufficient conditions for the LASSO estimator to be robust
to small changes in the data set, and show that these conditions hold with high probability under
essentially the same stochastic assumptions that are used in the literature to analyze convergence of
the LASSO.

1. Introduction

Model selection is a basic problem in machine learning and statistics. Given a data set D and a
discrete collection of models M, Mo, . . ., where each model is a family of probability distributions
M; = {pip}eco,, the goal is to determine the model that best fits the data in some sense. The
choice of model could reflect a measure of complexity, such as the number of components in a
mixture model, or a choice about which aspects of the data appear to be most relevant, such as the
set of features used for a regression model.

In this paper we investigate the possibility of carrying out sophisticated model selection algo-
rithms without leaking significant information about individuals entries in the data set. This is criti-
cal when the information in the data set is sensitive, for example if it consists of financial records or
health data. Our algorithms satisfy differential privacy (Dwork et al., 2006b; Dwork, 2006), which
ensures that adding or removing an individual’s data from a data set will have little effect on the
inferences made about them based on an algorithm’s output (Dwork, 2006; Ganta et al., 2008).
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We give both general results on model selection and specific results on a prototypical problem
in high-dimensional statistics, namely sparse linear regression: each entry in the data set consists
of a p-dimensional real feature vector  and real-valued response (or label) y. The goal is to find
a parameter vector § € RP with few nonzero entries such that (x;,0) ~ y; for all n data points
(x;,y;). Such sparse regression vectors provide predictive relationships that generalize well to
unseen data and are relatively easy to interpret. Specifically, given a data set of n entries (x;, y;) €
RP x R, let X € R"™*P be the matrix with rows x; and y € RP be the column vector with entries
;. Suppose that the data set satisfies a linear system

y = X6" + w (1)

where 0* is a parameter vector (in RP) to be estimated, and w € R"™*! is an error vector whose
entries are assumed to be “small” (say constant). We say a vector is s-sparse if has at most s nonzero
entries. Assuming that 0 is s-sparse for a given parameter s, under can conditions can we recover
the support of 8* while minimizing the information leaked about individual data points?

Differential privacy. Our algorithms take as input a data set D € U™ that is a list of elements in
a universe U. The algorithms we consider are all symmetric in their inputs, so we may equivalently
view the data as a multi-set in U. We say multi-sets D and D’ are neighbors if |D A D'| = 1. More
generally, the distance between two data sets is the size of their symmetric difference, which equals
the minimum number of entries that need to be added to or removed from D to obtain D’.

Definition 1 (Differential privacy Dwork et al. (2006b,a)) A randomized algorithm A is (e, 0)-
differentially private if for every two neighboring datasets D and D' in U* (that is, with |D AD'| =
1), and for all events O C Range(A) the following holds: Pr[A(D) € O] < e Pr[A(D’) € O]+

This definition is meaningful roughly when € is at most a small constant (say 1/10) and § is sig-
nificantly less than 1/n (see Kasiviswanathan and Smith (2008) for a discussion). In Section A
we review some of the basic concepts associated with differential privacy, which also act as basic
building blocks for our algorithms.

1.1. Our Contributions

Generic Transformations. We give two transformations that take a nonprivate model selection
procedure f and produce a private procedure A with similar sample complexity and computational
efficiency.

Our transformations work whenever there is a “well-defined” output, in the following sense:
Suppose that there is nonprivate model selection procedure f which is the reference to which we
compare our performance. Our algorithms output the correct value f(D) whenever f is stable on
the input data set D. We work with either one of two notions, perturbation stability and subsampling
stability, both of which have been studied in the machine learning literature. Roughly, a function f
is perturbation stable on a data set D if it takes the value f(D) on all the neighbors of D. A function
is f is subsampling stable on D, if for a random subsample D from D we have f (D)= f (ﬁ) with
good probabiliy.

An important implication of our results is that if the nonprivate model selection algorithm f is
consistent on n i.i.d. samples from a distribution P, then the private analogue .4 is consistent on

/

n = O(nw) samples. Here, consistency means that f selects a particular model for P with
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reasonable probability (say, at least 2/3). The statistical literature has considered a wide array of
model selection procedures, many of which are proven consistent under very general assumptions;
see Claeskens and Hjort (2008, Ch. 4) for a textbook introduction.

The main new technical idea in our generic transformations is to identify efficient ways to pri-
vately test if the algorithm f is subsampling stable on a given input. For this, we adapt the “sample-
aggregate” framework of Nissim et al. (2007).

Sparse Regression Algorithms. We give new algorithms for sparse linear regression which im-
prove on previous efforts by Kifer, Smith, and Thakurta (2012). With very sparse models (roughly,
when s is smaller than log p) our new algorithms match the optimal nonprivate sample complexity.
Our algorithms are based on the popular LASSO technique of L; penalized regression. Our
analyses work under the same assumptions used in the literature to analyze nonprivate feature se-
lection algorithms (Wainwright, 2006; Zhao and Yu, 2007). A particularly clean implication of our
results is that with Gaussian data and noise, if there exists an s-sparse vector 8* that labels the data
well, then our algorithms recover the support of 8* with n’ samples (with good probability), when

n’ = Q*(min{kslog p, max{s log p, {fgsg}}) and k = M .
For comparison, the nonprivate sample complexity is ©*(slog p) (Wainwright, 2006) (the 2* and
O notation hide logarithmic factors in n). In particular, our algorithms match the nonprivate lower

bound when s < ((log D)/ k:) 23 Our algorithms improve the previous work by Kifer et al. (2012)
in all ranges of parameters. Even with constant € and ¢, the efficient algorithms of Kifer et al. (2012)
have sample complexity Q(s%log? p), whereas ours scales as O* (s log p).

Stability and Robustness of the LASSO. Our algorithms for sparse linear regression require
analyzing the stability properties of the popular LASSO estimator that we feel are of independent
interest. The LASSO minimizes the usual mean squared error loss penalized with (a multiple of)
the L1 norm of 6: R

0(D) = argmin 5|y — X6||3 + 701 )

The consistency properties of the Lasso are well-studied: under a variety of assumptions on the
data, when n = w(slogp), the estimate 6 is known to converge to 8* in the Lo norm (Wainwright,
2006; Negahban et al., 2009). Moreover, if the entries of 8* are bounded away from zero, 0 will
have the same support as 8* (Wainwright, 2006).

We extend these results to show that, under essentially the same assumptions, the support of 6
does not change when a small number of data points are changed. Other work on LASSO robustness
captures different properties. (See Section 1.2 below.) Our analysis requires significantly refining
the “primal-dual” construction technique of Wainwright (2006). The idea is to show that an optimal
solution to (2) for data set D’ which is “near” D can be transformed into an optimal solution for D.
This involves analyzing how the KKT conditions on the subgradient of the nondifferentiable loss
function in (2) change as the data varies.

Efficient Tests for LASSO Stability. Significantly, we use the primal-dual analysis to give an
efficient and smooth estimator for the distance from a given data set D to the nearest unstable data
set. The estimator essentially uses the subgradient of the regularized loss (2) to measure how big a
change would be needed to one of the zero entries of 6 to “jump” away from zero. This is delicate



SMITH THAKURTA

because changing the data set changes both the minimizer and the geometry of the loss function.
The efficient distance estimator gives us the private feature selector with optimal sample complexity.
Most results on the LASSO’s convergence require restricted strong convexity (RSC) of the loss
function (Wainwright, 2006; Negahban et al., 2009). Evaluating the RSC parameter is known to
be NP-hard. Our efficient test circumvents this — we show that one need only bound the strong
convexity of the loss function for the set of coordinates actually recovered by the LASSO.

1.2. Previous Work

Private Model Selection. We are not aware of any prior work on general private model selection.
Zhou et al. (2009) studied the specific problem of private sparse regression in low dimension, where
p < n; their techniques do not give meaningful results when p > n. Kifer et al. (2012) gave
the first results on private sparse regression in high dimension. They designed a computationally
efficient algorithm, implicitly based on subsampling stability, for support recovery using the LASSO
estimator. In this work we significantly extend and improve on the results of Kifer et al. (2012) (see
“Our Contributions” for a comparison). Our algorithm based on subsampling stability is inspired by
that of Kifer et al. (2012), but is based on a more sophisticated and sample-efficient test of stability.
Our algorithm based on perturbation stability is considerably different in flavor; it is inspired by the
work of Dwork and Lei (2009) on robust statistics and privacy (see Section) 2 for a discussion) but
requires new results on the robustness of the LASSO.

Nonprivate Sparse Regression. We draw on a rich literature studying (nonprivate) sparse high-
dimensional regression (e.g. Donoho (2000); Zhao and Yu (2007); Wainwright (2006); Negahban
et al. (2009)). Several works (Zhao and Yu, 2007; Wainwright, 2006; Kim et al., 2012) show that
n = w(slogp) samples suffice for consistent support recovery under a variety of distributions.
In this work we show that under the same set of assumptions considered by Wainwright (2006),
the support of 8* is also stable. In contrast, Xu et al. (2010) study the Lo-stability of LASSO-
like estimators to small perturbations and show that uniform stability (in which the set of selected
features change by only small steps between any pairs of neighbors) is impossible for algorithms
with sparse output; some assumptions on the input are this necessary. Finally, Lee et al. (2011) look
at Huberization of the LASSO with the goal of providing robustness, but did not provide formal
consistency or convergence guarantees.

Note that the notion of support recovery requires a unique “best” underlying model for the data.
Most analyses of the LASSO’s convergence assume such an underlying model. However, if one
only requires low generalization error (as opposed to exact model selection), then one can work
with weaker assumptions (Juditsky and Nemirovski, 2000; Greenshtein and Ritov, 2004).

Stability and Learning. The general relationship between learning, statistics and stability has
been studied in the learning theory literature (e.g., Rogers and Wagner (1978)) and in robusts statis-
tics (e.g., Huber (1981)) for over thirty years. Many variants of stability have been studied, and
the literature is too vast to survey in detail here. A variant of the notion of perturbation stability
that we consider have been studied previously (Bousquet and Elisseeff, 2002; Shalev-Shwartz et al.,
2010; Xu et al., 2010; Dwork and Lei, 2009). One consequence of these works is that if a learning
algorithm f satisfies our notion of stability, then it generalizes well. The notion of stability to sub-
sampling or resampling from the training data set has also been studied (Shao, 1996; Bach, 2008;
Meinshausen and Buehlmann, 2010; Meild, 2006). In particular, stability under resampling was
proposed as a criterion for model selection in clustering.
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2. Stability and Privacy

We give two simple, generic transformations (Sections 2.1 and 2.2) that, given any function f and
parameters €, > 0, return a (e, §)-differentially private algorithm that is correct whenever f is
sufficiently stable on a particular input D. The two algorithms correspond to different notions of
stability. In both cases, the correctness guarantees do not have any dependence on the size of the
range of f, only on the privacy parameters € and . In the context of model selection, this implies
that there is no dependency on the number of models under consideration. Both of the following
notions have been studied extensively in machine learning (see Previous Work).

e Perturbation Stability: We say that f is perturbation stable on D if f takes the value f(D) on
all of the neighbors of D (and unstable otherwise). We give an algorithm Ay;; that, on input D,
outputs f(D) with high probability if D is at distance at least M from the nearest unstable
data set. Unfortunately, the algorithm 44, is not efficient, in general.

o Subsampling stability: We say f is g-subsampling stable on D if f (ﬁ) = f(D) with probability
at least 3/4 when D is a random subsample from D which includes each entry independently
with probability g. We give an algorithm Ay, that, on input D, outputs f(D) w.h.p. whenever
f is g-subsampling stable for ¢ = W(l/é)' The running time of Ay, is dominated by running

f about 1/¢? times; hence it is efficient whenever f is.

As mentioned earlier, this result has a clean statistical interpretation: if f is a consistent model

selection procedure on n samples, then A is consistent on n' = O(nw) samples.

Throughout this section we will use two notions that quantify perturbation stability:

Definition 2 (k-stability) A function f : U* — R is k-stable on input D if adding or removing
any k elements from D does not change the value of f, that is, f(D) = f(D’) for all D’ such that
|IDAD'| < k. We say f is stable on D if it is (at least) 1-stable on D, and unstable otherwise.

The distance to instability of a data set D € U™ with respect to a function f is the number of
elements that must be added to or removed from D to reach an data set that is not stable. Note that
D is k-stable if and only if its distance to instability is at least k.

2.1. From Perturbation Stability to Privacy

The idea behind the first algorithm comes from the work of Dwork and Lei (2009) on private para-
metric estimation. For basic terminology related to differential privacy, see Appendix A. If we were
somehow given a promise that f is stable on D, we could release f(D) without violating differ-
ential privacy. The issue is that stability itself can change between neighboring data sets, and so
stating that f is stable on D may violate differential privacy. The solution implicit in Dwork and
Lei (2009) (specifically, in their algorithms for estimating interquartile distance and the median) is
to instead look at the distance to the nearest unstable instance. This distance changes by at most one
between neighboring data sets, and so one can release a noisy version of the distance privately, and
release f(D) when that noisy estimate is sufficiently high. Developing this simple idea leads to the
algorithm A ;.

A First Attempt. For any function f, there is a differentially private algorithm A,;,; that outputs
f(D) whenever D is sufficiently stable. It follows the lines of more general approaches from pre-
vious work (Dwork and Lei, 2009; Karwa et al., 2011) that calibrate noise to differentially private
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estimates of local sensitivity. The algorithm is not efficient, in general, but it is very simple: On
input D and parameters €,6 > 0, Ay computes the distance d from D to the nearest unstable

log(1/9)

instance, and adds Lap(1/€) noise to get an estimate d of d. Finally, if d > , then it releases

f(D), otherwise it outputs a special symbol L.

Proposition 3 For every function f: (1) Agist is (€, 0)-differentially private. (2) For all 5 > 0: if f
is M-smble on D, then A(D) = f(D) with probability at least 1 — 3.

The lemma is proved in Appendix C.1. This result based on distance is the best possible, in the
following sense: if there are two data sets D; and D, for which A outputs different values f(D;)
and f(Dy), respectively, with at least constant probability, then the distance from D; to Dy must be
Q(log(1/d)/e€).

However, there are two problems with this straightforward approach. First, the algorithm is not
efficient, in general, since it may require searching all data sets within distance up to d from D (this
may not be implementable at all if U is infinite). Second, the model selection algorithm given to us
may not be stable on the instances of interest.

More Robust Functions, and Efficient Proxies for Distance. We remedy these problems by (a)
modifying the functions to obtain a more stable (possibly randomized) function f that equals f on
“nice” inputs with high probability, and (b) designing efficient, private estimators for the distance
to instability with respect to f . To that end, we define the proxy for distance to instability for any
function f .

Definition 4 Given f 1 U* = R, a function d:U* - R is a proxy for the distance to instability
of fif: (1) For all D: d(D) < (dist. of D to instability of f), and (2) the global sensitivity of d is at
most 1.

One can use such a proxy by adding Laplace noise Lap(3) to d and releasing f (D) whenever

the noisy version of d is sufficiently large (at least (log(1/6)/€). The resulting mechanism will be
(e, 0)-differentially private and it will release f(D) with high probability on instances for which f

2log(1/4)

(ideally, as efficient as evaluating f) and have a large set of “nice” inputs where f = f.

is at least -stable. Given a function f, the goal is to find proxies ( f , J) that are efficient

A~

2.2. From Sampling Stability to Stability

We obtain our algorithm for subsampling-stable functions by giving an efficient distance bound for
a bootstrapping-based model selector f (D) that outputs the most commonly occurring value of f
in a set of about 1/¢? random subsamples taken from the input D. The approach is inspired by the
“sample and aggregate” framework of Nissim et al. (2007). However, our analysis allows working
with much larger subsamples than those in previous work (Nissim et al., 2007; Smith, 2011; Kifer
et al., 2012). In our context, the analysis from previous work would lead to a polynomial blowup
in sample complexity (roughly, squaring the number of samples needed nonprivately), whereas our
result increases the sample complexity by a small factor. Apart from providing the sample and
aggregate based algorithm, Kifer et al. (2012) also provided a computationally inefficient model
selection algorithm based on the exponential mechanism of McSherry and Talwar (2007). The
exponential mechanism based algorithm works under weaker set of assumptions and the sample
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complexity suffers from a polynomial blowup. It is perceivable that the sample complexity bound
can be improved under stronger assumptions.

Our generic construction takes any function f and produces a pair functions ( 1 cf) that are
efficient—they take essentially the same time to evaluate as f—and are accurate for data sets on
which the original f is subsampling stable.

Definition 5 (Subsampling stability) Given a data set D € U*, let D be a random subset of Din
which each element appears independently with probability q. We say f is g-subsampling stable on
input D € U* if f(D) = f(D) with probability at least 3/4 over the choice of D.

The algorithm Ay, (Algorithm 1) uses bootstrapping to create a modified function f that
equals f(D) and is far from unstable on a given D whenever f is subsampling stable on D. The
output of f(D) is the mode (most frequently occurring value) in the list ' = (f(D1), ..., f(Dm))
where the D;’s are random subsamples of size about en/ log(1/8). The distance estimator d is, up
to a scaling factor, the difference between the frequency of the mode and the next most frequent
value in F'. Following the generic template in the previous section, the algorithm Ay, finally
adds Laplace noise to d and outputs f (D) if the noise distance estimate is sufficiently high.

We summarize the properties of Agqm,;, below. For the proof of this theorem, see Section C.2.

Theorem 6
1. Algorithm Asqmyp is (€, 0)-differentially private.

2. If f is q-subsampling stable on input D where q = m, then algorithm Agsqmy(D) outputs
f(D) with probability at least 1 — 3.

3. If f can be computed in time T'(n) on inputs of length n, then Agqmy runs in expected time
O(52)(T (qn) + n).

Note that the utility statement here is an input-by-input guarantee; f need not be subsampling
stable on all inputs. Importantly, there is no dependence on the size of the range 'R. In the context
of model selection, this means that one can efficiently satisfy differential privacy with a modest
blow-up in sample complexity (about log(1/4d)/€) whenever there is a particular model that gets
selected with reasonable probability.

Algorithm 1 A,,,,: Bootstrapping for Subsampling-Stable f
Require: dataset: D, function f : U* — R, privacy parameters €, > 0.

I 0 4 Fyiogqizey M REG),

2: repeat

3:  Subsample m data sets 151, e ﬁm from D, where ﬁi includes each position of D indepen-
dently w.p. g.

4: until each position of D appears in at most 2mgq sets D;

5: Compute F' = (f(D1),--- , f(Dp)). X

6: Foreach r € R, let count(r) = #{i : f(D;) =r}.

7. d (count(qy — count(y))/(4mq) — 1 where count y), count y) are the two highest counts.

8: d + d+ Lap(1).

9: if d > log(1/6) /e, then Output f(D) = mode(F), else Output L.




SMITH THAKURTA

Previous works in data privacy have used the idea of bootstrapping or subsampling to convert
from various forms of subsampling stability to some sort of stability (Nissim et al., 2007; Dwork and
Lei, 2009; Smith, 2011; Kifer et al., 2012). The main advantage of the version we present here is that
the size of the subsamples is quite large: our algorithm requires a blowup in sample complexity of
about log(1/9) /e, independent of the size of the output range R, as opposed to previous algorithms
that had blowups polynomial in n and some measure of “dimension” of the output.

3. Consistency and Stability of Sparse Regression using LASSO

The results in this section are about the consistency and stability of feature selection for sparse linear
regression using the LASSO estimator (eq. (2)). We consider two questions: (1) Assuming that 6*
is s-sparse, under what conditions can we obtain a consistent estimator é(D) (i.e., the support of
6(D) equals the support of * and ||@(D) — 6* |2 goes to zero as n goes to infinity), and (2) under
what conditions is the support of é(D) is perturbation-stable?

The general flavor of our results in this section is that we first prove the consistency and stability
properties in the fixed data setting and then show one particular stochastic setting which satisfies the
fixed data assumptions with high probability. The fixed data assumptions are given below.

This assumption is weaker than that of previous work; see Appendix B for a detailed discussion
of the assumption.

Assumption 1 (Typical system) Data set (X, xp, Ynx1) and parameter vector 8* € RP are
(s, ¥, 0, ®)-Typical if there exists a w € RP such that y = X0* + w and

(1) Column normalization: Y7, ||c;||2 < \/n, where c; is the j-th column of X.
(2) Bounded parameter vector: ||0*||o < s and all nonzero entries of 0* have absolute value in
(®,1— ®).

(3) Incoherence: Let T be the support of 0*. ||(Xre' Xr)(Xr? Xr) Lsign(6*)|| < i. Here
I’ = [p] — T is the complement of T'; Xt is the matrix formed by the columns of X whose
indices are in T'; and sign(0*) € {—1, 1}\F\ is the vector of signs of the nonzero entries in 6™,

(4) Restricted Strong Convexity: The minimum eigenvalue of X' Xr is at least ¥n.

(5) Bounded Noise: || X1.Vw|s < 20v/nlogp, where V = Ly, — Xp(Xr? Xp) ' X7T is
the projector on to the complement of the column space of Xr.

3.1. Consistency of LASSO Estimator

Under a (mildly) strengthened version of the fixed data conditions above (Assumption 1), Wain-
wright (2006) showed that one can correctly recover the exact support of the parameter vector 6*
and moreover the estimated parameter vector é(D) is close to 6 in the Lo metric. Theorem 7
restates the result of Wainwright (2006) in the context of this paper. We note that the result of
Wainwright (2006) holds even under this weaker assumption (Assumption 1).

Theorem 7 (Modified Theorem 1 of Wainwright (2006)) Ler A = 4o+/nlogp. If there exists
a 0* such that (X,y,0%) is (s, ¥, o, ®)-Typical with & = 167‘7\/510%, then ||0(D) — %2 <

80 slogp
N7 n

. Moreover, the support ofé(D) and 0* are same.
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Along with the fixed data setting, we consider the the stochastic setting where the rows of the
design matrix X are drawn from A/ (0, %]Ip) and the noise vector w is drawn from N'(0, o°I,,). We
show that in such a setting Assumption 1 (Typical system) holds with high-probability. The formal
theorem statement and its proof is provided in Section D.1.

3.2. Notation and Data Normalization

We assume that the underlying parameter vector 8* is from the convex set C = {0 : ||0||oc < 1}.
The set Cr is set of all vectors in C whose coordinates are zero outside a set I' C [p]. We assume that
each entry of the design matrix X has absolute value of at most one, and additionally we assume that
the response vector y has Loo-norm at most s, i.e., ||y||co < s. In case the data set D = (y, X ) does
not satisfy the above bound, we normalize the data set by scaling down each data entry individually,
so that they satisfy the above bound. In the rest of the paper we define the universe of data sets U*
to be sets of entries from this domain (unless mentioned otherwise).

3.3. Stability of LASSO Estimator in the Fixed Data Setting

In Section 3.1 we saw that under certain “niceness” conditions (Assumption 1 and suitable choice of
regularization parameter A) the LASSO estimator is consistent. In this section we ask the following
question: “Under what (further) assumptions on the data set D and the parameter vector 8*, the
support of the minimizer é(D) does not change even if a constant k number of entries from the
domain U are either added or removed from D?”

We show that under Assumption 1, the support of the minimizer é(D) in (2) does not change

even if k data entries are removed or added to D as long as n = w(max{slog p, %, ks3/2}). We

call this property k-stability (Definition 2). Moreover, the support of é(D) equals the support of
underlying parameter vector 8* (see (1)) and ||@(D) — 6*||5 goes down to zero as n — oc.

The main stability theorem for LASSO is given in Theorem 8. For the purpose of clarity, we
defer the complete proof of the stability theorem to Section D.2.1. The correctness follows directly
from Theorem 7.

Theorem 8 (Stability of unmodified LASSO) Fix k > 1. Suppose s < %‘;ﬁﬁp and A =

4o+/nlogp. If there exists a * such that (X,y,0%) is (s, V, o, ®)-Typical with
® = max {lgfr\/ Sk’%, 8’?52/2} (for the data set D = (y, X)), then O(D) has k-stable support.

Proof sketch. For any data set D’ differing in at most k entries from D, we construct a vector
v which has the same support as 6(D) and then argue that v = 6(D’), i.e., v is indeed the true
minimizer of the LASSO program on D’. The main novelty is the construction of the vector v.

Let I be the support of é(D) We obtain the vector v by minimizing the objective function
ﬁ(@; D') + Al|6]|1 restricted to the convex set C.. Using the consistency result from Theorem 7 and

a claim that shows that the Lo distance between é(D) and v is small, we conclude that the support
of v equals I". By showing that under the assumptions of the theorem, the objective function at v
has a zero sub-gradient, we conclude that v = (D’).

We should mention here that a similar line of argument was used in the proof of Theorem 7
by Wainwright (2006) to argue consistency of LASSO estimators. Here we use it to argue stability
of the support. In Section D.2.2 we show that one can obtain better stability properties if the loss

function in the LASSO program is huberized.
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| Function | Instantiation (Parameters: s, A, ¥) | Threshold (¢;) | Slack (A;) ||
q1(D) — ( (s + 1)* largest absolute value of n 57 £(6(D); D)) f% %
92(D) min. eigenvalue of XFTXf 2Un s
93(D) nx( min. absolute value of the non-zero entries in 6(D) ) 85‘; - %
94(D) | —nx(max. absolute value of the non-zero entries in (D) ) % —-n 452

Table 1: Instantiation of the four test functions

3.4. Efficient Test for k-stability

In Section 3.3 we saw that under Assumption 1 and under proper asymptotic setting of the size
of the data set (n) with respect to the parameters s, logp and k, both the unmodified LASSO in
(2) and the huberized LASSO in (9) have k-stable support for their minimizers é(D) and é(D)
respectively. An interesting question that arises is “can we efficiently test the stability of the support
of the minimizer, given a LASSO instance?” In this section we design efficiently testable proxy
conditions which allow us to test for k-stability of the support of a LASSO minimizer.

The main idea in designing the proxy conditions is to define a set of four test functions g1, - - - , g4
(with each g; : U* — R) that have the following properties: i) For a given data set D from U* and
given set of thresholds ¢y, - - - , t4, if each g;(D) > t;, then adding or removing any one entry in D
does not change the support of the minimizer (D). In other words, the minimizer 8(D) is 1-stable.
ii) Let Aq,--- , Ay be a set of slack values. If each g;(D) > t; + (k — 1)A;, then the support of
the minimizer é(D) is k-stable. In Table 1 we define the test functions (in the notation of LASSO
from (2)) and the corresponding thresholds (¢;) and the slacks (s;). There s refers to the sparsity
parameter and (s + 1)* largest absolute value of n 7 £(6(D); D) refers the (s 4 1)-st maximum
absolute value of the coordinates from the vector n 7 £(0(D); D) = —X 7 (y — X(D)).

Design intuition. The main intuitions that govern the design on the proxy conditions in Table 1
are as follows. 1) One needs to make sure that gradients of the loss function along the directions not
in the support of the minimizer are sufficiently smaller than A /n, so that changing k data entries
do not increase gradient beyond A/n, otherwise that particular coordinate will become non-zero.
ii) Along the directions in the support of the minimizer, one needs to make sure that the objective
function has sufficient strong convexity, so that changing % data entries do not move the minimizer
along that direction too far. iii) On data sets where the minimizer has stable support, the local
sensitivity (Nissim et al., 2007) of the proxy conditions at D should be small. By local sensitivity
we mean the amount by which the value of a proxy condition changes when one entry is added or
removed from the data set D.

Theorem 9 shows that the g;’s (with their corresponding thresholds ¢; and slacks A;) are ef-
ficiently testable proxy conditions for the k-stability of the support of the minimizer é(D) For
the purposes of brevity, we defer the proof of this theorem till Section D.2.3. Next in Theorem
10 we show that if the data set D = (y, X) satisfies a slight strengthening of Assumption 1 (see
Assumption 2), then for all ¢ € {1,---,4}, g;(D) > t; + (k — 1)A,;. This ensures that the proxy
conditions are almost as good as the fixed data conditions in Assumption 1. In Section 3.5 we
analyze a stochastic setting where Assumption 2 is satisfied with high probability.

Theorem 9 (k-stability (proxy version)) Let D be a data set from U*. If g;(D) > t; + (k — 1)A;
forallie{l,--- 4}, A > % and s < V%’ then O(D) has k-stable support.

10
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Assumption 2 (Strongly-typical system) Data set (Xyxp, Ynx1) and parameter vector * € RP
are (s,V, o, ®, k)-Strongly-Typical if there exists a w € RP such that y = X 0* + w and

(1) (y,X,0%) is (s,¥,0,®)-Typical.

(2) Restricted Strong Convexity: The minimum eigenvalue of Xv! Xr is at least Un, where
Un =2¥n+ (k—1)s.

(3) Bounded Noise: For any set T of size s, | X£.Vw||oo < 20y/nlogp—12(k—1)s?/V, where

V =Thxn— XF(XFTXF)*lXFT projects on to the complement of the column space of Xr.

Theorem 10 Let D = (y, X) be a data set from U*, A = 40+/nlog p and suppose s < 4/ %ﬂ’.
If there exists a 0* such that (y, X, 0%) is (s, ¥, o, @, k)-Strongly-Typical with ® = max {1\%‘7 \/ 5’10%,

12 L, then g; >t + (k = DA, forall i € {1, ,4}.

The proof of this theorem follows using an intuition very similar to that used in the proof of
Theorem 8. We defer the proof to Section D.2.3.

3.5. Stability of LASSO in Stochastic Setting

In this section we will see one specific stochastic setting for the data set, where the support of 0 is
k-stable with high-probability. This will in turn mean that the set of conditions in Theorems 8 and
10 are satisfied with high probability.

Assumption 3 (Normalized Gaussian Data) Given a parameter vector 8%, suppose each row of
a matrix X' is drawn i.id. from N(0,1L,) and the entries of a noise vector w' are i.i.d. from
N(0,02), and set y' = X'0* + w'. Now let the design matrix X be the matrix formed by first
dividing each entry of X' by \/log(ns) and then rounding each entry to the interval [-1,1], and let
y be the response vector formed by first dividing each entry of y' by \/log(ns) and then rounding
to [—s, s]. The data set is the pair D = (X, y).

Remark: We normalize the Gaussian design matrix X and the corresponding response vector
y in order to argue perturbation stability. The scaling by /log(ns) ensures that the columns in X
which are in the support of 8* do not get rounded (with high probability), simplifying our analysis.
It is unlikely that this renormalization is necessary.

The following proposition is proved in Appendix D.2.4.

Proposition 11 Fix k > 1. Let A = 40+/nlogp and n = w(slogplogn, 54?;1(?”, kslogn). For
any arbitrarily small positive constant @, if ||0*|lo < s, and the absolute value of any non-zero
entry of 0* is in (®,1 — ®), then with probability at least 3/4, the support of the minimizer (D)

(in (2)) is k-stable, where the data set D is distributed as in Assumption 3.

11
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4. Private Support Selection for Sparse Linear Regression

In this section we use our generic differentially private model selection algorithm (from Section 2)
for support selection in sparse linear regression. Note that in the context of linear regression (with
sparsity parameter s for the underlying parameter vector 8*) one can view the space of all possible
models R to be all the (7; ) sets of coordinates from the set [p]. Once a support of size s is chosen, one
can restrict the regression problem to the set of s-coordinates chosen and then use algorithms (e.g.,
objective perturbation) for private linear regression from Kifer et al. (2012) to obtain a parameter

vector @PV such that £(6P™; D) — £(6*; D) scales as O (M)

ne

4.1. Support Selection via Sampling Stability

We use use Algorithm 1 for support selection. In the current context, the non-private model selection
function f in Algorithm 1 returns the support of the minimizer of unmodified LASSO program in
(2). If the support has cardinality greater than s, then just pick the first s coordinates. By Theorem
6, the output is always (¢, ¢)-differentially private.

Consider each row of the design matrix X is drawn i.i.d. from N (0, i]lp) and the entries in the
noise vector w is drawn i.i.d. from A/(0,2L,). In this stochastic setting, we obtain the following
utility theorem. For the corresponding deterministic version of this theorem, see Section E.1.

Theorem 12 (Stochastic utility) Let A = o+/nklogp, n = w(kslogp) and 6 < 1/100. For any
arbitrarily small positive constant ®, if ||0*||o < s, and the absolute value of any non-zero entry of
0" isin (P, 1 — ®), then under the stochastic model in the preceding paragraph, with probability at
least 3/4, Algorithm 1 outputs the correct support of 0*. Here k = log(1/0)/e.

The sample complexity implied by the above theorem is slog plog(1/d)/e. Compared to the
optimal sample complexity of s log p, we have a blow up by a factor of log(1/d)e.

4.2. Support Selection via Stability of LASSO

In Section 3.4 we designed an efficient test for k-stability. In this section we transform it into a
differentially private algorithm for outputting the support.

Algorithm Description. In the language of Section 2 (and using the notation of Section 3.4) let

the function for the distance be CZ(D) = max {mini %)i_ti +1, 0}. Using Lemma 13 below, we

show that d is the proxy for the distance to instability of the minimizer 6 for the LASSO program
(in(2)). See Section D.2.5 for proof.

Lemma 13 If A > % and s < 4/ %ﬂ’, then the function disa proxy for the distance
to instability of the support of O(D) (in (2)), i.e., for all D € U*, d(D) is the lower bound on the
distance to instability of (D) and global sensitivity of d is at most one.

'Now, the algorithm for support selection directly follows from Section 2. Add Lap(1/¢) noise
to d(D) and then test if it is greater than log(1/d)/e. If the answer is “yes”, then output the exact
support of the minimizer 6(D).

12
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Analysis. By Proposition 3, the above algorithm is (e, §)-differentially private. Moreover, when-
ever d(D) is greater than 2log(1/6) /e, the algorithm outputs f (D) with probability 1 — §. We state
the utility guarantee of this Algorithm in the stochastic setting considered in Assumption 3. For the
corresponding deterministic version of this theorem, see Section E.2.

Theorem 14 (Stochastic utility) Let A = o+/nlogp, 1oZn = w(slogp, fj:;, ks) and 6 < 1/100.
For any arbitrarily small positive constant ®, if ||0*||o < s, and the absolute value of any non-zero
entry of 0" is in (®,1 — ®), then under the stochastic setting in Assumption 3, with probability at
least 3/4, the above algorithm run on the data set D = (y, X ) outputs the correct support of 6*.
Here k = log(1/0)/e.

With the two private feature selection algorithms (from Sections 4.1 and 4.2) in hand, the overall
sample complexity scales as O* (min(ks log p, max(slogp, ks*/logp, k?s®)). A simple calcula-
tion shows there are in fact three distinct regimes, based on how log p relates to £ and s:

O*(slogp) ifvVk2s® <logp
n' = { 0" (k?s*/logp) if VEs® <logp < VA% where k = 280/
O*(kslogp) if logp < Vks3

Getting a private algorithm whose complexity scales as the optimal s log p (without the extra factor
of k = M) over a larger parameter range remains an interesting open problem.
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Appendix A. Preliminaries

In this section we review some of the concepts commonly used in the differential privacy litera-
ture. Some of these concepts form the basic building blocks for the model selection algorithms we
describe in this paper.

Global sensitivity (Dwork et al., 2006b). For a given domain of data sets U™ and a function
f: U* — R, the global sensitivity of f (represented by GG.Sy) refers to the maximum change that
f(D) can have for any data set D € U* when one data entry is added or removed from D.

GSp = [f(D) = f(D)]

max
D,D'eU*,|DAD!|=1
Local sensitivity (Nissim et al., 2007). For a given data set D € U™, local sensitivity (represented
by LS¢(D)) refers to the maximum change that f(D) can have if any one data entry is added or
removed from D. It is trivial to show that global sensitivity always upper bounds the local sensitivity,
since it is a worst case bound.

LS¢(D) = D) - f(D
j(D) =, max (D)~ (D)
Laplace mechanism. Dwork et al. (2006b) gave a simple e-differentially private algorithm for
computing a function f : U* — R on a given data set D, based on the global sensitivity of f. The
algorithm is to output f(D)+ Lap (fo
distribution with scaling parameter A. Recall that the density function for a Laplace random variable

||

) , where Lap(\) refers to a sample drawn from the Laplace

with scaling parameter )\ is given by ie‘ X

Appendix B. Discussion on Typical and Strongly-typical Assumptions

In this section we discuss the semantics of the typical and strongly-typical assumption (Assump-
tions 1 and 2) we use in this paper. The first comment we want to make is that the strongly-typical
assumption differs from the typical assumption only up to additive terms depending on k (the sta-
bility parameter), s (the sparsity parameter) and constants. In terms of understanding the semantics
of the assumptions, in this section we will restrict ourselves to the typical assumption only.

The column normalization assumption is trivially satisfied when each entry of the design matrix
X is bounded. However, when the entries in X are bounded only in expectation (say, if the entries
are Gaussian), then the assumption is strictly weaker than assuming that each entry of X is bounded.

In the bounded parameter vector assumption we need a lower bound on the nonzero entries
of the true parameter vector 8* so that while recovering the true support, the algorithm should be
able to distinguish between zero coordinates and nonzero coordinates in 8*. An upper bound on
the nonzero entries of 6* is a technical condition which ensures that the minimizer of a particular
convex program lies away from the boundary of the convex set that constrains it. We conjecture that
this condition can be removed via a more careful analysis.

Our incoherence assumption is weaker than the the one existent in the literature (Wainwright,
20006). Previous work made a much stronger assumption, namely that the condition holds when the
sign of 6* is replaced by any vector with L., norm of one. We observe that it is sufficient to have the
condition hold for one vector, sign(6*), and this simplifies the application of the definition. Now a
random Gaussian matrix with appropriate parameters satisfies our definition with high probability,
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but we do not know if it satisfies the stronger assumption. Wainwright (2006) actually had a separate
argument for random Gaussian data (that is, the argument of Wainwright (2006) for Gaussian data
did not proceed by showing that the deterministic conditions were satisfied with high probability).

The bounded noise assumption ensures that the noise vector w is not strongly correlated with
any of the columns of the design matrix X (outside the columns of the support set I'), after projection
on to the directions orthogonal to the columns of X in I,

Appendix C. Stability and Privacy (Proofs)
C.1. Proof of Proposition 3

Proof [Proof of part (1)] Note that Algorithm .44;; can have only two possible outputs: L or f(D).
We show that for each of the outputs, the differential privacy condition holds. Firstly, since the
true distance d can change by at most one if one entry is removed (added) from (to) the data set D,
therefore, by the following theorem (Laplace mechanism) from Dwork et al. (2006b), the variable
d (in Algorithm Ayg;s;) satisfies (e, 0)-differential privacy.

Theorem 15 (Laplace Mechanism Dwork et al. (2006b)) Let f : U* — R be a function (with U*
being the domain of data sets). If for any pair of data sets D and D' with symmetric difference at
most one, | f(D) — f(D')| < 1, then the output A(D) = f(D) + Lap (1) is (e, 0)-differentially
private.

Since we have shown d is (€, 0)-differentially private, it follows that for any pair of data sets D
and D’ differing in one entry, differential privacy condition holds for the output L, i.e.,

Pr[-Adist(D) = J—] <ef Pr[‘Adist(D/) = J—]

Notice that by the tail property of Laplace distribution, it follows that if d> M, then with
probability at least 1 — § the actual distance d is greater than zero. Define the event F equal to be
true, if the noise Lap(1/¢) is greater than % log(1/0). Then, we have,

Pr[Agisi(D) = f(D)] < Pr[Aaia(D) = f(D) A E] + Pr[E]
/
Thus, we can conclude that Algorithm Ay is (e, §)-differentially private.

Proof [Proof of Part (2)] By the tail property of Laplace distribution, if the true distance d is at least
L(log(1/6) + log(1/pB)), then with probability at least 1 — 3, the noisy distance d is greater than
<log(1/). Hence with probability at least 1 — 3, f(D) is output. [ |
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C.2. Proof of Theorem 6 (Privacy and Utility Guarantee for Algorithm A,,,,)

The following observation provides the key to analyzing our approach. The stability of the mode is
a function of the difference between the frequency of the mode and the next most frequent element.
The lemma roughly says that if f is subsampling stable on D, then D is far from unstable w.r.t. f
(not necessarily w.r..t f), and moreover one can estimate the distance to instability of D efficiently
and privately.

Lemma 16 Fix ¢ € (0,1). Given f:U" =R let f : U* — R be defined as f(D) =
mode(f(D1), ..., f(Dm)) where each D; includes elements of D independently w.p. q and m =
log(1/8)/q*. Let d(D) = (count(yy — count(s))/(4mq) — 1. Fix a data set D. Let E be the event

that no position of D is included in more than 2mgq of the subsets D;.

(1) E occurs with probability at least 1 — 4.
(2) Conditioned on E, the function disa proxy for the distance to instability of f .

(3) If f is q-subsampling stable on D, then with probability at least 1 — & over the choice of
subsamples, we have f(D) = f(D), and d(D) > 1/16q.

The events in (2) and (3) occur simultaneously with probability at least 1 — 2.

Theorem 6 follows from the lemma by noting that for small enough ¢, the function d, which
acts as an efficient proxy for stability, will be large enough that even after adding Laplace noise one
can tell that f is stable on instance D, and release f.

Proof [Proof of Lemma 16] Proof of part (1) of the lemma follows by a direct application of
Chernoff-Hoeffding’s bound. To prove part (2), notice that conditioned on the event E adding
or removing one entry in the original data set changes any of the counts count,, by at most 2mgq.
Therefore, count(;) — count(yy changes by at most 4mgq. This in turn means that d(D) changes
by at most one for any D and hence have global sensitivity of one. This also implies that d lower
bounds the stability of f on D. To prove part (3), notice that when d(D) > 1/16¢, it implies that
count(;y — count( > m/4. Thus, if we bound the probability of the highest bin having count
less than 5/8m by 1 — ¢, then we are done. Recall that in expectation the highest bin has count at

least 3/4m. Now the remaining proof follows directly via the application of Chernoff-Hoeffding’s
bound. |

Appendix D. Consistency and Stability of Sparse Linear Regression via LASSO
(Proofs)

D.1. Consistency of LASSO Estimator

Theorem 17 (Stochastic Consistency) Ler A = 4ov/nlogp and n = w(slogp). If each row
of the design matrix X be drawn i.i.d. from N (0, %Hp) and the noise vector w be drawn from
N(0,02L,), then there exists a constant U such that with probability at least 3/4, the data set
D = (y,X) obtained via (1) and under permissible choices of 8* in Assumption 1, (y, X, 0%)

. . . 50/ slo
satisfies (s, ¥, o, ®)-Typical with ® = 152, /08P

n
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Proof [Proof of Theorem 17 (Stochastic Consistency)] In the following we show that each of the
Conditions 1, 3, 4, and 5 in Assumption | are satisfied with probability at least 15/16. By union
bound over the failure probabilities of these events, this will straightaway imply Theorem 17.

e Column normalization condition: Since we assumed n = Q(slogp), by tail bound over the
norm of random Gaussian vectors, with probability at least 15/16, the column normalization
condition is satisfied.

¢ Restricted strong convexity (RSC): By Proposition 1 from Raskutti et al. (2011), it directly
follows that there exists a constant ¥ such that with probability at least 15/16 the minimum
eigenvalue of Xff Xr 1s at least Un.

e Incoherence: Let us represent the vector (X7 1 X1 )sign(6*) to be u. Recall that by definition
||sign(60*)|loc < 1. Hence, by the RSC property above,
lulloe <

Let a; be the i-th column of the matrix X and b; be the i-th column of the matrix X Now

for any row j € [p — s,

ull2 < % which implies that

| (XTI‘CXFU)J' ’ = Z ui<(1,j7 b1,> = <aj’ Z ulb,> (3)
i€ls] i€ls]
Notice that } ;¢ () uib; = Xru. Therefore, || 3¢

||u||2. It is well known from random matrix theory that with probability at least 1 — ™", the
largest singular value of Xp is at most \/n. Therefore, it follows that || Dicfs Wibillz <

%\/g Since a; ~ N(0, %Hp)’ (aj, Zie[s} u;b;)
ation at most %\/% . Therefore by the tail property of sub-Gaussian random variables, with

u;b;||2 < |largest singular value of Xp|-

in (3) is sub-Gaussian with standard devi-

<3 Sk’%. Taking union bound over all the

probability at most %, ‘(aj, > icls) Uibi)
possible columns in Xye, as long as n = w(slogp), we obtain the required incoherence
condition with probability at least 15/16.

e Bound | X{.Vwl|lo < 20v/nlogp: From the column normalization condition, we know
that with probability at least 15/16 each column of Xpe has Lo-norm of at most y/n. Let a;
be the random variable for the i € [p— s]-th entry of the vector X{..Vw. Notice that (over the
randomness of w) a; is sub-Gaussian with standard deviation at most ov/n. Therefore, using
the tail property of sub-Gaussian random variables and taking an union bound over all the
columns of Xre, with probability at least 15/16, we get the required bound || X{.Vw|o <

20+/n log p.
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D.2. Stability of LASSO Estimator in the Fixed Data Setting (Proofs)
D.2.1. PROOF OF THEOREM 8 (STABILITY OF UNMODIFIED LASSO)

Proof of Theorem 8 follows directly from the following two lemmas and a claim (Lemmas 18
and 19 and Claim 20). The main idea is to show that under Assumption (s, ¥, o, ®)-Typical with

® = max {lg‘ﬂ / Slflgp , % }, changing k entries in D does not change the support of (D).

Lemma 18 Under the assumptions of Theorem 8 if T is the support of (D) and é(D)f = arg énicn ﬁ |ly—
e

X0|5 + %HG 1, then é(D)f equals (D).

For the ease of notation, we denote é(D)f by z.

Lemma 19 Let D' = (y', X') be a data set formed by inserting (removing) k entries in the data set
D from the domain U and let 2’ = arg 6I)nicn ﬁ“f‘/ - X'0|)% + ﬁ |0||1. Under assumptions of
cCp

Lemma 18, ' = 6(D'), where 6(D') = argmin 5[y — X'6][3 + bl

To prove the above lemma, we use a proof technique which was developed by Wainwright (2006)
under the name of primal-dual construction and was used to argue consistency in non-private sparse
linear regression.

Claim 20 Under assumptions of Lemma 19, 0(D) and 0(D') have the same support.

In the following we provide the proofs of the above two lemmas and the claim.

Proof [Proof of Lemma 18] In order to prove this lemma, we first prove that the minimizer é(D) is
unique. We use Theorem 7 (which is a modified version of Theorem 1 from Wainwright (2006)) to
prove the above claim.

Since from Theorem 7 we have ||§(D) — 6*||o < ®, it follows that (D) lies in the interior
of the set C. This in turn implies that the objective function 5|y — X 6|3 + 26|, has a sub-
gradient of zero at é(D) Additionally, notice that by assumption, the objective function restricted
to the support of @(D) is strongly convex, since the support of (D) and 6* are same. These two
observations along with the fact that the gradient of the objective function just outside é(D) is at
least A (on the subspace orthogonal to the support of é(D)) imply that the gradient of the objective
function just outside é(D) is strictly greater than zero. Hence, é(D) is the unique minimizer.

By the restricted strong convexity property of the objective function, 5-|ly — X6||3 + %HOH 1

has a unique minimizer é(D)f in Cp. Now, if é(D)f does not equal 6(D), then it contradicts that
6(D) = argnin 1y — X6J3 + 26 .

Proof [Proof of Lemma 19] For the ease of notation, we fix the following: i) ﬁ(G; D) = % Yo 4(0;d;),
where d; = (y;, ;), y; is the i-th entry of y and «; is the i-th row of X, ii) we denote é(D)f by z.
Also, since by Theorem 7, r equals the support of 8* (i.e., I'*), we fix I =T*

Let 2/ = arg emcin L£(6;D) + %MHOHI W.Lo.g. assume that D’ has k entries more than D
€Crx*

and call these entries 1, --- ,ag. (The analysis for the case when D’ has k entries less than D
follows analogously.) In the following claim we show that 2’ does not differ too much from z in the
Lo-metric.
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ks3/2

. 4
Claim 21 |z — 2/||]2 < 55—

Proof By restricted strong convexity of L at z in a ball (in the subspace formed by the support set

I'™) of radlus around it, we have the following.
Al 1 A Un ! 2
nE( D)+ Al > nL(z: D)+ Allally + 12— 213
X k ) k
:(<n+k>z<z'ﬂ>'>—Zaz’;ai))+Auz’ul > <<n+k>z:<zﬂ>’>—2£<z;ai>)
i=1 =1
Un
A2l + ) — 2B
Un b
= -2 < 3 Hzan) — ()
i=1

The last inequality follows from the fact that ﬁ(z’ ;D) < ﬁ(z; D’). Now, by mean value theorem
for any data entry d, |¢(z;d) — £(2;d)| < || 7 €(2";d)| 2]z — Z’||2, where 2" is some vector in
Cr+. (2":d)||2 < 2532

Hence, it follows that ||z — 2|2 < 4’“3/2

Now using Claim 22 below, we conclude that 2’ is indeed the unique minimizer in C which mini-
mizes L(0; D) + n%rk”@\h

Claim 22 If A = 40+/log p, then 2’ is the unique minimizer of arg Ieniél L£(6;D) + n%rk 110])1-
€

Proof By assumption, ||6*||- < 1 — max { Y. Slj’l&, % } Also from Theorem 7, we know

that [|0* — 6(D)]|oc < 89/ k’%. Using the bound obtained in Claim 21, we conclude that z’ lie in
the interior of the set C. Hence, along any direction ¢ € I'* there exist a sub-gradient of the objective
function at z’ whose slope is zero. In the following we analyze the sub-gradients of the objective
functions along directions i € [p] — I'*.

For any direction ¢ € [p] — I'* we have,

k
(n+k) v L(Z;D) =n7 L(2:D)i + n(VL(Z ;D) = VL D)) + Y V(25 )

=
) ) ) ) k

= |(n+ k) L(2';D")i| < |n7 L(z;D)i| + |[n(VL(Z'; D) — VL(2;D))i| + Z V(2 )i
A B J=1

/

c
“4)

We will bound each of the terms (A, B and C') on the right individually in order to show that A +
B+ C < A. This will imply that 2z’ is the minimizer of the objective function £(0; D’) + n%tk 0|1
when restricted to the convex set C. The uniqueness follows from the restricted strong convexity of
the objective function in the directions in I'*.
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Bound term A < % in (4): Notice that term A is equal to | X (y — X 2)|;. We have argued in
the proof of Lemma 18, that z lies in the interior of the convex set C. Now since z is the minimizer
of 5-|ly — X 6|13 + 2 6|1, therefore

(&)

1 XF*TXF* XF*TXF*C:| |:Z|1"* — 9|*F*:| + 1 |:XF*T:| w + A |:’UF*:| _ 0
n

n | Xpee" Xpe Xpee” Xp 0 n | Xt V|pxe

Here I'*“ = [p] — I'* and for any vector 6 € RP, 0|1~ is the vector formed by the coordinates of 6

which are in I'*. Additionally, the vector v is a sub-gradient of || - ||; at z. From (5) we have the
following.
(Xp+ " Xp+)(2pr+ — 0°1+) + Xp-"w + Avjpe = 0 (6)
& (zp — 0%p+) = —(Xp-" Xpo) 7 X Tw — A(Xp-" Xpe) o )

In the above expression v+ € {—1, 1M1 since for all i € T'*, we have |z;| > 0, where z; is
the i-th coordinate of z. Now note that vjr+c € [-1, 1]7~ ™"l Therefore, if we bound each of the

coordinates of v|p«c to be in [—%, %] we can conclude that for i € T*¢, | X7 (y — Xz);| < %

Combining (5) and (7), we have the following.

(XEee Xpe)(2rs — 0f) + XpeeTw + Avpse = 0
1
< Vr*c = K ((XF*CTXF*)(X[‘*TXF*)_IXI"*T’U) — XI,Z:*C’LU
— A(XF*CTXF*)(XF*TXF*)_lvr*)
= —(XI‘*CTXF*)(XF*TXF*)_l’Ul"*
Xpee

A
oo < (XpeeT X ) (Xp-" Xpe) " ors [|oo

(Lyxn — X+ (X T Xp) EXE ) w

= HUF*C

1 _
+ S IXree? (Tnsen = Xp= (X T Xpe) X7 ) |
= [|(Xpee” X ) (X1e T Xps ) " tops || oo+
1
+ XHXp*cTV'wHOO (8)
In the above expression V = (I,xn — X+ (Xp+? Xp«)"1X[L) is a projection matrix. Applying

the bounds from Bullets 3 and 5 from Assumption Typical (Assumption 1), we have ||vre|oo < %
From this it directly follows that for all i € I'*¢, | X T (y — X 2);| < %

Bound on term B < 4’&,’”2 in (4): The term B is upper bounded by || X7 X (2’ — 2)||s. Since
by assumption on the domain of data entries U every column of X has Lo-norm of at most /7, it
follows that every entry of the matrix X7 X is at most n. Also note that (z— z’) has only s-non-zero
entries. Therefore, | X7 X (2 — 2)||co < nv/5||z — 2’||2. From Claim 21 we already know that

3/2 . .
|z — 2|2 < %. With this we get the relevant bound on B.
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Bound on term C' < 2ks%?in (4): By the definition of £(2; ;) (Where o = (y, ) is as defined
in (4)), we have \//(2; a;j) = —x(y — (z, 2)). Using the assumed bounds on y and ||z ||2, we bound
| 7 €(2z; ;)| by 25%/2. Now, it directly follows that the term C' is bounded by 2ks%/2.

Now to complete the proof of Claim 22, we show that A + B + C' < A. From the bounds on
A, B and C' above, wehave A + B+ C < % + % + 2ks3/2. Recall, that A = 40v/nlogp. By
assumption on s, it now follows that A + B + C' < A. [ |

This concludes the proof of Lemma 19. |

To complete the proof of Theorem 8 (utility guarantee), all that is left is to prove Claim 20.
Proof [Proof of Claim 20] We need to show that the supports of 8(D) and 6(D’) are the same. From

Lemma 19 it directly follows that supp(6(D’)) C supp(6(D)). To prove equality, we provide the
following argument.

From Theorem 7 we know that [|0(D) — 6*||oc < 80 Slo%. Additionally, by assumption the

.. . 3/2
absolute value of the minimum non-zero entry of 8* is at least ® = max {1\%”\/ Sk;Lgp , 8’“\;”}

This means that the absolute value of the minimum non-zero entry of é(D) is at least %. Recall

that in Claim 21 we showed ||0(D) — 6(D')||c < 4’“52/2. From this we can conclude that every

coordinate where 6(D) is non-zero, (D) is also non-zero.

A~ ~

Hence, supp(6(D’)) = supp(6(D)). This concludes the proof. [ |

D.2.2. CONSISTENCY AND STABILITY OF HUBERIZED LASSO

In this section, we modify the LASSO program of (2) to have better stability properties when s =
Q(logn). The main idea is to huberize the loss function in order to control the gradient of the loss.
Before providing the exact details of the huberization, we provide a toy example below to make the
presentation clear.

Consider a simple quadratic function f(x) = %332 and a maximum gradient constraint of a € R.
One way to modify the function such that it satisfies the gradient constraint is by replacing f(x) with
the following.

aa:—a; ifr >«
flx) = ozx—a; ifr<-—a

%xQ otherwise

The two main properties of f are: i) it is continuously differentiable and ii) its gradient is always
bounded by a. We will perform a similar transformation to the loss function for linear regression to
control its gradient.

Recall that the loss function for linear regression is given by £(8; D) = = > (yi— (i, 0))2,
where y; is the i-th entry of the vector y and x; is the ¢-th row of the design matrix X. We denote
the function (y; — (x;, 8))? by £(; Yi, x;). Consider the following huberization of the loss function

¢. For any given y € R and « € RP, /(0;y, x) is defined as follows. (Here s denotes the number of
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non-zero entries in the underlying parameter vector 8* in the linear system defined in (1).)

5v/slogn(y — (x,0)) — 12.5slogn if (y — (x,0)) > 5y/slogn
@(G;y,m) = —by/slogn(y — (x,0)) — 12.5slogn if (y — (x,0)) < —5y/slogn

sy — <:13 0))? otherwise

_ A
D) = — E po
6(D) = argmin — > {(6;y;,x:) + 6] ©)

_ In this section we show the correctness (Theorem 23) and stability property (Theorem 25) of
0(D) under Assumption Typical (Assumption 1).

Theorem 23 (Correctness of huberized LASSO) Let A = 4o+/nlogp, let D = (y, X) be a data
set from U* and n = w(slogp). If there exists a * such that for each row x; in the design matrix X,

(@i, 0%)| < 2¢/slogn, (y,X,0%) is (s,¥,0,®)-Typical with & = 152, /= 18P then the support

of 0(D) matches the support of 0* and moreover ||0(D) — 6* o, < 8¢ slogp.

n

Proof [Proof of Theorem 23 (Correctness Theorem)] We first show that the support of 6 (D) in (9)
will be the same as the output of LASSO in (2), i.e., the support of 0( ) in (2) is same as the support
of O(D). Moreover, we show that the minimizer (D) equals (D).

Claim 24 6(D) equals (D).

Proof In order to prove this claim, we invoke Theorem 1 from Wainwright (2006) (see Theorem
7). Notice for all the rows x; of X, by assumption |(x;, 0*)| < 24/slogn. By triangle inequality
we have

[(@:,0(D))| < |(2:,07)| + |(x:,6(D) — 67|

[s21
slogn + il 2
n

The last inequality follows from the bound ||@(D) — 6* || (see Theorem 7). Since, we assumed
n = w(slogp), it follows that for all the rows ; (with i € [n]), |(z;, 6 ( ))| < 3y/slogn. There-
fore the following are true for all i € [n]: —a;(y; — (@i, 8(D))) = 7(0(D); yi, ;). This property
straight away implies that G(D) is the minimizer of the objective function in (9). To show that
6(D) = (D), now all we need to show is that @(D) is the unigue minimizer of the objective func-
tion in (9). ThlS is true because at 9( ) in a ball of radius » — 0, the function E(G; Yi, ;) equals
the function 3 (y; — (x;,6))? for all i € [n]. Hence, from the proof Lemma 18 since 6(D) is the
unique minimizer of (2), it follows that 8(D) = (D). [

To conclude the proof of Theorem 23, we invoke Theorem 1 from Wainwright (2006). For com-
pleteness purposes we provide it in Theorem 7. |

In the proof of Theorem 23 we show that under the assumptions of the theorem, the region where
the unconstrained minimizer of the huberized LASSO estimator lies, the huberized loss function and
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the unmodified loss functions are the same. In Theorem 25 we show that as long as the data set size

n = w(slogp, Sslfjé(;g”, ks\/log 1), the support of @(D) does not change even if a constant number
(k) of data entries from U are removed or added in D. The proof structure of Theorem 25 is same

as the proof structure of Theorem 8 for the unmodified LASSO.

Theorem 25 (Stability of huberized LASSO) Fix k > 1. Under assumptions of Theorem 23 and
n = w(slogp, k2 1Ogn), (y, X, 0%)is (s,¥, o, ®)-Typical with ® = max {1\%‘7\/ 781%“, 20ksylogn },

logp Un

then 0 (D) has a k-stable support.

Proof [Proof of Theorem 25 (Stability Theorem)] Since, in huberized LASSO we intend to get a
better dependence on the data set size n, we weaken the constraint on the maximum and minimum

allowable values of 6*. We assume that [|0*||.c < 1 — max {1\%"\/ “‘;gp, 20ksylogn ”log"} and the

Un

absolute value of every non-zero entry of 6* is at least max { 137, / Sl‘;g E % V;og” . Similar to

the stability proof for LASSO (Theorem 8), we prove the stability guarantee via Lemma 26 and 27,
and Claim 28.

Lemma 26 Under assumptions of Theorem 23, if [ is the support of é(l?) and
O(D); = arg (?élc? LS 000 (i, Xa)) + %||0| 1, then 6(D) equals (D).

For the ease of notation, we denote é(D)f by z.

Lemma 27 Let D' = (y', X') be a data set formed by inserting (removing) k entries in D (which
are from the domain U) and let z' = arg gn%:n ﬁ ZEJ 0e; (y, X)) + ﬁHBHL Under assump-
€Cp

. A 5 . D' 5
tions of Lemma 26, z' = 6(D’), where 8(D') = arg min \é’l lel‘ 00; (v, X)) + ﬁ”@”l.

To prove the above lemma, we use a proof technique which was developed by Wainwright
(2006) under the name of primal-dual construction and was used to argue consistency in non-private
sparse linear regression.

Claim 28 Under assumptions of Lemma 27, (D) and 0(D') have the same support.

In the following we provide the proofs of the above two lemmas and the claim. The proof of
Lemma 26 is exactly the same for Lemma 18 in Section D.2.1 and hence omitted here.
Proof [Proof of Lemma 27] For the ease of notation, we fix the following: i) £(8; D) = LS 0(6;d;),
where d; = (y;, ;), y; is the i-th entry of y and «; is the i-th row of X, ii) we denote é(D)f by z.
Also, since by Theorem 23, r equals the support of 8* (i.e., I'*), we fix [ =T*
Let 2/ = arg Orélcin L£(6;D) + —£-116]l.. W.lo.g. assume that D’ has k entries more than D
T+

and call these entries 1, --- ,ag. (The analysis for the case when D’ has k entries less than D
follows analogously.) In the following claim we show that 2’ does not differ too much from z in the
Lo-metric.

Claim29 ||z — 2/||s < %‘
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Proof By restricted strong convexity of L at z in a ball (in the subspace formed by the support set

I'*) of radius %I,—’f around it, we have the following.

nl(5D) + Al > nl(z:D)+ Azl + )2~ 23
k k
:»(<n+k>ﬁ<z';m—Zaz';ai))+A||z’ul > <<n+k>ﬁ<z;1>’>—2£<z;ai>)
=1 =1
Azl + 2 213
Un b
= 2218 < D Ieman) — U= 0)
=1

The last inequality follows from the fact that £(2';D’) < L(z;D’). Now, by mean value theorem
for any data entry d, |¢(z;d) — £(2;d)| < || 7 €(2";d)| 2]z — Z'||2, where 2" is some vector in
Cr+. Therefore, || 7 (2";d)||2 < 2s+v/logn.

Hence, it follows that ||z — 2'[|2 < % Vrlogn. [ |

Now using Claim 30 below, we conclude that z' is indeed the unique minimizer in C which mini-
mizes £(6; D) + ,%L,g”@\h

Claim 30 2’ is the unique minimizer of arg min £(8; D') + Lk 110]1.
oeC nh

Proof By assumption, ||0*]| < 1 — max {1&’7” Slj’lgp, % Vrlbog"} Also from Theorem 7, we

know that [|0* — (D)||oe < 82/ Sk’%. Using the bound obtained in Claim 29, we conclude that
2z’ lie in the interior of the set C. Hence, along any direction ¢ € I'* there exist a sub-gradient of the
objective function at 2’ whose slope is zero. In the following we analyze the sub-gradients of the
objective functions along directions i € [p] — T'*.

For any direction ¢ € [p] — I'* we have,

k
(n+k) v L(Z';D)i =nv L(zD)i + n(VL(Z;D)i — VL(Z D)) + Y VA3 05)i
=1
= [(n+k) v L(Z;D)i| < |n v L(z D)l + [n(VL(E;D)i — VL D))il + Y V(s )
j=1

A B

c
(10)

We will bound each of the terms (A, B and C') on the right individually in order to show that A +
B+ C < A. This will imply that 2’ is the minimizer of the objective function £(0; D’) + n%Lk 0|1
when restricted to the convex set C. The uniqueness follows from the restricted strong convexity of
the objective function in the directions in I'*.
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Bound term A < % in (10): Notice that term A is equal to | X7 (y — X z)|;. We have argued in
the proof of Lemma 18, that z lies in the interior of the convex set C. Now since z is the minimizer
of 5-|ly — X 6|13 + 2 6|1, therefore

- }:0 (11)
n

1 XF*TXF* XF*TXF*C:| |:Z|F* — 9|*F*:| + 1 |:XF*T:| w4 A |:’UF*
n

n | Xpee" Xpe Xpee” Xp 0 Xi.e V|pxe

Here I'*“ = [p] — I'* and for any vector 6 € RP, 0|1~ is the vector formed by the coordinates of 6

which are in I"*. Additionally, the vector v is a sub-gradient of || - ||; at z. From (11) we have the
following.
(Xp+ " Xp+) (2pp+ — 0°1+) + Xp="w + Avjpe = 0 (12)
=4 (er** — 0*“"*) = —(XF*TXF*)_lXF*T’LU — A(XF*TXF*)_l’Ulr* (13)

In the above expression v+ € {—1, 1M1 since for all i € T'*, we have |z;| > 0, where z; is

the i-th coordinate of z. Now note that vjr+c € [~1, 1]7~ ™1, Therefore, if we bound each of the

coordinates of v|p«c to be in [—2, 1], we can conclude that for i € I, | X7 (y — Xz);| < 5.
Combining Equations 11 and 13, we have the following.

(Xfee Xpe)(2re — 07) + XpeeTw + Avpee =

== 2

S ope = — ((Xpee Xpo) (XD X)X T — Xfcw

— A(XF*CTXF*)(XF*TXF*)_I’UF*)
— 7(XF*CTXF*)(XI‘*TXF*)_I'UI‘*
XI‘*CT

A
& Jopselloo < [[(Xpee” Xpo) (Xpe" X)) ope

(L — Xpe (X T Xp) TEXE ) w

1 _
X (T = X (X" Xpe) 7L XE ) w0
= [[(Xpee" Xpe) (Xp- T Xpe) " ops

oo T
1
X"V
In the above expression V' = (L,x, — Xp+(Xpr+? Xp«)"LXE.) is a projection matrix. Applying

the bounds from Bullets 3 and 5 from Assumption Typical (Assumption 1), we have ||vre|oo < %
From this it directly follows that for all i € I'*¢, | X (y — X 2);| < %

Bound on term B < W%@ in (10): The term B is upper bounded by || X7 X (2’ — 2)| co.
First notice that since by Assumption (s, ¥, o, ®)-Typical every column of X has Lo-norm of at
most y/n. Hence, it follows that every entry of the matrix X7 X is at most n. Also note that
(z — 2') has only s-non-zero entries. Therefore, || X7 X (2' — 2)||oo < n+v/5||z — 2’||2. From Claim

29 we already know that ||z — 2/||2 < % vriogn' With this we get the relevant bound on B.
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Bound on term C' < 10ks+/logn in (10): By the definition of ¢(z; «j) (where a; = (y, ) is as
defined in (10)), we have \//(z; ;) = —x(y — (x, z)). From the assumed bounds on y and ||x||2
in Section 3.2, we bound | v/ ¢(2; aj);| by 10s?/logn. Now, it directly follows that the term C'is
bounded by 10ks+/log n.

Now to complete the proof of Claim 30, we show that A + B + C' < A. From the bounds

on A, B and C above, we have A + B+ C' < % + % viegn 10ks+/logn. Recall, that

A = 40+/nlogp. By assumption on s, it now follows that A + B + C' < A. |
This concludes the proof of Lemma 27. |

To complete the proof of Theorem 25 (utility guarantee), all is left is to provide the proof for
Claim 28. . .
Proof [Proof of Claim 28] We need to show that the supports of 8(D) and 8(D') are the same. From

Lemma 19 it directly follows that supp(6(D’)) C supp(€(D)). To prove equality, we provide the
following argument.

From Theorem 7 we know that [|§(D) — %[ < 52 510%. Additionally, by assumption the

Un

This means that the absolute value of the minimum non-zero entry of (D) is at least % V;Og".

Recall that in Claim 29 we showed [|6(D) — 8(D')||o < % V:)g”. From this we can conclude
that every coordinate where 6(D) is non-zero, (D' is also non-zero.

Hence, supp(6(D’)) = supp(8(D)). This concludes the proof. [

absolute value of the minimum non-zero entry of 8* is at least ® = max {lg" /2 12Lgp , 20ksylogn }

D.2.3. PROOFS OF THEOREMS 9 (k-STABILITY (PROXY VERSION)) AND 10
(Strongly-Typical = k-STABILITY (PROXY VERSION))

Proof [Proof of Theorem 9] The proof of this theorem directly follows from Lemma 31 and Claims

32, 33, and 34 below. We prove these statements after stating them.

Lemma 31 If g;(D) > t; foralli € {1,--- ,4} and A > 165 then changing one entry in D does
v
not change the support of é(D)

In the following three lemmas we bound the local sensitivity (i.e., the amount by which the
value of g;(D) changes when an entry is added or removed from D) of the test functions g1, - - , g4
on a data set D when g;(D) > t; foralli € {1,---,4}.

Claim 32 Following the definition in Table 1, if g;(D) > t; foralli € {1,--- ,4} and A > 1%}82,
then for any neighboring dataset D’ (i.e., having one entry more (less) compared to D),

1252
|91(D) — g1(D)| < ; =A
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Claim 33 [f g;(D) > t; foralli € {1,--- ,4} and A > 1(\51;92, then for any neighboring dataset D’
(i.e., having one entry more (less) compared to D),

|92(D) — g2(D)] < 5 = Ag

Claim 34 [f g;(D) > t; foralli € {1,--- ,4} and A > 1(31;92, then for any neighboring dataset D’
(i.e., having one entry more (less) compared to D),

483/2

n[|(D) — (D") | < n[|6(D) — (D)2 < = A3 =4y

Proof [Proof of Lemma 31] We prove the lemma via the following three claims (Claims 35, 36 and
37).

Claim 35 If ¢;(D) > t; foralli € {1,---,4} and A > 1(\51;92, if ' is the support of (D) and
B(D)f = arg Hlln 20 Ly — X603 + AH0||1 (where Ci. C C is the convex subset of C restricted to
oeC

support in '), then 0( )¢ equals 6.

Claim 36 Let D' = (y', X')) be a data set formed by inserting (removing) one entry in D. Let
2 = argg%icli ﬁ”yl - X'0|5 + ﬁueul. Then, if g;(D) > t; forall i € {1,---,4} and

A~

2 A .
A > 1% then 2’ = 6(D'), where O(D') = arg min ﬁlly’ - X'0|3 + |£7/‘||9||1-

Claim 37 [f g;(D) > t; foralli € {1,--- ,4} and A > 1?;2, then O(D) and O(D') have the same
support.

The proof of these claims follow directly from the proofs of Lemmas 18, 19 and Claim 20

respectively.
|

Proof [Proof of Claim 32] W.l.o.g. we assume that the dataset D’ has one entry more than D (call
this entry d,,c,,). First note that if g;(D) > ¢; forall i € {1,- 4} then (s 4 1)-th coordinate of
(D) is zero. Additionally, note that by Lemma 31 the support of 8(D) and 8(D’) is the same. We
now need to bound the following.

(n+1)VLO(D); D) = nvL(O(D); D) +n(VL(O(D'); D)~ L(O(D); D)) +7£(0(D"); dew)
(14)
For any ¢ € [p] — I" (where I is the support of (D)), by triangle inequality the following is true.

(VL(6(D'); D), — 7L@O(D); D)) +

|(n+1) v £O(D): D), = nv LO(D): D), < [UO(D); )

B C

We can bound each of this terms (B and C') individually.
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Bound on term B < % in (15): The term B is upper bounded by | X7 X (8(D’) — 6(D))||so.
First notice that by definition every column of X has Lo-norm of at most y/n. Thus it follows that
every entry of the matrix X7 X is at most n. Also note that (§(D’) — (D)) has only s-non-zero
entries. Therefore, || X7 X (8(D') —0(D)) s < n+/5||0(D") —O(D)||2. From Claim 21 we already

know that ||(D’) — (D)2 < %. With this we get the relevant bound.

~

Bound on term C' < 2532 in (15): By the definition of £(8(D); ;) (where o; = (y, x) is as
defined in (4)), we have \7£(0(D); o) = —x(y — (x,6(D))). From the assumed bounds on y and
|| 2||2, we bound | 7 £(8(D); ;)| by 253/2. Now, it directly follows that the term C'is bounded by
253/2. |

Proof [Proof of Claim 33] From Lemma 31 we know that the minimizers 8(D) and 8(D') share the
same support. Additionally, since if g;(D) > t; forall i € {1,--- ,4}, we know that the the size of
the support of é(D) is less than or equal to s.

Now to prove Lemma 33, all we need to show is that restricted to any support ® of size s,
the minimum eigenvalue of the Hessian of /j(é(D)7 D) does not change by more than s when the
dataset D is changed to a neighboring one D’. Since, we are only concerned with linear regression,
the Hessian of the loss function ﬁ(-; D) evaluated at any point is X7 X, where X is the design
matrix. W.Lo.g. if we assume that D’ has one entry more than D (and call that entry dy,c, = (y, ),
where y € R and € RP, then the Hessian of ﬁ(-; D') at any point is given by X7 X + xx”.

Representing the minimum eigenvalue of a matrix A as A(A) and Ag as the matrix formed by
columns from the set &, we have the following.

|92(D) = 92(D')| = [NX:" Xp) = MXp " Xp + wpap”))|
< max. eigenvalue(a:f:ch) <s

The first inequality follows from Weyl’s inequalities. This completes the proof. |

Proof [Proof of Claim 34] From Lemma 31 we know that the unique minimizers 8(D) and 6(D’)
share the same support.

Now, from Claim 21, it follows that [|@(D) — 8(D)|2 < 4‘&;’:. This in turn implies that

6(D) — 6(D o < 452 qince Loo-norm is less than or equal to Lo-norm. |
Un

|

Proof [Proof of Theorem 10] From Assumption (s, ¥, o, ®, k)-Strongly-Typical, it directly fol-
lows that go(D) > to + (k — 1)Ay. To argue about g3(D) and g4(D), notice that by The-

. A . —1))s3/
orem 7 it follows that the absolute value of any non-zero entry of 6(D) is in (W ,

1-— W) Hence, g3(D) > t3 + (k — 1)Ag and g4(D) > t3 + (k — 1)A4. To complete

the proof, all we need to argue is about g; (D). Using similar proof technique of Claim 22 (more pre-

cisely (8)) and the bounded noise condition from Assumption (s, ¥, o, ®, k)-Strongly-Typical (i.e.,
| XEVw| s < 20vnlogp — 6(k — 1)s?/V) it follows that g1 (D) > t1 + (k — 1)A. [
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D.2.4. STABILITY ANALYSIS OF UNMODIFIED LASSO IN STOCHASTIC SETTING

In order to make sure that Theorem 8 is applicable in the stochastic setting, we need to ensure
two things: i) the data set D = (9, X ) that gets used in Theorem 8 is from the domain U*, and
ii) (Q,X, 0*) satisfy (s, ¥, o, ®, k)-Strongly-Typical. This in particular implies that (g, X, 0")
satisfy (s, ¥, o, @)-Typical .

Given the data set D = (y, X)) drawn from the distribution mentioned above, we first divide
each entry in the design matrix X and y by y/log(ns), where s is the sparsity parameter of the
parameter vector 8*. If the absolute value of any entry in X after dividing by \/log(ns) exceeds 1,
then just round it to —1 or 1 (whichever is closer). Call this design matrix X. Similarly, if the abso-
lute value of any entry in y exceeds s, then round it to —s or s whichever is closer. By union bound
and the tail property of Gaussian distribution it follows that once each entry of the design matrix
X is divided by +/log(ns), with high probability (i.e., with probability at least 1 — e~*) none of
the columns which are in the support of 8* gets truncated. Conditioned on this event, with proba-
bility at least 15/16, the design matrix X satisfies column normalization condition and restricted
strong convexity condition in Assumption 2 with parameter ¥’ (as long as n = w(kslogn)), where
U = ¥/ /log(ns) and V¥ is the restricted strong convexity parameter corresponding to random
Gaussian design matrix. Also by similar arguments as in the proof of Theorem 17, it follows that as
long asn = w(slogplogn, k%s*/log p), with probability at least 7/8, the incoherence and bounded
noise conditions are satisfied. Thus, we have the following stochastic analogue of Theorem 8. We
do not need to argue about the truncation of the entries in vy, since the truncation can be viewed as
reducing the noise w.

D.2.5. THEOREM AND PROOF OF LEMMA 13 [DISTANCE PROXY GUARANTEE FOR d]

Proof In Theorem 9 we saw that if for all 4, g;(D) > t; + (k — 1) A;, then the data set D is k-stable.
This straight away implies that if J(D) > k, then the data set D is k-stable w.r.t. the support of the
minimizer.

To complete the proof, we need to show that the global sensitivity of D is at most one. When
cZ(D) is greater than or equal to zero, changing one entry in D changes cZ(D) by at most one, since
one can show that in such a case each g; changes by at most A;. (See Claims 32, 33, and 34 in
Section D.2.3.) Now since d cannot be negative, global sensitivity of d is at most one. |

Appendix E. Private Support Selection for Sparse Linear Regression (Proofs)
E.1. Support Selection via Sampling Stability

In order to argue that Algorithm 1 outputs the correct support, we make the following assumption
(Assumption 4) about the data set D and the parameter vector 8*. Under this assumption, we obtain
the following utility guarantee for the support selection algorithm as a corollary to Theorem 6.

Assumption 4 [(s, U, o, ®)-Sub-sampled typical ] Let D be a random subset of D = (y, X) in
which each element appears independently with probability ¢ = m. The data set D and
parameter vector 0* € RP satisfy (s, VU, o, ®)-Typical with probability at least 3 /4.
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It is important to note that the above assumption is satisfied by the stochastic setting in Section 3.5
with high probability.

Theorem 38 (Utility) Let A = 8c+/nqlogp where ¢ = m. If there exists a 0* such that the
data set D = (y, X ) and 0* satisfy Assumption 4 (Assumption (s, ¥, o, ®)-Sub-sampled typical )

with & > 52, / si’gp, then w.p. at least 1 — 36, Algorithm I outputs the correct support of 0*.

E.2. Support Selection via Stability of LASSO
Theorem 39 Let D = (y,X) be a data set from U*, let A = 4o+/nlogp and suppose s <

onl/2log!/? p
2k(1/V+1)

¢ = max {1\%’\/ 510%, %}, where k = 21og(1/0) /€, then the above algorithm outputs the

If there exists a 0* such that (y, X, 0%) is (s, V¥, 0, ®, k)-Strongly-Typical with

correct support of 0* with probability at least 1 — 9.

The proof of this above theorem follows by combining Lemma D.2.5, Proposition 3 and Theo-
rem 2.
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