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Abstract

We consider a fundamental problem in unsupervised learning called subspace recovery :
given a collection of m points in Rn, if many but not necessarily all of these points are
contained in a d-dimensional subspace T can we find it? The points contained in T are
called inliers and the remaining points are outliers. This problem has received considerable
attention in computer science and in statistics. Yet efficient algorithms from computer
science are not robust to adversarial outliers, and the estimators from robust statistics are
hard to compute in high dimensions. This is a serious and persistent issue not just in this
application, but for many other problems in unsupervised learning.

Are there algorithms for subspace recovery that are both robust to outliers and efficient?
We give an algorithm that finds T when it contains more than a d

n fraction of the points.
Hence, for say d = n/2 this estimator is both easy to compute and well-behaved when
there are a constant fraction of outliers. We prove that it is small set expansion hard to
find T when the fraction of errors is any larger, thus giving evidence that our estimator is
an optimal compromise between efficiency and robustness. In fact, this basic problem has
a surprising number of connections to other areas including small set expansion, matroid
theory and functional analysis that we make use of here.

Keywords: robust statistics, unique games conjecture, principal component analysis, sub-
space recovery

1. Introduction

Unsupervised learning refers to the problem of trying to find hidden structure in unlabeled
data. A ubiquitous approach is to model this hidden structure as a low-dimensional subspace
that contains many of the data points. This approach has found a range of applications in
areas such as feature selection, dimensionality reduction, spectral clustering, topic modeling
and statistical inference. There are two important desiderata for an unsupervised learning
algorithm, computational efficiency and robustness: computational efficiency refers to the
goal of giving provable guarantees on the running time of the algorithm and robustness refers
to the goal of giving guarantees that the algorithm produces a useful output even if the
assumptions of the model do not hold exactly. Our focus in this paper is on understanding
whether or not these two goals can be met simultaneously.

Individually, these goals can each be met. For example, there are many known fast
algorithms to compute the singular value decomposition, and from this decomposition it is
straightforward to find a low-dimensional subspace that contains all of the data if it exists.
There are also a number of provably robust estimators for subspace recovery. One famous
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example is least median of squares estimator of Rousseeuw (1984). The computational
problem that underlies this estimator is to find a subspace that minimizes the median
Euclidean distance to the data points. An adversary must corrupt at least half of the data
points in order to corrupt the output. Many more robust estimators have been developed for
this specific problem (e.g. least trimmed squares, M -estimators, the Theil-Sen estimator,
reweighed least squares) and for other inference problems by the robust statistics community
(see e.g. Rousseeuw and Leroy (1987) and Huber (1981)).

Unfortunately, the singular value decomposition is not robust to outliers. Moreover,
only modest improvements over brute-force search are known to actually compute the least
median of squares estimator in high dimensions (Edelsbrunner and Souvaine (1990)). Is
there an estimator for subspace recovery that is both efficiently computable and robust to
outliers? This is an instance of a fundamental and largely unexplored question:

“Can we reconcile computational efficiency and robustness in unsupervised learning?”

Our focus here is on a challenging notion of robustness used in the robust statistics com-
munity: an estimator is robust if an adversary can corrupt an α fraction of the data, and
the output of the estimator is still well-behaved. The fraction of data that an adversary is
allowed to corrupt is called the breakdown point (Donoho and Huber (1983)). We remark
that there has been interesting recent work on finding a subspace that approximately min-
imizes the sum of `p distances (for p > 2) to the data points, see, Deshpande et al. (2011),
Guruswami et al. (2012). Unfortunately `p-regression can be corrupted quite easily by an
adversary.

In general, the robust statistics community studies the breakdown properties of particular
estimators. Here, our goal is not to study a particular estimator, but rather whether or
not there is any robust estimator for subspace recovery that is also easy to compute. The
following definition is central to our paper:

Definition 1 An estimator E is an α-robust estimator for the d-dimensional subspace re-
covery problem in Rn if for any set of points in which a 1 − α fraction are contained in a
d-dimensional linear subspace T ⊆ Rn, the estimator returns T .

Here the breakdown point is α. So the natural question is, for what choices of the parame-
ters n, d and α is there such an estimator that is also easy to compute? There are compelling
reasons to choose robust estimators over their classical counterparts, but so far their po-
tential has not been realized because there are no computationally efficient algorithms to
compute them.

1.1. Complexity of Robust Subspace Recovery

We assume that the points outside T are in general position, and that the points inside T
are in general position with respect to T.1 Recall that the dimension of T is d. Throughout

1. If we remove these conditions then when dim(T ) = n−1 the problem is equivalent to trying to satisfy as
many equations as possible in an overdetermined linear system. See Guruswami and Raghavendra (2009),
Khot and Moshkovitz (2011) and references therein. However, these reductions produce instances which
are quite far from ones we might expect to observe in real data, and one approach for circumventing
these hardness results is to instead require the above condition which is satisfied almost surely in most
natural probabilistic models and seems to make the problem computationally much easier.
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this paper, we will use L to denote the points inside T and we will call these the inliers,
and the remaining points outliers. Our first result is a simple randomized algorithm that
achieves a breakdown point of α = 1 − d

n . Our result relies on Condition 7: any set of n
points is linearly independent if and only if at most d of the points are inliers.

Theorem 2 If a set of m points in Rn has strictly more than d
nm inliers and meets Con-

dition 7, then there is a Las Vegas algorithm whose output is the set L of inliers, each
iteration can be implemented in polynomial time and the expected number of iterations is
O(n2m).

In fact, an interesting comparison can be drawn between our algorithm and the famous
RANSAC method of Fischler and Bolles (1981): Both approaches repeatedly select a ran-
dom set of n points; RANSAC works when this sample contains only inliers, whereas our
algorithm works when the sample contains at least d + 1 inliers. The main observation is
that even if a set of n points contains many outliers, only the inliers can participate in a lin-
ear dependence. In fact, for d = n/2 and even if inliers make up 3/4 of the points, RANSAC
will take an exponential number of iterations to find T while our algorithm requires only a
constant number of iterations (see Remark 9).

Our algorithm can also be made stable in that the inliers do not need to be exactly
contained within T . Here we need Condition 11: the smallest determinant of any set of
points with at most d inliers is strictly larger than the largest determinant of any set of
points with at least d+ 1 inliers.

Theorem 3 If a set of m points in Rn has strictly more than d
nm inliers and meets Con-

dition 11, then there is a Las Vegas algorithm whose output is the set L of inliers, each
iteration can be implemented in polynomial time and the expected number of iterations is
O(n2m).

Our estimator achieves a constant breakdown point for, say, d = n/2. Yet there are
numerous inefficient estimators that achieve a better breakdown point (e.g. a constant
breakdown point even when d = n − 1). We provide evidence that our estimator is the
optimal compromise between efficiency and robustness: it is small set expansion hard to
improve the breakdown point beyond this threshold. We state our result informally here:

Theorem 4 There is an efficient reduction from an instance of (ε, δ)-Gap-Small-Set
Expansion on a graph G to Gap Inlier such that:

• if there is a small non-expanding cut in G then there exists a subspace of dimension
d containing at least (1− ε) dn fraction of the points

• and if there is no small non-expanding cut then every subspace of dimension d contains
at most a 2ε dn fraction of the points.

Khachiyan (1995) proved a related result that it is NP-hard to find a d = n−1 dimensional
subspace that contains a (1−ε)n−1n fraction of the data points2. In general, it seems difficult

2. This follows by applying a padding argument to the knapsack instance before proceeding with the
reduction in Khachiyan (1995).

3



Hardt Moitra

to base hardness for robust subspace recovery (when d < n − 1) on standard assumptions
and this is an interesting open question.

Taking a step back, computational complexity is an important lens for understanding
learning and statistical problems in the sense that there are many sample-efficient estima-
tors, e.g., maximum likelihood, that are hard to compute, but by allowing more samples
than the information theoretic minimum we can find alternatives that are easy to compute.
Yet these hard estimators are still favored in practice, perhaps not just due to their sam-
ple efficiency but also due to their robustness. A broader goal of our paper is to bring to
light questions about whether there are estimators that meet all three objectives of being
efficiently computable, sample efficient and robust (and not just two out of three).

1.2. Derandomization and Duality for Robust Subspace Recovery

The crucial step in our randomized algorithm is to repeatedly sample subsets of n points
and once we find one that is linearly dependent, we can use this subset to recover the set
of inliers. If a collection of m points in Rn has the property that a random subset of n
points is linearly dependent (with non-negligible probability), can we find such a subset
deterministically? We give a solution to this problem using tools from matroid theory.

Indeed, a well-studied polytope in matroid literature is the basis polytope which is the
convex hull of all sets of n points that form a basis (see Section 4). Condition 7 guarantees
us that the vector n

m1 is outside the basis polytope, and our goal of finding a set of n
points that do not span Rn can be stated equivalently as finding a Boolean vector (whose
coordinates sum to n) that is also outside the basis polytope.

There has been a vast literature on the basis polytope and on submodular minimization,
and there are deterministic strongly polynomial time algorithms for deciding membership
in the basis polytope – see Edmonds (1970), Cunningham (1984), Grótschel et al. (1981),
Schrijver (2000), Iwata et al. (2001). Our idea is in each step we find a line segment ` that
contains the current vector (starting with n

m1). Since the current vector is outside the basis
polytope it is easy to see that at least one of the endpoints of ` must also be outside. So
we can move the current vector to this endpoint and if we choose these segments ` in an
appropriate way we will quickly find a Boolean solution. The key is that a membership
oracle for the basis polytope tells us which endpoint of ` we should move to. Hence we
obtain an algorithm that is not only an optimal tradeoff between efficiency and robustness,
but is even deterministic:

Theorem 5 If a set of m points in Rn has strictly more than d
nm inliers and meets Con-

dition 7, then there is a deterministic polynomial time algorithm whose output is the set L
of inliers.

The basis polytope not only plays a central role in robust subspace recovery but is also
closely related to a notion studied in functional analysis that we call radial isotropic position.
In fact, Barthe (1998) studied a convex programming problem whose optimal solution finds
a linear transformation that places a set of points in radial isotropic position (see Section B)
if it exists. The connection is that the optimal value to this convex program is finite (i.e.
there is such a transformation) if and only if the vector n

m1 is inside the basis polytope.
Barthe’s convex program provides a connection between radial isotropic position and

robust subspace recovery: just as placing a set of points in isotropic position is a proof
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that the set of points is not contained in a low-dimensional subspace, so is placing a set
of points in radial isotropic position a proof that there is no d-dimensional subspace that
contains more than a d

n fraction of the points (see Section 4). We give effective bounds
on the region in which an optimal solution to the convex program is contained, and how
strictly convex the function is and use this to give an efficient algorithm to compute radial
isotropic position.

Theorem 6 (informal) There is a deterministic polynomial time algorithm to compute a
linear transformation R that places a set of points in radial isotropic position, if such a
transformation exists.

Notably, this theorem shows that if there is no low-dimensional subspace that contains
many of the points, we can deterministically compute a certificate that there is no such
subspace.

Radial isotropic position can also be thought of as a more stable analogue of isotropic
position that is not sensitive to either the norms of the data points or to a constant fraction
of adversarial outliers! Isotropic position has important applications both in algorithms and
in exploratory data analysis, but is quite sensitive to even a small number of outliers (see
e.g. Vempala. (2010)). Just as robust statistics asks for estimators that are well-behaved
in the presence of outliers, we could ask for canonical forms (e.g. isotropic position, radial
isotropic position) that are well-behaved in the presence of outliers. Perhaps radial isotropic
position will be a preferable alternative in some existing applications where being robust is
crucial.

Somewhat surprisingly, this elementary problem of finding a low-dimensional subspace
that contains many of the data points is connected to a number of problems and combina-
torial objects including the small set expansion hypothesis, the independent set polytope
and submodular minimization and notions in functional analysis, and we make use of all of
these connections.

1.3. Related Work

Our work fits into a broader agenda within statistics and machine learning: Can we recover
a low-rank matrix from noisy or incomplete observations? The foundational work of Recht
et al. (2010) and Candes and Recht (2009) gave convex programming algorithms that prov-
able recover a low-rank matrix when given a small number of random chosen entries in the
matrix. These techniques have since been adapted to settings in which an adversary can
corrupt some of the entries in the matrix V. Chandrasekaran and Willsky (2011), Candes
et al. (2011), Xu et al. (2010). However we note that there are two incomparable models
for how an adversary is allowed to corrupt the entries in a low-rank matrix, and which
model is more natural depends on the setting. For example, the exciting work of Candes
et al. (2011) considers a model in which an adversary can corrupt a constant fraction of
the entries of A whose locations are chosen uniformly at random. In contrast, the model in
Xu et al. (2010), Zhang and Lerman (2011) for example allows an adversary to corrupt a
large fraction of the columns of A. This is the setting in our work, and this assumption is
most natural when we think of columns of A as representing individuals from a population
and uncorrupted columns correspond to individuals that fit the model, but we would like

5



Hardt Moitra

to make as few assumptions as possible about the remaining individuals that do not fit
the model. The breakdown point of robust subspace recovery was also studied recently by
Xu et al. (2013) where successful subspace recovery is guaranteed in a suitable stochastic
model.

We note that much of the recent work from statistics and machine learning has focused on
a setting where one posits a distributional model that generates both the inliers and outliers
and the goal is to recover the subspace T with high probability. For example, see the recent
work of Soltanolkotabi and Candes (2012) and Lerman et al. (2012) and references therein.
In principle, our work is not directly comparable to these models since our results are not
contingent on any one distributional model. Yet in some of these probabilistic models (e.g.
in Lerman et al. (2012)) the probability that a point is chosen from the subspace T is larger
than d

n in which case Condition 7 is satisfied with high probability and hence our algorithm
succeeds in these cases too.

The above discussion has focused on notions of robustness that allow an adversary to
corrupt a constant fraction of the entries in the matrix A. However, this is only one possible
definition of what it means for an estimator to be robust to noise. For example, principal
component analysis can be seen as finding a d-dimensional subspace that minimizes the sum
of squared distances to the data points. A number of works have proposed modifications
to this objective function (along with approximation algorithms) in the hopes that this
objective function is more robust. As an example, Deshpande et al. (2011) gave a O(pp/2)
approximation algorithm for the problem of finding a subspace that minimizes the sum of `p
distances to the data points (for p > 2). Another example is the recent work of Naor et al.
(2013) which gives a constant factor approximation for finding a d-dimensional subspace
that maximizes the sum of Euclidean lengths of the projections of the data points (instead
of the sum of squared lengths). Lastly, we mention that Dunagan and Vempala (2000) gave
a geometric definition of an outlier (that does not depend on a hidden subspace T ) and give
an optimal algorithm for removing outliers according to this definition.

Acknowledgments

Thanks to Gilad Lerman for many helpful discussions and to Joel Tropp for pointers to the
literature.

2. A Simple Randomized Algorithm

Here we give a randomized algorithm for robust subspace recovery. The idea is that once
we find any non-trivially sparse linear dependence we can use it to find the set of inliers
provided that the inliers are in general position with respect to T . The breakdown point
of this estimator is exactly the threshold at which a random set of n points is linearly
dependent with non-negligible probability. Surprisingly, in Section 3 we give evidence based
on the small set expansion conjecture that there is no efficient estimator that has a better
breakdown point.

We will think of an instance of robust subspace recovery as a matrix A ∈ Rn×m with
m > n and rank n. Throughout this paper for V ⊂ [m], we will let AV denote the submatrix
corresponding to columns in V . Suppose that there is a d-dimensional subspace T that
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Algorithm 1. RandomizedFind, Input: A ∈ Rn×m which satisfies Condition 7

1. start : Choose V ⊂ [m] with |V | = n uniformly at random

2. If rank(AV ) < n,

3. Find u ∈ ker(AV ); Set L = span({Ai : ui 6= 0}); Set L = {i : Ai ∈ L}
4. Output L

5. Else return to start

contains strictly more than a d
n fraction of the columns of A. Our goal is to recover this

subspace (under mild general position conditions on these points) efficiently. Let L ⊂ [m] be
the columns of A that are inliers. We will need the following condition which is almost surely
satisfied by any reasonable probabilistic model that generates inliers from the subspace T
and outliers from all of Rn:

Condition 7 A set of n columns of A is linearly independent if and only if at most d of
the columns are inliers.

The next lemma gives a lower bound on the probability of sampling strictly more than
expected number of inliers:

Lemma 8 Suppose that we are given a set of m points in Rn with strictly more than
d
nm inliers. Let V be a uniformly random set of n points (without repetition). Then the
probability that U contains at least d+ 1 inliers is at least p > 1

2n2m
.

Proof Let X be a random variable defined to be the number of inliers in a random set V
of n points. Then E[X] > d and set X̂ = X − E[X]. Then let p be the probability that
X̂ > 0, and this condition certainly implies that we have at least d + 1 inliers. Since the
expectation of X̂ is zero, we have that

pE[X̂|X̂ > 0] + (1− p)E[X̂|X̂ < 0] = 0

Then we can upper bound E[X̂|X̂ > 0] 6 n− d and −pE[X̂|X̂ < 0] 6 pn. Hence,

p(n− d) + pn > −E[X̂|X̂ < 0] >
b dnmc+ 1

m
− d

n
>

1

nm

and this completes the proof of the lemma.

Remark 9 We remark that the lower bound on p can be improved to p > (d/n)2/2 when
m > 6n+ 2 and n > 3. Hence our algorithm is quite practical in this range of parameters.

Indeed, with the same notation as above, condition X on the event E that the first two
samples are contained in L (the set of inliers). Clearly, P {E} > (d/n)2. On the other hand,
we still sample n−2 points with replacement. Each sample now has a probability of landing
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Algorithm 2. RandomizedFind2, Input: A ∈ Rn×m which satisfies Condition 11

1. start : Choose V ⊂ [m] with |V | = n uniformly at random

2. If det(AT
VAV ) < C2

3. While |V | > d+ 1

4. Find {u} such that det(AT
V−{u}AV−{u}) < C2; Set V = V − {u}

5. Set L = V ∪ {v | det(AT
V ∆{u,v}AV ∆{u,v}) < C2} where u ∈ V

6. Else return to start.

in L that is at least q > dm/n−2
m−2 = d

n −
n+d

n(m−2) > d
n −

1
3n . Here, we used that m > 6n + 2.

Hence, E[X | E] > (n − 2)( dn −
1
3n) > d − 1 , where we used that 2/n + 1/3 6 1. On the

other hand, we have P {X > bE[X | E]c | E} > 1
2 by the “mean is median” theorem for

hypergeometric distributions (see, e.g., Kabanets and Impagliazzo (2010)). It follows that
P {X > d+ 1} > P {X > d− 1 | E}P {E} > 1

2(d/n)2 .
The next claim captures the intuition that from any non-trivially sparse linear dependence

in A it is easy to compute the set of inliers.

Claim 10 If |V | = n, then any vector in the kernel of AV must contain d+ 1 inliers in its
support and no outliers.

Proof Suppose there is a vector u ∈ ker(AV ) with ui 6= 0 for i /∈ L. Since any d+ 1 inliers
are linearly dependent, we can use Caratheodory’s Theorem (see Matousek (2002)) to find
a vector v ∈ ker(AV ) supported on at most d inliers and for which vi 6= 0. This contradicts
Condition 7 since the support of any non-zero vector in the kernel must contain at least
d+ 1 inliers.

Proof [Theorem 2] Claim 10 guarantees the correctness of the algorithm, and Lemma 8
guarantees that the success probability of each iteration is at least p > 1

2n2m
and this implies

the lemma.

We are interested in generalizing our algorithm to the setting where inliers are only
approximately contained in the subspace. This idea is formalized next.

Condition 11 Any set V of at most n columns of A has det(ATVAV ) > C2 if the number
of inliers is at most d, and otherwise strictly less than C2.

We can now prove Theorem 3, a stable analogue of Theorem 2.
Proof Lemma 8 guarantees that the probability that the algorithm finds a set V with
|V | = n and det(AV ) < C in is at least p > 1

2n2m
, and furthermore the algorithm maintains

the invariant that the set V always has at least d + 1 inliers, and at the end of the while
loop V is a set of d+ 1 inliers. Then Condition 11 guarantees that the algorithm correctly
outputs the set of inliers.
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3. Computational Limits

We will now present evidence that the robust subspace recovery problem is computationally
hard beyond the breakdown point achieved by our randomized algorithm in Section 2. For
this purpose we need to introduce the expansion profile of a graph. Given a ∆-regular graph
G = (V,E) we define the edge expansion of a set S ⊆ V, as

φG(S) =
|EG(S, V \S)|

∆|S|
.

Here and in the following, we let EG(A,B) denote the set of edges in G with one endpoint
in A and the other in B. Let us also denote µ(S) = |S|/|V |. Given a parameter δ ∈ [0, 1/2],
we define the expansion profile of G as the curve

φG(δ) = min
µ(S)=δ

φ(S) .

With these definitions we describe the Small Set Expansion problem as was recently studied
by Raghavendra and Steurer (2010); Raghavendra et al. (2010):

Definition 12 The Gap-Small-Set Expansion problem is defined as: Given a graph G,
and constants ε, δ > 0, distinguish the two cases (1) φG(δ) > 1− ε, and, (2) φG(δ) 6 ε.

We will relate the previous problem to the Gap-Inlier problem that we define next.

Definition 13 The Gap-Inlier problem is defined as: Given m points u1, . . . , um ∈ Rn,
and constants ε, δ, distinguish the two cases

1. there exists a subspace of dimension δn containing a (1− ε)δ fraction of the points,

2. every subspace of dimension δn contains at most a εδ fraction of the points.

Our next theorem shows a reduction from Gap-Small-Set Expansion to Gap Inlier.

Theorem 14 Let ε, δ > 0. There is an efficient reduction which given a ∆-regular graph
G = (V,E), produces an instance u1, . . . , um ∈ Rn of Gap-Inlier such that

Completeness: If φG(δ) 6 ε, then there exists a subspace of dimension δn containing at
least (1− ε)δ fraction of the points.

Soundness: If φG(δ′) > 1 − ε for every δ′ ∈ [2δ/∆, 2δ], then every subspace of dimension
δn contains at most a 2εδ fraction of the points.

We defer the proof of this theorem to Appendix A.
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4. The Basis Polytope

Here we connect the independent set polytope which has received considerable attention in
matroid literature, to a notion studied in functional analysis that we call radial isotropic
position. In Section 5 we will use known algorithms for deciding membership in the inde-
pendent set polytope to derandomize our algorithm from Section 2. And in Section C we
will give an efficient algorithm to compute radial isotropic position, which can be thought
of as a robust analogue to isotropic position. Let A = [u1, . . . , um] ∈ Rn×m with m > n.

Definition 15 Let P be the independent set polytope defined as:

P
def
= conv

{
1U : U ⊆ [m],dim

(
span {ui : i ∈ U}

)
= |U |

}
,

where 1U is the m-dimensional indicator vector of the set U. Also let KA be the basis
polytope which is the facet of P corresponding to

∑
i xi = n.

These polytopes can be defined (in a more general context) using the language of matroid
theory where independent sets of vectors are replaced by independent sets in a matroid.
A fundamental algorithmic problem in matroid theory is to give an efficient membership
oracle for these polytopes. A number of solutions are known which all follow from a charac-
terization of Edmonds Edmonds (1970) that reduces membership to solving a submodular
minimization problem: minU⊂[m] rank({ui : i ∈ U})−

∑
i∈U xi . The optimum value of this

minimization is nonnegative if and only if x ∈ P (Edmonds (1970)). Hence an immediate
consequence of the known algorithms for submodular minimization Grótschel et al. (1981),
Schrijver (2000), Iwata et al. (2001) and even a direct algorithm of Cunningham (1984)
yield:

Theorem 16 There is a deterministic polynomial time algorithm to solve the membership
problem for the independent set polytope P (and the basis polytope KA).

We will use this tool from matroid theory to derandomize our algorithm from Section 2.
Recall that the main step in our algorithm is to repeatedly sample subsets of n points and
once we find one that is linearly dependent, we can use this subset to recover the set of
inliers. So our approach is to use a membership oracle for the basis polytope to find a subset
of n points that is linearly dependent deterministically.

The basis polytope not only plays a central role in robust subspace recovery but also in
a notion studied in functional analysis called radial isotropic position. These two concepts
can be thought of as dual to each other: Recall that the set of vectors u1, . . . , um ∈ Rn is
in isotropic position if ∑m

j=1 uj ⊗ uj = Idn .

It is well-known that a set of points can be placed in isotropic position if and only if the
points are not all contained in an n−1-dimensional subspace. Just as isotropic position can
be thought of as a certificate that a set of points is full-dimensional, so too radial isotropic
position can be thought of as a certificate that there is no low-dimensional subspace that
contains many of the points.
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Definition 17 We say that a linear transformation R : Rn → Rn puts set of vectors
u1, . . . , um ∈ Rn in radial isotropic position with respect to a coefficient vector c ∈ Rm
if
∑m

i=1 ci
Rui
‖Rui‖ ⊗

Rui
‖Rui‖ = Idn.

If a set of vectors meets Condition 7 then it cannot be put in radial isotropic position:
any linear transformation A preserves the invariant that the inliers lie in a subspace of
dimension d, but after applying A and rescaling the points to be unit vectors the variance
of a random sample restricted to this subspace is strictly larger than d, which is too large!
More generally, when can a set of vectors be put in radial isotropic position? Barthe (1998)
gave a complete answer to this question:

Theorem 18 (Barthe) A set of vectors u1, . . . , um ∈ Rn can be put in radial isotropic
position with respect to c ∈ Rm if and only if c ∈ KA. Moreover, c ∈ KA if and only if the
following supremum has finite value: supt∈Rm〈c, t〉 − log det

(∑m
i=1 e

tiui ⊗ ui
)
.

This concave maximization problem provides a connection between radial isotropic po-
sition and robust subspace recovery. The optimal value reveals to us which case we are
in: if it is finite, then the points can be put in radial isotropic position but if it is infinite
(under Condition 7) then there is a subspace T of dimension d that contains more than a
d
n fraction of the points!

5. A Deterministic Algorithm

In this section we apply tools from matroid theory (see Edmonds (1970), Cunningham
(1984)) to derandomize our algorithm from Section 2. Recall that the main step in our
algorithm from Section 2 is to repeatedly sample subsets of n points and once we find one
that is linearly dependent, we can use this subset to recover the set of inliers. Our goal is to
find such a subset deterministically, and we can think about this problem instead in terms
of the basis polytope.

Condition 7 guarantees that the vector n
m1 is outside the basis polytope. We remark that

a set of n columns is linearly dependent if and only if the indicator vector is outside the
basis polytope. So we can think about this derandomization problem instead as a rounding
problem: we are given a vector n

m1 that is outside the basis polytope and we would like to
round it to a Boolean vector (that sums to n) that is also outside the basis polytope.

Our approach is simple to describe, and builds on known polynomial time membership
oracles for the basis polytope developed within combinatorial optimization (see, Edmonds
(1970), Cunningham (1984), Grótschel et al. (1981), Schrijver (2000), Iwata et al. (2001)).
In each step we find a line segment ` that contains the current vector (starting with n

m1).
Since the current vector is outside the basis polytope it is easy to see that at least one of
the endpoints of ` must also be outside. So we can move the current vector to this endpoint
and if we choose these segments ` in an appropriate way we will quickly find a Boolean
solution.

Indeed, Edmonds gave a general characterization of the independent set polytope:

Theorem 19 (Edmonds (1970)) The independent set polytope P can equivalently be de-

scribed as P
def
=
{
x ∈ Rm : for all U ⊂ [m], dim

(
span {ui : i ∈ U}

)
>
∑

i∈U xi

}
.

11
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Algorithm 3. DerandomizedFind, Input: A ∈ Rn×m which satisfies Condition 7

1. Set U = [m]

2. While |U | > n

3. For each i ∈ U
4. Check if n

|U\{i}|1 ∈ KAU\{i}

5. If ‘NO’, Set U = U\{i} (exit for loop)

6. Find u ∈ ker(AU ), Set T = span({Ai : ui 6= 0}), Return L = {i : Ai ∈ T}

Hence we can intersect this alternative description of P with the constraint
∑

i xi = n
to obtain an alternative description of the basis polytope that will be more convenient for
our purposes. Indeed, if Condition 7 is met then any subset U of points has rank equal to
min(n,min(|U ∩ L|, d) + |U/L|) and so:

Corollary 20 If a set of m > n points meets Condition 7, then

P =
{
x ∈ Rm : 0 6 xi 6 1,

∑m
i=1 xi 6 n and

∑
i∈L xi 6 d

}
KA =

{
x ∈ Rm : 0 6 xi 6 1,

∑m
i=1 xi = n and

∑
i∈L xi 6 d

}
Lemma 21 After exiting the while loop, |U ∩ L| > d+ 1

Proof An immediate consequence of Corollary 20 is that for each call to the membership
oracle for KV for some set V , the answer is ‘NO’ if and only if the fraction of inliers in V
is more than d

n . Since at the start of the while loop we are guaranteed that the fraction

of inliers in U is more than d
n , this is an invariant of the algorithm. All that remains is to

check that for any set U with |U | > n and more than a d
n fraction of inliers, there some

element i that we can remove from U to maintain this condition (i.e. the algorithm does
not get stuck). This is easy to check since if U contains even just one outlier, we can choose
i to be that element and this will only increase the fraction of inliers and if instead there
are no outliers left then we can choose any inlier to remove. Hence the algorithm does not
get stuck, outputs a set U with |U | = n which has strictly more than a d

n fraction of inliers
and so |U ∩ L| > d+ 1.

Theorem 22 Given a set of m points u1, . . . , um ∈ Rn with m > n that meets Condition 7
and which T contains more than a d

n fraction of the points, then DerandomizedFind
computes T . The running time of this algorithm is bounded by a fixed polynomial in n, m.

Proof Since |U ∪ L| > d+ 1, we have that rank(AU ) < n. Then using Claim 10, Deran-
domizedFind computes the span T of the inliers, and outputs exactly the set of inliers.
Note that there are a number of known strongly polynomial time algorithms for deciding
membership in KA (see Section 4).

12
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Appendix A. Hardness for Finding a Subspace with Outliers

Here we analyzing our reduction from small set expansion to the problem of finding a
subspace with outliers.
Proof Our reduction works as follows. Let G = (V,E) be an instance of Gap-Small-
Set Expansion. Let m = |E| and n = |V |. For each edge e = (i, j), create a vector ue =
αeei+βeej , where ei is the i-th standard basis vector and αe, βe are drawn independently and
uniformly at random from [0, 1]. This defines an instance u1, . . . , um ∈ Rn of Gap-Inliers.

To analyze our reduction, it will be helpful to consider the following intermediate graph.
Let B = (E, V ) be the bipartite graph where we connect each edge e ∈ E with the two
vertices in V that it is incident to. Note that B is (2,∆)-regular. The next claim relates
the dimension of a set of points to the size of the neighborhood of the corresponding edge
set in the graph B.

Claim 23 For every set of points P ⊆ {u1, . . . , um} corresponding to a set of edges F ⊆ E
we have with probability 1 over the choice of the coefficients above

dim (span(P )) = |EB(F, V )| .

Proof On the one hand, the points P are contained in the coordinate subspace of di-
mension d = |EB(F, V )| corresponding to the union of the support of the vectors. On the
other hand, we claim that that they also span this coordinate subspace. Fix any set of d
points touching all d coordinates. It is not difficult to show that these points are linearly
independent with probability 1 over the randomness in the coefficients.3

Completeness. We begin with the completeness claim. Let S ⊆ V be a set of measure δ
and suppose that φG(S) 6 ε. Double-counting the edges spanned by S, we get

∆|S| = 2|EG(S, S)|+ |EG(S, V \S)| .

Hence, |E(S, S)| > ∆|S|/2 − ε∆|S|/2 = (1 − ε)∆|S|/2. On the other hand the edge set
EG(S, S) has at most |S| neighbors in B. This implies that the points corresponding to
E(S, S) are contained in a coordinate subspace of dimension |S|. Equivalently, there exists
a (δn)-dimensional subspace containing at least (1−ε)δ∆n/2 points. Since m = ∆n/2, this
corresponds to a fraction of (1− ε)δ which is what we wanted to show.

3. Note that without perturbation an even cycle, for example, causes a linear dependence.
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Soundness. Next we establish soundness. Consider any set of points P contained in δn
dimensions. We will show that under the given assumption on the expansion profile of G,
it follows that |P | 6 ε∆δn. Again, since m = ∆n/2, this directly implies that any subspace
of dimension δn contains at most a 2εδ fraction of the points. Let F be the set of edges
corresponding to P in the graph B and let S be its vertex neighborhood in B. By Claim 23,
it is sufficient to show that |F | 6 ε∆δn. First, note that the neighbor set S ⊆ V of F in the
graph B satisfies

δn

2∆
6 |S| 6 2δn . (1)

The second inequality follows from the fact that each edge e has exactly two neighbors and
we have equality if the edges form a matching. The first inequality follows because G is
∆-regular. Thus, a set of |S| vertices can induce at most ∆|S|/2 edges and all edges in F
are induced by S.

Counting the edges touching S as before,

∆|S| = 2|EG(S, S)|+ |EG(S, V \S)| > 2|EG(S, S)|+ ∆(1− ε)|S| .

The inequality followed from our assumption on the expansion profile of G which we may
apply because S satisfies Equation 1. Consequently:

|EG(S, S)| 6 ε∆|S|
2

.

On the other hand, |F | 6 |EG(S, S)|, since every edge in F is induced by S. Hence, the
previous inequality showed that ε∆δn/2 > |F |.

Appendix B. Barthe’s Convex Program

Recall that the basis polytope KA characterizes exactly when we can put a set of points
in radial isotropic position (Barthe (1998)). There are several known algorithms from the
matroid literature that provide a strongly polynomial time algorithm for deciding mem-
bership in KA. However, the focus of this section and the next is not just deciding if the
optimization problem of Barthe has finite or infinite value, but finding an optimal solution
in case that the optimum is finite. From the solution to this optimization problem, we will
be able to derive the linear transformation that places a set of points in radial isotropic
position. Here we will explain in detail the connection found by Barthe (1998) and Carlen
et al. (2004); Carlen and Cordero-Erausquin (2009) between convex programming and ra-
dial isotropic position. In the next section we will prove various effective bounds on this
convex programming problem that we need in order to show that the Ellipsoid method finds
an optimal solution.

Recall that Barthe considers maximizing a concave function (or equivalently minimizing
a convex function):

sup
t1,...,tm∈R

〈c, t〉 − log det

(
m∑
i=1

etiui ⊗ ui

)

16



Subspaces with Outliers

for a given set of points u1, . . . , um ∈ Rn and a coefficient vector c ∈ Rm. How is this
unconstrained maximization problem related to the linear transformation that puts the
points u1, . . . , um into radial isotropic position? For now we specialize our discussion to
the case in which c = n

m1, where 1 is the all ones vector. Let t1, . . . , tm ∈ R. Consider the
matrix U =

∑m
j=1 e

tjuj⊗uj . We know that this matrix is positive definite and has full rank.

Therefore it has a symmetric positive definite square root and we can define R = U−1/2.
Notice that

Idn = U−1/2UU−1/2 =
m∑
j=1

etjRuj ⊗Ruj

Hence, we have what we need if we can choose tj such that etj = n
m‖Ruj‖

−2 . The crucial in-
sight is that these conditions are exactly the optimality conditions in Barthe’s maximization
problem.

Lemma 24 (Barthe (1998)) Let A = [u1, . . . , um] denote a matrix with column vectors
u1, . . . , um ∈ Rn. Suppose φ∗A(c) < ∞. Then, any optimal solution t1, . . . , tm to φ∗A(c)
satisfies cj = 〈etjuj , (AeTA∗)−1uj〉 for every 1 6 j 6 m.

For completeness, we present Barthe’s proof and to simplify notation we will continue
specializing our discussion to c = n

m1. Consider maximizing the function f over Rm defined
as:

f(t) =
n

m

m∑
j=1

tj − log detU

It is not hard to show that f is concave (a short proof is given in Lemma ??). What is
crucial is that if t maximizes f(t), then it must satisfy that the gradient of f at t vanishes.
We can apply a well-known formula for the derivative of log det (see e.g. Lax (2007)) and:

0 =
∂f(t)

∂tj
=

n

m
− Tr

(
U−1

∂U

∂tj

)
.

Also in our case:
∂AeTA∗

∂tj
=

m∑
j=1

∂etjuj ⊗ uj
∂tj

= etjuj ⊗ uj .

And so we conclude that the optimality condition is for all j ∈ [m]:

0 =
n

m
− Tr

(
U−1etjuj ⊗ uj

)
=

n

m
− etj 〈uj , U−1uj〉 .

where the last step uses the identity Tr(ABC) = Tr(BCA). Recall that 〈uj , U−1uj〉 =
‖Ruj‖2 and so any optimal t ∈ Rm satisfies etj = n

m‖Ruj‖
−2 which is precisely the condition

we needed. And by the concavity of f, the supremum of f(t) is attained if it is finite.

Appendix C. Computing Radial Isotropic Position Efficiently

Here we prove two important properties of the convex programming problem considered
by Barthe, that we will need in order to prove that the Ellipsoid method can solve it. We
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prove that if the optimum is finite, there is a solution in a bounded region that is optimal.
Also we establish a lower bound on how strictly convex the objective function is, since we
will need this to show that any candidate solution that is close enough to achieving the
optimum value must also be close to the optimum solution.

C.1. Effective Bounds

Here we prove bounds on the region in which an optimal solution can be found. Our proof
follows the same basic outline as in Brascamp and Lieb (1976); Barthe (1998); Carlen et al.
(2004) but is self-contained. We define φA : Rm → R as

φA(t1, . . . , tm) = log det

 m∑
j=1

etjuj ⊗ uj


Given c ∈ Rm, consider the optimization problem φ∗A(c) = supt∈Rm〈t, c〉 − φA(t1, . . . , tm).
The function φ∗A is the Legendre transform of φA. For convenience, we will write log det(

∑m
j=1 e

tjuj⊗
uj) = log det(AeTA∗) where T denotes the diagonal matrix with entries t1, . . . , tm and A∗

is the transpose of A and eT denotes the matrix exponential of T (i.e. a diagonal matrix in
which the ith entry on the diagonal is eti). We also introduce the notation:

Definition 25 Let dI = det(AIA
∗
I), tI = e

∑
j∈I tj and D = minI : dI 6=0 dI , where AI is the

sub matrix whose columns are indexed by I.

When we use the subscript I without further specification, we will always mean a subset
of [m] of size n. We will make repeated use of the Cauchy-Binet formula in this section:

Fact 26 Let A,B∗ ∈ Rm×n. Then det(AB) =
∑

I : |I|=n det(AI) det(B∗I ).

This generalizes the well-known identity that the determinant of the product of two
matrices is the product of the determinants. We can apply this formula:

Claim 27 det
(∑m

j=1 e
tjuj ⊗ uj

)
= det(AeTA∗) =

∑
I⊆[m],|I|=n tIdI

We can now show that the mapping φA is convex, and hence φ∗A(c) is concave (which we
asserted in Section B):

Lemma 28 The function φA is convex on Rm.

Proof Let s, t ∈ Rm. Then, applying the Chauchy-Schwarz inequality,

φ

(
s+ t

2

)
= log det(Ae(S+T )/2A∗) = log

(∑√
sIdI

√
tIdI

)
6 log

(√∑
sIdI

√∑
tIdI

)
= log

√
det(AeSA∗) + log

√
det(AeTA∗) =

φ(s) + φ(t)

2

where the second equality uses Claim 27.
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Our main step is to show that if c is contained in KA with “sufficient slack”, then the
optimum is finite and we get a bound on the norm of an optimizer. To state the condition
we need, we will use a slightly unconventional definition for how to dilate KA. This simplifies
our arguments (in part because it preserves the “trivial” constraints that the coordinates
sum to n and are each in the interval [0, 1]):

Definition 29 Let CKA denote the vectors c whose coordinates sum to n and are each in
the interval [0, 1] and for all nonnegative directions u with umin = 0, C maxv∈KA

〈u, v〉 >
〈u, c〉.

Lemma 30 Let α > 0 and suppose c ∈ (1− α)KA. Then

1. φ∗A(c) < log 1
D ,

2. t∗ with f(t∗) = φ∗A(c) satisfies ‖t∗‖∞ 6 2
α log 1

D

Proof From the assumption that c ∈ KA, it follows directly that
∑m

i=1 ci = n and that
ci ∈ [0, 1]. Throughout this proof, let f(t) = 〈c, t〉 − φA(t). Let t ∈ Rm. We need to upper
bound f(t). Note that we may assume that minj tj = 0 by adding a constant a ∈ R to all
coordinates without changing the value of f(t). For notational convenience, assume that
the coordinates of t are sorted in decreasing order t1 > t2 > . . . > tm = 0. This is without
loss of generality since we can always apply a permutation to the columns of A and the
coordinates of t without changing the function value.

Claim 31 f(t) 6 log
(
1
D

)
− αmaxmj=1 tj

Proof Let I∗ ⊆ [m] be the set of the n pivotal vectors in [u1, . . . , um], i.e., the indices of
the vectors that are not in the span of the vectors to the left of them.

By the monotonicity of the logarithm and Claim 27:

φA(t1, . . . , tm) = log
(∑

tIdI

)
> log(tI∗dI∗) =

∑
j∈I∗

tj + log(dI∗) >
∑
j∈I∗

tj + log
(

min dI
)
.

Furthermore, we claim that

∑
j∈I∗

tj −
m∑
j=1

cjtj > αmax
j
tj . (2)

Together these two inequalities directly imply that the statement of the claim. It therefore
only remains to prove (2). First note that I∗ maximizes 〈1I , t〉 =

∑
j∈I tj among all I such

that dI 6= 0. On the other hand, we know that c ∈ (1−α)KA. Hence 〈c, t〉 6 (1−α)〈1I∗ , t〉
and this implies ∑

j∈I∗
tj −

m∑
j=1

cjtj > α
∑
j∈I∗

tj > αt1

which establishes (2).

The previous claim shows that as any tj tends to infinity, f(t) tends to zero. Hence φ∗A(c) <
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∞ and, by the convexity of φA, the supremum is attained meaning that we can find t∗

such that f(t∗) = φ∗A(c). But f(t∗) = φ∗A(c) > f(0) = log det(AA∗) = log
(∑

I dI

)
>

log(minI dI) where we used Claim 27 in the second inequality. Combining this inequality
with Claim 31, we conclude

max
j
t∗j 6

2

α
log
( 1

minI dI

)
.

C.2. Strict Convexity

Here we prove that if a candidate solution t is close to achieving the optimal value then it
is also close to the optimal solution t∗. This is not a vacuous property since if a convex
function f is not strictly convex, being close to the optimal value for the objective function
does not imply that a solution is close to the optimal solution.

The catch is that our function f is not strictly convex on all of Rm. If ta denotes the
vector obtained from t by adding the constant a to all coordinates in t, then for every a,
f(ta) = f(t) (where here we use the condition that

∑
j cj = n). Hence, there are points t, t′

at arbitrary distance that satisfy f(t) = f(t′). However, we can show that this is the only
scenario in which the function is not strictly convex.

Definition 32 Let us say that s, t ∈ Rm are b-separated if ‖(s + a1) − t‖∞ > b for every
a ∈ R. Here, 1 denotes the all ones vectors.

This definition leads to the next lemma.

Lemma 33 Let s, t ∈ Rm be any two b-separated points for some b > 0. Assume all co-
ordinates of s, t are non-negative and that for every i, j ∈ [m] there exists S ⊆ [m] with
|S| = n− 1 such that dS∪{i} 6= 0 and dS∪{j}6=0. Then,

φA

(
s+ t

2

)
6
φ(s) + φ(t)

2
− b2 · exp (−(n+ 1)(‖s‖∞ + ‖t‖∞))

minI d
2
I

det(AA∗)
.

We defer the proof of this lemma to Appendix D. With the previous lemma we will later
argue that whenever f(t) is very close to optimal, then t itself cannot be separated from an
optimal solution by much.

C.3. An Algorithm

Our next theorem gives a polynomial time algorithm for computing the radial isotropic
position. The assumptions are slightly stronger than simply asking that c ∈ KA.

Theorem 34 Let ε > 0 and α > 0. Let A = [u1, . . . , um] ∈ Rm×n with m > n and
rank(A) = n. Further assume that for every i, j ∈ [m] there exists S ⊆ [m] with |S| = n− 1
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such that dS∪{i} 6= 0 and dS∪{j}6=0. Then, given A and any point c ∈ (1 − α)KA, we can
compute a n× n matrix R such that

m∑
j=1

cj

(
Ruj
‖Ruj‖

)
⊗
(

Ruj
‖Ruj‖

)
= IdRn + J ,

where ‖J‖∞ 6 ε. The running time of our algorithm is polynomial in 1/γ, log(1/ε) and L
where L is an upper bound on the bit complexity of the input A and c.

Proof We will apply the Ellipsoid method as described in Nemirovski (2005) (Theorem
4.1.2.) to solve the optimization problem supt∈Rm〈c, t〉 − φA(t) over the set of all t ∈ Rm
satisfying ‖t‖∞ 6 B where B is the parameter from Lemma 30 and tj > 0 for all j ∈
[m]. Let s denote the solution computed by the Ellipsoid method and suppose we have
|f(s)− f(t∗)| 6 δ2 where

δ 6
ε′ ·minI dI

eO(Bn) det(AA∗)
,

and ε′ is a sufficiently small quantity that we will bound later. With δ chosen this small
it follows from Lemma 33 that t∗ and s cannot be δ-separated. (Otherwise s+t

2 would give
a solution improving the optimum.) Here, we used the fact that

∑
j∈I sj 6 Bn for every

I ⊆ [m], |I| = n and therefore

eφ(s) 6 elog(e
Bn det(AA∗)) = eBn det(AA∗),

Similarly, we get the same bound for for φ(t∗). Hence, we conclude that s must be δ-close to
an optimal solution in each coordinate. This implies (using standard perturbation bounds
for the inverse of a matrix) that the optimality conditions from Lemma 24 are approximately
satisfied for s in the sense that

esj =
(1 + εj)cj

〈uj , (AeSA∗)−1uj〉
,

with εj ∈ [−ε′, ε′]. Consider the positive definite matrix M =
∑

j e
sjuj ⊗ uj . Its inverse

square root R = M−1/2 satisfies

Id =
m∑
j=1

cj
Ruj ⊗Ruj
‖Ruj‖2

+
m∑
j=1

εjcj
Ruj ⊗Ruj
‖Ruj‖2

.

Let J =
∑m

j=1 εjcj
Ruj⊗Ruj
‖Ruj‖2 denote the error term above. It is not hard to show that for

ε′ = ε/ exp(poly(L))), we have that ‖J ′‖∞ 6 ε. Since the dependence on 1/δ in the Ellipsoid
method is logarithmic, the running time remains polynomial in L, 1/α and log(1/ε).

Appendix D. The Defect Lemma

Here we prove Lemma 33:
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Proof As we did in the proof of Lemma 28, we will apply the Cauchy-Schwarz inequality
to the vectors u, v indexed by I ⊆ [m], |I| = n and defined as

uI =

√
e
∑

j∈I sjdI , vI =

√
e
∑

j∈I tjdI .

We’d like to determine how much slack we have in this inequality. Let us therefore lower
bound

1−
(
〈u, v〉
‖u‖‖v‖

)2

=
‖u‖2‖v‖2 − 〈u, v〉2

‖u‖2‖v‖2
=

1
2

∑
I 6=J(uIvJ − uJvI)2

‖u‖2‖v‖2
,

where the last step is Lagrange’s identity. Now write tj = sj + 2aj . By the assumption
that s, t are b-separated we must have that maxi,j∈[m],i 6=j |ai − aj | > b. Let i, j be a pair of
indices achieving the maximum. Without loss of generality assume that aj > ai + b. Let
S ⊆ [m] be a set of size |S| = n− 1 such that I = S ∪ {i} and J = K ∪ {j} satisfy dI 6= 0
and dJ 6= 0. Such a set S must exist by our assumption. Then:

(uIvJ − uJvI)2 =

(
(e

si+tj
2 − e

sj+ti
2 )e

∑
j∈S

sj+tj
2

)2

dIdJ

=

(
(eaj − eai)e

si+sj
2 e

∑
j∈S

sj+tj
2

)2

dIdJ > (eaj − eai)2dIdJ

where the inequality follows because si, ti > 0 for all i. On the other hand, (eaj − eai)2 =
(eb − 1)2e2ai . But ex − 1 > x and aj > −‖s‖∞. Thus:

(uIvJ − uJvI)2 > γ with γ = b2 min
I
d2I · e−‖s‖∞ .

Therefore: (
〈u, v〉
‖u‖‖v‖

)2

6 1− γ

‖u‖‖v‖
. (3)

On the other hand

‖u‖ =
√

det(AeSA∗) 6 en‖s‖∞ det(AA∗) , ‖v‖ =
√

det(AeTA∗) 6 en‖t‖∞ det(AA∗) .

Taking logarithms on both sides of (3), we get

log

(
〈u, v〉
‖u‖‖v‖

)
6 −1

2
γ
e−n(‖s‖∞+‖t‖∞)

det(AA∗)
,

where we used that log(1− x) 6 −x for all 1 > x > 0.
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