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Abstract

Assume our data consists of unit vectors (directions) and we are to find a small orthogonal
set of the “the most important directions” summarizing the data. We develop online algo-
rithms for this type of problem. The techniques used are similar to Principal Component
Analysis which finds the most important small rank subspace of the data. The new prob-
lem is significantly more complex since the online algorithm maintains uncertainty over the
most relevant subspace as well as directional information.

1. Introduction

In this paper we consider learning directions. Let us fix the dimensionality n throughout.
Then a direction is simply a vector u ∈ Rn of unit length. We model the learning problem
as a sequential game where each round the learner predicts by playing a direction u and
nature responds with an instance direction x. We define the resulting directional gain as(

uᵀx+ c
)2

(1.1)

where the constant c is a fixed design parameter known to the learner. We choose to study
this gain because it is a simple and smooth trade-off (governed by c) between two intuitively
reasonable criteria of closeness: the angle cosine and the subspace similarity. To see this,
we expand our gain as: (

uᵀx+ c
)2

= (uᵀx)2 + 2c uᵀx+ c2. (1.2)

• As c→∞, then our gain becomes the angle cosine uᵀx = cos(u,x). There is a simple
minimax algorithm for this angle gain by Kot lowski and Warmuth (2011).

• When c = 0, then our gain becomes the subspace similarity (uᵀx)2. This gain is
optimized in rank one (un-centered) PCA. (Warmuth and Kuzmin, 2008). The main
disadvantage of the PCA gain (uᵀx)2 is that it is fundamentally bidirectional, i.e.
reversing either u or x does not affect this gain.
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Instance x
PCA gain: (x · u)2

(a) PCA gain (uᵀx)2
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Instance x
Directional PCA gain: (x⊤u+ 1)2

(b) Directional gain
(
uᵀx+ 1

)2
Figure 1.1: Comparison of PCA gain and directional gain (for c = 1): The target direction

x is depicted by a red arrow. In each case the blue curve is u scaled by the
directional gain of u, as the prediction u goes around the unit circle.

• For general c, the directional gain (1.2) is a trade-off between the above two gains.
Unfortunately the algorithms for the linear and quadratic gains cannot just be merged
somehow. As we shall see the tools needed for the trade-off gain are much more
involved. The new directional gain (for c = 1) as well as the original PCA gain are
plotted in Figure 1. Note that the directional gain is highly sensitive1 to the direction
of the prediction u as well as the target instance x: it attains maximum value 4
when x is the same direction as u (i.e. x = u) and minimum value 0 at the opposite
x = −u. For other values of c the range of the gain is discussed in Appendix A.

• Note that the quadratic Taylor approximation of any gain g(uᵀx) at u = 0 has the
form g(0) + g′(0) uᵀx + 1

2g
′′(0) (uᵀx)2. Dividing by 1

2g
′′(0) results in our gain (1.2)

except for an immaterial constant shift.

So how can we get away with maximizing a quadratic gain? Note that the gain is linear in u
and uuᵀ, and therefore the underlying optimization problems become linear semi-definite.

We think of a sequence of instances x1, . . . ,xT as “easy” if there is a single direction u
with high cumulative gain. The goal of the learner is to predict well if the data are easy. To
this end, we evaluate the performance of the learner after T rounds by measuring its regret :

max
unit u

T∑
t=1

(
uᵀxt + c

)2
︸ ︷︷ ︸

offline gain

−
T∑
t=1

(
uᵀ
txt + c

)2
︸ ︷︷ ︸

online gain

.

Here ut denotes the direction of the online algorithm chosen at trial t. To be able to
guarantee low regret in an adversarial environment, it is sometimes advantageous to choose

1. The bidirectional PCA gain is essentially the average of the directional gain for x and −x:

(uᵀx)2︸ ︷︷ ︸
PCA gain

= 1
2

(
(uᵀx + c)2︸ ︷︷ ︸

directional gain of x

+ (uᵀ(−x) + c)2︸ ︷︷ ︸
directional gain of −x

)
− c2.

Thus the algorithms of this paper retain PCA as a special case when the instance directions are doubled.
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Learning directions

the direction ut probabilistically and define the regret as the offline gain minus the expected
online gain. A probability distribution P on predictions u has expected gain given by

E
[(
xᵀu+ c

)2]
= E

[
xᵀuuᵀx+ 2cxᵀu+ c2

]
= xᵀ E

[
uuᵀ]x+ 2cxᵀ E [u] + c2.

This shows that most of P is irrelevant. The expected gain is determined by just the first
moment (mean) E [u] and second moment E [uuᵀ]. In this paper we never work with full
distributions, but always with these simple two statistics. That is, the parameter of the
algorithm has the form (µ,D), s.t. (µ,D) = E [(u,uuᵀ)] for some P. It is hence important
to characterize which pairs of first and second moments can arise from distributions: We
will show that a vector µ and symmetric matrix D are the first and second moment of some
distribution on directions iff tr(D) = 1 and D � µµᵀ. Note that these conditions imply
that D is a density matrix, i.e. a positive semi-definite matrix of unit trace.

Our algorithm has the following outline. At the beginning of each trial we decompose
the current parameter (µt,Dt) into a sparse mixture of pure events (u,uuᵀ) and choose
a direction ut at random from this mixture. We then update the parameter based on the
observed instance xt and project the updated parameter back into the parameter space.

We also consider the direction learning problem where each round the learner plays a
set of k orthogonal directions u1, . . . ,uk. The set size k is a fixed design parameter known
to the learner. After nature reveals its instance x, the algorithm now achieves the total
gain over the set:

k∑
i=1

(uᵀ
ix+ c)

2
. (1.3)

The online algorithm chooses such a set probabilistically in each trial. If P is a probability
distribution on such sets u1, . . . ,uk, then the expectation of the gain (1.3) expands to

E

[ k∑
i=1

(xᵀui + c)2

]
= xᵀ E

[ k∑
i=1

uiu
ᵀ
i

]
x+ 2cxᵀ E

[ k∑
i=1

ui

]
+ kc2.

We see that the expected gain is again determined by the first moment E
[∑k

i=1 ui

]
and

second moment E
[∑k

i=1 uiu
ᵀ
i

]
. We will show that a vector µ and matrix D are the first

two moments of a distribution on sets of k orthogonal directions iff tr(D) = k and µµᵀ/k �
D � I. The parameter space of our algorithm hence consists of all (µ,D) with these
properties. Again we present an algorithm for decomposing an arbitrary parameter (µ,D)
into a sparse mixture of pure events (

∑k
i=1 ui,

∑k
i=1 uiu

ᵀ
i ) with orthonormal ui and sample

from this mixture at the beginning of each trial. We also generalize our projection algorithm
to the k > 1 case.

The gain (1.1) (and set generalization (1.3)) are quadratic in their natural parametriza-
tion by the direction u. However by expanding the square, we find that they are linear in
the two parts u and uuᵀ. Our setup exploits this linear reformulation of the gain.

We still need to discuss which type of algorithms should be used for updating the
parameter matrix after processing the current direction. There are two families of algorithms
to consider: the Matrix Exponentiated Gradient family that is based on regularizing with
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the Quantum Relative Entropy (Tsuda et al., 2005) and the Gradient Descent family which
uses the squared Frobenius norm as a regularizer. For our problem the representatives from
both families have the same regret bound (not shown for MEG) as a function of the number
of examples. However, MEG has a budget bound as well (not shown), i.e. the time horizon
in the regret can be replaced by an upper bound on the total gain of the comparator. We
only discuss the simpler GD algorithm in this paper even though we don’t have a budget
bound for this algorithm.2

Related work

The outline of our algorithm is similar to Component Hedge (Koolen et al., 2010) which
deals with distributions on exponentially many combinatorial concepts by maintaining the
expectation of their constituent components. The key two pieces are the convex decompo-
sition and the projection algorithm. This method was lifted to the matrix domain in the
work on online PCA (Warmuth and Kuzmin, 2008). However each piece is significantly
more complicated in our setting because our gain trades off first and second order parts.

Our work is related to centered PCA (Warmuth and Kuzmin, 2008) which also uses a
mean and a density matrix as the parameter. However in that case the mean is uncon-
strained and can be optimized independently from the density, leading to a much simpler
problem.

Our gain (uᵀx + c)2 is a simple polynomial kernel with the feature map φ(u) being
comprised of the n components of u, the n2 components of uuᵀ and a constant feature.
However our methods are decidedly different from kernel methods (including Kernel PCA
(Kuzmin and Warmuth, 2007)). Our algorithms don’t just rely on dot products φ(xt)

ᵀφ(xq)
in feature space (the kernel paradigm). Instead, our parameter is always a convex combi-
nation of φ(u) and we project back into this parameter space. This projection step clearly
violates the kernel paradigm.

Outline

We warm up by optimizing the gain offline in Section 2. We then present the online
algorithm in Section 3 and analyze its regret. The essential building block in both these
sections is the characterization of the parameter space. We prove the difficult direction of
the characterization theorem in Section 4 by presenting our new decomposition algorithm.
We conclude by discussing the big picture in Section 5.

2. The issue of how to prove budget bounds for GD is an independent problem.
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2. The offline problem

Given a sequence of directions x1, . . . ,xT , the offline problem is to optimize the total gain:

max
orthonormal u1...uk

T∑
t=1

k∑
i=1

(uᵀ
ixt + c)2

= max
orthonormal u1...uk

tr

( k∑
i=1

uiu
ᵀ
i

T∑
t=1

xtx
ᵀ
t︸ ︷︷ ︸

=:R

)
+ 2c

( k∑
i=1

ui

)ᵀ T∑
t=1

xt︸ ︷︷ ︸
=:r

+Tc2.

We will reformulate the above as a semi-definite optimization problem. Instead of maxi-
mizing over a single orthonormal set, we maximize the expected value of the objective over
distributions on such sets. This does not change the value of the optimization problem. For
any probability distribution on sets of k orthogonal directions, we can characterize the first

moment E
[∑k

i=1 ui

]
and second moment E

[∑k
i=1 uiu

ᵀ
i

]
as follows:

Theorem 2.1 A vector µ ∈ Rn and symmetric matrix D ∈ Rn×n are the first and second
moment of a probability distribution on sets of k orthogonal directions if and only if

tr(D) = k and µµᵀ/k �D � I. (2.1)

Proof For the =⇒ direction, it suffices to show that (2.1) is satisfied for “pure” distribu-
tions, i.e. when D =

∑k
i=1 uiu

ᵀ
i and µ =

∑k
i=1 ui, for some set of orthogonal directions.

The result then extends to all distributions by convexity. Since the condition is invariant
under basis transformations, we may as well verify it for the set of standard basis vectors
e1, . . . , ek. Its first and second moment are

µ =

[
1k

0n−k

]
and D =

[
Ik 0
0 0

]
.

Clearly, tr(D) = k and D � I. To show that µµᵀ/k � D, note that µ is the only
eigenvector of µµᵀ/k, and its associated eigenvalue is 1. However, µ is also an eigenvector
of D, again with eigenvalue 1. The ⇐= direction is much harder. It follows from the
decomposition procedure presented in Section 4.

This means that our offline problem becomes the following semi-definite program:

max
(µ,D) s.t. tr(D)=k and µµᵀ/k�D�I

tr(DR) + 2c µᵀr + Tc2.

In Appendix B we discuss a special condition on (r,R) when the solution of the k directions
problem can be constructed from the solution to the k-PCA problem.

Note that the solution (µ∗,D∗) returned for the above optimization problem might not
be a pure set of k directions but the first and second moment of a distribution on sets
of k orthogonal directions, all of which have the same gain. In that case we can employ
the decomposition algorithm of Section 4 which decomposes the moments (µ∗,D∗) into a
mixture of pure solutions. To obtain one set, simply run this greedy algorithm for one step.
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3. Online algorithm

The algorithm maintains the two moments (µt,Dt) as its parameter. It follows the protocol:

At trial t = 1 . . . T ,
1. Learner decomposes parameter (µt,Dt) into a mixture of 2(n+ 1) sets

of k orthonormal directions and chooses a set u1, . . . ,uk at random from from it
2. Nature reveals direction xt ∈ Rn

3. Learner receives expected gain E
[∑k

i=1(uᵀ
ixt + c)2

]
4. Learner updates (µt,Dt) to (µ̂t+1, D̂t+1) based on the gradient of the gain on xt
5. Learner produces new parameter (µt+1,Dt+1) by

projecting (µ̂t+1, D̂t+1) back into the parameter space.

The goal of the learner is to minimize the regret which is the gain of the offline algorithm
minus the expected gain of the online algorithm. We first show how to update and project
(steps 4 and 5) and defer the decomposition step 1 to the end, since it is the hardest.

3.1. The update and projection

We update using the Gradient Descent algorithm (see e.g. Kivinen and Warmuth (1997);
Zinkevich (2003))

µ̂t+1 := µt + 2ηc xt and D̂t+1 := Dt + η xtx
ᵀ
t ,

and project back into the parameter space as follows:

(µt+1,Dt+1) := argmin
(µ,D) s.t. tr(D)=k and µµᵀ/k�D�I

‖D − D̂t+1‖2F + ‖µ− µ̂t+1‖2.

Since both the objective and the constraint set are convex, this projection can be efficiently
computed using a convex optimization package.3

The above GD update and the projection are based on regularizing with the square
Frobenius norm. An alternate would be the Matrix Exponentiated Gradient update which
uses the Quantum Relative Entropy as a regularizer. Since the MEG update has the same
regret bound (not shown) for our specific problem based on unit instance vectors, we chose
to only present the simpler GD update.

The following theorem develops a regret bound for the GD algorithm. Note that the
squared Frobenius norm is used as a measure of progress. We don’t need to be concerned
with the projection step since the Pythagorean Theorem implies that the projection step
does not hurt (Herbster and Warmuth, 2001).

Theorem 3.1 Fix dimension n, set size k and gain constant c. The regret after T trials

of the GD algorithm with learning rate η =

√
k+

k(n−k)
n

(4c2+1)T
and initial parameters µ1 = 0 and

D1 = k
nI is upper bounded by

√
2(4c2 + 1)

(
n−k
n + 1

)
kT .

3. There are several SDP packages (such as CVX) that are guaranteed to output the value of the SDP up
to an additive error of ε in time polynomial in the size of the program description and log 1

ε
.
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Proof Let W =
[
µ D

]
denote the matrix formed by concatenating column vector µ

and matrix D. Similarly, let X =
[
2cx xxᵀ

]
. With this notation, the expected gain

tr(Dxxᵀ) + 2cµᵀx+ kc2 of parameter (µ,D) on instance x becomes tr(WXᵀ) + kc2.

For any offline comparator W ∗ =
[∑k

i=1 ui
∑k

i=1 uiu
ᵀ
i

]
, we have

‖Wt+1 −W ∗‖2F ≤ ‖Ŵt+1 −W ∗‖2F = ‖Wt −W ∗‖2F − 2η tr((W ∗ −Wt)X
ᵀ
t ) + η2‖Xt‖2F ,

where the inequality follows from the Pythagorean Theorem (Herbster and Warmuth, 2001).

Since xt has unit length, ‖Xt‖2F =
∥∥[2cxt xtx

ᵀ
t

]∥∥2

F
= 4c2‖xt‖2 + ‖xtxᵀ

t ‖2F = 4c2 + 1.
By rearranging terms, we have

tr(W ∗Xᵀ
t )− tr(WtX

ᵀ
t ) ≤ ‖Wt −W ∗‖2F − ‖Wt+1 −W ∗‖2F

2η
+

(4c2 + 1)η

2
. (3.1)

Note that the LHS of (3.1) is the regret in trial t. Summing the inequality over all T trials,
we have that the total regret is upper bounded by

‖W1 −W ∗‖2F −(((((((((‖WT+1 −W ∗‖2F
2η

+
(4c2 + 1)ηT

2
≤ k + k(n−k)

n

2η
+

(4c2 + 1)ηT

2
,

since ‖W1 −W ∗‖2F = ‖
[
0 k
nI
]
−
[∑

i ui
∑

iuiu
ᵀ
i

]
‖2F is by the rotation invariance of ‖.‖2F

equal to ‖
[
0 k
nI
]
−
[
1k Ik

]
‖2F = k(n−k)

n +k. Choosing η=

√
k+

k(n−k)
n

(4c2+1)T
proves the theorem.

We now reason that the above regret bound for GD (expressed as a function of the
time horizon) cannot be improved by more than a constant factor. We first consider the
original online PCA problem, where c = 0. In this case our regret bound for GD becomes√

2
(
n−k
n + 1

)
kT and a matching lower bound (up to a constant factor) was shown in Nie

et al. (2013).4 For the directional case c 6= 0, we prove the following matching lower bound
in Appendix C.

Theorem 3.2 The minimax regret of the T -round directional gain game with constant c 6= 0
and orthonormal sets of size k is Ω(

√
c2kT ).

For linear losses, all known regret bound for the GD update grow with the time horizon
(including the bound we just proved). Slightly better bounds can be proven for the MEG
update (not shown), where the time horizon is replaced by an upper bound on the offline
comparator’s gain.

4. The decomposition

In this section we decompose any parameter (µ,D) satisfying (2.1), that is, we write it
as a convex combination of (first and second moments of) sets of k orthogonal directions.

4. One can show that the original MEG algorithm for online PCA given in Warmuth and Kuzmin (2008)
also achieves the optimal regret bound as a function of the time horizon (up to a constant factor) (See
discussion in Nie et al. (2013)).
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Our algorithm is a greedy iterative removal scheme, like the decomposition algorithms for
sets and subspaces (Warmuth and Kuzmin, 2008), permutations (Helmbold and Warmuth,
2009), paths and trees (Koolen et al., 2010).

Note that the condition µµᵀ/k �D of Theorem 2.1 is equivalent to the following, where
D† denotes the pseudo-inverse: D � 0, µD†µ ≤ k and µ ∈ range(D)(see e.g. Bernstein
(2011, Proposition 8.2.4)). It will be convenient to assume that the mean is extreme, i.e.
µᵀD†µ = k. If instead µᵀD†µ < k we may decompose by mixing the two decompositions5

of the extreme opposites
(
±µ
√

k
µᵀD†µ

,D
)

with probabilities k±µᵀD†µ
2k . (If the mean µ is

zero we may choose any pair of opposites in the range of D.) So we henceforth assume that

tr(D) = k, 0 � D � I, µ ∈ range(D) and µᵀD†µ = k. (4.1)

This equation implies that the eigenvalues of D lie in [0, 1]. We proceed by recursion on

χ(D) := the number of eigenvalues of D in (0, 1).

In the base case χ(D) = 0 all eigenvalues of D are either 0 or 1, and since tr(D) = k
there must be k ones and n− k zeroes. In particular this means that µᵀµ = k. To obtain
an orthonormal set with mean µ and second moment D, we may choose U to be any
orthonormal basis spanning the range of D with sum equal to µ.

If χ(D) > 0 we find an orthonormal set u1, . . . ,uk (with moments (
∑k

i=1 ui,
∑k

i=1 uiu
ᵀ
i )

that are abbreviated as (s,S) throughout), a probability ρ ∈ (0, 1), and decompose

(µ,D) = ρ (s,S) + (1− ρ) (µ̃, D̃),

where the normalized remainder (µ̃, D̃) :=
(
µ−ρs
1−ρ ,

D−ρS
1−ρ

)
again satisfies (4.1) so that it

can be decomposed recursively and moreover χ(D̃) < χ(D). This recursive process must
therefore terminate in at most n+ 1 steps.

A similar but simpler recursive process is used in the original online PCA problem (where
c = 0) (Warmuth and Kuzmin, 2008). In this case, the learner only needs to decompose the
parameter matrix D into a small mixture of orthonormal sets of size k. These orthonormal
sets can always be chosen as subsets of the eigenvectors of D. In the general case (when
c 6= 0), the sets need to simultaneously decompose the mean parameter µ, and the additional
constraints this imposes are not generally satisfied by the eigenvectors of D.

The rest of this section will be concerned with finding the set U = [u1, . . . ,uk] and
the probability ρ and proving that χ(D̃) < χ(D). First in Theorem 4.2 we prove that
Algorithm 1 will find an orthonormal set of k so-called tangent directions. We call a
direction u tangent to (µ,D) if uᵀD†µ = 1. Then in Lemma 4.3 we show that splitting
off a tangent set U preserves (4.1). Finally in Theorem 4.6 we show that the probability
ρ ∈ (0, 1) can be found, and that χ(D̃) < χ(D).

4.1. Finding a tangent set

In this section we present Algorithm 1 for finding a tangent set. The algorithm will make
use of the following simple lemma.

5. Each decomposition will be of size n+ 1, for a total of 2(n+ 1).
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Lemma 4.1 A linear equation vᵀx = a of dimension at least 2 has a solution for x of unit
length if ‖v‖ ≥ |a|.

Proof Let v⊥ be a unit vector perpendicular to v. If ‖v‖ = a = 0, return v⊥. Otherwise
a
‖v‖2v +

√
1− a2

‖v‖2v
⊥ is a unit length solution.

We are now ready to show that the algorithm indeed produces a tangent set.

Theorem 4.2 Let µ and D satisfy (4.1). Let [A B C] be an orthonormal eigenbasis
for D, with A associated to the eigenvalue 1, C to eigenvalue 0 and B to the remaining
intermediate eigenvalues. (Any of them can be empty). Then Algorithm 1 applied to (µ,D)
produces a set U = [u1, . . . ,uk] of k orthonormal vectors with moments (s,S) such that

UᵀD†µ = 1k U is a tangent set (4.2a)

S = DD†S U avoids the 0 eigenspace of D (4.2b)

I − S = (I −D)(I −D)†(I − S) U contains the 1 eigenspace of D (4.2c)

The algorithm can be implemented in time O(kn2) when CCᵀ is precomputed.

Proof We first show that Â consists of k orthonormal vectors and that ‖ÂᵀD†µ‖2 = k.
When rank(A) = k, since I �D and tr(D) = k, B is empty and D = D† = AAᵀ.

‖AᵀD†µ‖2 = µᵀD†AAᵀD†µ = µᵀD†µ = k.

When rank(A) < k, D can be eigendecomposed as D = AAᵀ + BD̂Bᵀ where D̂ is a
diagonal matrix and 0 ≺ D̂ ≺ I. We rewrite D†, vA and vB with the decomposition as:

D† = AAᵀ +BD̂†Bᵀ, vA = AAᵀD†µ = AAᵀµ, vB = BBᵀD†µ = BD̂†Bᵀµ.

Now we show that the conditions for using Lemma 4.1 to compute v̂ are met.

• rank(B) = rank(A) + rank(B)︸ ︷︷ ︸
>k

− rank(A)︸ ︷︷ ︸
<k

≥ 2. The lower bound on rank(A) +

rank(B) follows from

I � D̂︷ ︸︸ ︷
rank(A) + rank(B) = tr(AAᵀ +BBᵀ)︸ ︷︷ ︸

A and B consist of orthonormal vectors

> tr(AAᵀ +BD̂Bᵀ) = k.

• To show k ≥ ‖vA‖2, notice that

k = µᵀD†µ = µᵀ(AAᵀ +BD̂†Bᵀ)µᵀ = µᵀAAᵀAAᵀµ︸ ︷︷ ︸
‖vA‖2

+µᵀBD̂†Bᵀµ︸ ︷︷ ︸
≥0

• Finally ‖vB‖ ≥
√
k − ‖vA‖2 follows from (D̂†)2 � D̂† and

‖vB‖2 = µᵀB(D̂†)2Bᵀµ ≥ µᵀBD̂†Bᵀµ = k − ‖vA‖2.

9
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The next step is to show that finding B̂ is always possible. This follows simply from
k − rank(A) − 1 ≤ (rank(A) + rank(B) − 1) − rank(A) − 1 = rank(B) − 2. Since A,
v̂ and B̂ are orthogonal to each other and B̂ is also orthogonal to D†µ, ‖ÂᵀD†µ‖2 =
‖vA‖2 + (v̂ᵀD†µ)2 = k.

So in both cases, ÂᵀD†µ is a vector in Rk with length
√
k. By a rotation matrix Û in

Rk×k, we can rotate ÂᵀD†µ to a vector of the same length, 1k(see e.g. Hazan et al. (2011)).
As a result, UᵀD†µ = ÛÂᵀDµ = 1k and UᵀU = ÛÂᵀÂÛ = Ik.

Finally, noticing that by construction of Â, range(U) ∈ range(D), U = DD†U . Also,

I − S = I −AAᵀ − v̂v̂ᵀ − B̂B̂ᵀ = BB +CC − v̂v̂ᵀ − B̂B̂ᵀ

means range(I − S) ∈ range(BBᵀ +CCᵀ) = range((I −D)(I −D)†) as required.
Now we show how to implement the algorithm in O(kn2) with precomputed CCᵀ. First

computing A can be done in O(kn2) time. Noticing that AAᵀ + BBᵀ + CCᵀ = I, we
obtain BBᵀ in O(n2). Using columns of BBᵀ as a basis of B, B̂ can be computed in (k2n)
with a Gram-Schmidt process. Finally, computing a rotation matrix in SO(k) needs time
O(k2) and computing ÂÛ needs time O(kn2).

input : parameter (µ,D) satisfying (4.1)
output: orthonormal k-set U satisfying (4.2)

Compute orthonormal eigenbasis A and B of D as described in Theorem 4.2
if rank(A) = k then

Â = A
else

vA = AAᵀD†µ // Project D†µ on A
vB = BBᵀD†µ // Project D†µ on B
Compute a unit vector v̂ in B satisfying v̂ᵀvB =

√
k − ‖vA‖2 via Lemma 4.1

Pick k − rank(A)− 1 orthonormal basis B̂ from the complementary of vB and v̂ in B

Â =
[
A v̂ B̂

]
end

Compute a rotation matrix Û ∈ SO(k) which rotates ÂᵀD†µ to 1k
return U = ÂÛᵀ

Algorithm 1: Find a removable set U

4.2. Removing a tangent set preserves the mean constraints

At this point we have a tangent set U to split off. We now show that the remainder (µ̃, D̃)
satisfies (4.1). We start with the rightmost two conditions, which will be satisfied for any
weight ρ > 0. Lemma 4.3 covers a single tangent vector, whereas Lemma 4.4 covers sets.

Lemma 4.3 Fix a matrix D ∈ Rn×n, vectors µ,u ∈ range(D) with uD†µ = 1 and a
weight ρ ∈ R. Define D̃ := D − ρuuᵀ and µ̃ := µ− ρu. Then

µ̃ᵀD̃†µ̃ = µᵀD†µ− ρ and µ̃ ∈ range(D̃).

10
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If rank(D̃) = rank(D) then D̃†µ̃ = D†µ. Otherwise there is a real number α such that

D̃†µ̃ = D†µ+ αD†u and D̃D†u = 0.

Proof First notice that rank(D) − 1 ≤ rank(D̃) ≤ rank(D), since u ∈ Rn and ρuᵀu is a
rank one modification. So rank(D̃) equals either rank(D) or rank(D)− 1. We cover these
two cases separately. In the first case when rank(D̃) = rank(D) we have

D̃†µ̃ = (D − ρuuᵀ)†(µ− ρu) =

(
D† + ρ

D†uuᵀD†

1− ρuᵀD†u

)
(µ− ρu) = D†µ

by Bernstein (2011, Fact 6.4.2). And so µ̃D̃†µ̃ = (µ − ρu)ᵀD†µ = µᵀD†u − ρ. Also in
this case µ̃ ∈ range(D) = range(D̃).

In the second case rank(D̃) = rank(D)− 1 or equivalently ρuᵀD†u = 1. We first show
D†u is a null vector of D̃.

D̃D†u = (D − ρuuᵀ)D†u = DD†u− uρuᵀD†u = u− u = 0

Notice that DD†u = u 6= 0, so range(D̃) is exactly the complementary space of D†u in
range(D). This implies µ̃ ∈ range(D̃) since D†u is also null to µ̃:

µ̃ᵀD†u = (µ− ρu)ᵀD†u = µᵀD†u− ρuᵀD†u = 1− 1 = 0

We now use Bernstein (2011, Fact 6.4.2) to rewrite D̃† (αi are unimportant scalars)

D̃†µ̃ =[D† + α1D
†uuᵀ(D†)2 + α2(D†)2uuᵀD† + α3D

†uuᵀD†︸ ︷︷ ︸
(become 0 after distribution )

]µ̃

=[D† + α1D
†uuᵀ(D†)2](µ− ρu)

=D†µ− ρD†u+ α1D
†uuᵀ(D†)2(µ− ρu)︸ ︷︷ ︸

a number

= D†µ+ αD†u.

The last thing to show is µ̃D̃†µ̃ = µD†µ− ρ which follows by

µ̃D̃†µ̃ = µ̃ᵀ(D†µ+ αD†u) = (µ− ρu)ᵀD†µ = µᵀD†µ− ρ.

The previous lemma covered single tangent vectors. Next we take out a full tangent set.

Lemma 4.4 Let µ,D satisfy (4.1), and let the orthonormal set u1, . . . ,uk (with moments
(s,S)) be tangent. Then for any ρ > 0 if D � ρS, we have

(µ− ρs)ᵀ(D − ρS)(µ− ρs) = µᵀDµ− kρ and µ− ρs ∈ range(D − ρS).

Proof For 1 ≤ d ≤ k, define the intermediate remainder as µ̃d := µ − ρ
∑d

i=1 ui and

D̃d := D − ρ
∑d

i=1 uiu
ᵀ
i . Also D̃0 = D and µ̃0 = µ. We show by induction that ui

remains tangent to (µ̃d, D̃d) for d < i ≤ k and

µ̃ᵀ
dD̃dµ̃d = µᵀDµ− dρ and µ̃d ∈ range(D̃d).

11
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The base case d = 0 is trivial. Let us, to simplify notation, show the induction step for d = 1.
The last two claims follow directly from Lemma 4.3. We now show that for 2 ≤ i ≤ k, ui
is also tangent to µ̃1 and D̃1. When rank(D̃1) = rank(D) we have uᵀ

i D̃
†
1µ̃1 = uᵀ

iDµ = 1

as required. When rank(D̃1) = rank(D)− 1,

uᵀ
i D̃
†
1µ̃1 = uᵀ

iD
†µ− αuᵀ

iD
†u1 = 1− αuᵀ

iD
†u1.

Note that uᵀ
iD
†u1 = 0, for otherwise, (D†u1)ᵀ(D̃1 − ρuiuᵀ

i )(D
†u1) = −ρ(uᵀ

iD
†u1)2 < 0,

which contradicts D̃1 − ρuiuᵀ
i � D̃k � 0. This also implies ui ∈ range(D̃1) which means

ui is tangent to µ̃1 and D̃1.

4.3. Choosing the weight ρ

We know that taking out a tangent set U preserves the rightmost two constraints of (4.1)
on the remainder for any weight ρ. To satisfy the leftmost two, we investigate how semi-
definiteness and rank of D̃ are related to ρ.

Lemma 4.5 Let D,S ∈ Rn×n be non-zero positive semi-definite matrices with S = DD†S.
Define ρs := 1

λmax(D†S)
where λmax(M) is the largest eigenvalue of M . Then the following

hold for D̃ = D − ρS:

• 0 < ρs <∞
• D̃ � 0 for any ρ ≤ ρs
• rank(D̃) ≤ rank(D), and rank(D̃) < rank(D) when ρ = ρs.

Proof First notice that S = DD†S implies both S ∈ range(D) and D̃ = D − ρS ∈
range(D). So rank(D̃) ≤ rank(D). Next, 0 < ρs < ∞ follows from that D†S is non-zero
and positive semi-definite. To show D̃ � 0, consider an eigenpair (v, p) of D̃ where v is a
unit vector.

vᵀD†Sv =
vᵀD†

ρ
(Dv − (D − ρS)v) =

vᵀD†

ρ
(Dv − pv) =

1

ρ
− p

ρ
vᵀD†v.

When ρ ≤ ρs, 1
ρ ≥ λmax(D†S) ≥ vᵀD†Sv which implies p ≥ 0. So D̃ � 0.

When ρ = ρs, let x be a eigenvector of eigenvalue 1
ρs

: D†Sx = 1
ρs
x 6= 0 and notice that

D(D†Sx) = Sx 6= 0 D̃(D†Sx) = (D − ρS)D†Sx = DD†Sx− ρS 1

ρ
x = 0.

So D̃ has at least one more null dimension than D. Together with D̃ ∈ range(D), this
implies rank(D̃) < rank(D).

Finally, we are able to choose ρ to in addition satisfy the leftmost two conditions of
(4.1), and reduce the complexity χ(D̃).

12
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Theorem 4.6 Let (µ,D) satisfy (4.1). Let U be the output of Algorithm 1, and let

ρ = min

{
1

λmax(D†S)
,

1

λmax

(
(I −D)†(I − S)

)} .
Then the normalized remainder (µ̃, D̃) =

(µ−ρs
1−ρ ,

D−ρS
1−ρ

)
satisfies (4.1) and χ(D̃) < χ(D).

Proof If I �D � 0, since ρ ≤ 1
λmax(D†S)

, by Lemma 4.5 D− ρS � 0 and so D̃ � 0. Also

since (I −D) � 0 and ρ ≤ 1
λmax((I−D)†(I−S))

, (I −D)− ρ(I − S) � 0 which is equivalent

to I � D̃. Also

tr(D̃) =
tr(D)− ρ tr(S)

1− ρ =
k − ρk
1− ρ = k.

Since all u1, . . . ,uk are tangent, we may apply Lemma 4.4 to show that µ̃D̃†µ̃ = k and µ̃ ∈
range(D̃). By Lemma 4.5, rank(D̃) ≤ rank(D) and rank(I − D̃) ≤ rank(I −D), where at
least one inequality is strict since ρ equals the minimum of 1

λmax(D†S)
and 1

λmax((I−D)†(I−S))
.

Finally observe that χ(D) = rank(D) + rank(I −D)− n so that χ(D̃) < χ(D).

To implement the decomposition efficiently, one may want to compute D† incrementally by
doing k rank one pseudo-inverse updates for each set peeled off. Since each of these updates
needs O(n2), peeling one set off can be completed in O(kn2). Notice that Algorithm 1
can also be implemented in O(kn2) (see Theorem 4.2) with a projector of the null space
of D incrementally maintained using Lemma 4.3. Combining the two parts gives a O(kn3)
implementation for the entire decomposition process.

5. Conclusion

A new use of kernels is emerging from this line of research: The gain/loss is a kernel
k(u,x) = φ(u)ᵀφ(x), the parameter space consists of all possible expectations E [φ(u)],
and after the update, the algorithm projects back into this parameter space. Finally any
parameter is decomposed into a small mixture of φ(u), and thus the parameter is expressed
in terms of the original domain of the feature map φ. We showed here how to do this
for a simple quadratic kernel, and the work on Component Hedge can be reinterpreted as
following this outline. However, what are the ingredients needed for the method to succeed
in general? For example can this be done for higher order polynomial kernels?

In our treatment all instances x were assumed to be unit length. Ideally we want to
learn vectors of varying length. To do this, more work first needs to be done on developing
expert updates that can handle unbounded losses (see e.g. McMahon (2013) for a start).
This work should be transferable to the matrix domain.

We believe that the richer modeling capability developed in this paper will make the
use of matrix parameters imperative. However, one of the main criticism of this line of
research is that it relies on eigendecompositions that require O(n3) time. The key open
problem is to develop O(n2) algorithms without degrading the regret bounds too much (See
e.g. discussions in (Hazan et al., 2010)).
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Appendix A. Range of the gain

We first determine the range of the gain during a single trial. Fix any set of k orthogonal
directions u1, . . . ,uk and let µ =

∑k
i=1 ui so that ‖µ‖ =

√
k. Let x be a direction, and let

x̂ =
∑k

i=1(uᵀ
ix)ui be the projection of x on the set. This notation allows us to write

k∑
i=1

(xᵀui + c)2 = ‖x̂‖2 + 2c x̂ᵀµ+ kc2.

Using Cauchy-Schwartz, i.e. (x̂ᵀµ)2 ≤ ‖x̂‖‖µ‖, the gain can be sandwiched as follows:

(‖x̂‖−
√
kc)2 = ‖x̂‖2−2

√
kc‖x̂‖+kc2 ≤

k∑
i=1

(xᵀui + c)
2 ≤ ‖x̂‖2+2

√
kc‖x̂‖+kc2 = (‖x̂‖+

√
kc)2.

Recall that Cauchy-Schwartz holds with equality when x̂ and µ are parallel. For c ≥ 0, the
gain is hence maximized at x = x̂ = µ/

√
k, where it takes value (1 +

√
kc)2. Minimization

is slightly more complicated. If
√
kc ≥ 1, the gain is minimized at x = x̂ = −µ/

√
k, i.e. the

reverse of the maximizer, where it takes value (1 −
√
kc)2. If on the other hand

√
kc ≤ 1,

the gain is minimized when x̂ = −cµ. This means that we can choose any x = x̂ + x⊥,
where x⊥ is any vector of length

√
1− kc2 that is perpendicular to all u1, . . . ,uk. Now the

gain takes value 0.

Appendix B. When do solutions to the problems of learning k directions
and k-PCA coincide?

LetR and r denote
∑

t xtx
ᵀ
t and

∑
t xt, respectively. Let UUᵀ︸ ︷︷ ︸

(n,k)×(k,n)

be the rank k projection

matrix for the solution subspace of the PCA problem.

Lemma B.1 If r lies in the subspace of the k-PCA solution, i.e. UUᵀr = r, then there
is an orthonormal basis Û s.t. ÛÛᵀ = UUᵀ which is also the solution of learning of k
directions problem.

Proof The gains relate as follows:

directional gain︷ ︸︸ ︷
tr(UUᵀR)︸ ︷︷ ︸

PCA gain

+2c 1ᵀUᵀr .

Since UUᵀr = r, there is an orthonormal basis Û s.t. ÛÛᵀ = UUᵀ, and Û1 and r point
in the same direction. So U = Û maximizes 1ᵀUᵀr. On the other hand, since UUᵀ is
the solution subspace of PCA, and UUᵀ = ÛÛᵀ, U = Û also maximizes the PCA gain
tr(UUᵀR). This means that Û maximizes both terms of the directional PCA gain and is
a solution to both problems.
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Appendix C. Proof of the lower bound (Theorem 3.2)

First notice that for any distribution P on instance sequences x1...T , the minimax regret of
the game is lower bounded by the difference

Ex1...T∼P [GC ]− max
alg. A

Ex1...T∼P [GA], (C.1)

where GC is the gain of the comparator (i.e. the best set of k orthogonal directions) chosen
in hindsight and GA is the gain of algorithm A.

In our lower bound, we use a P that is i.i.d. between trails and at each trial gives
probability 1

2 to each of the following two opposite instances,

x+ := ( 1/
√
k, . . . , 1/

√
k︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
n−k

) and x− := − ( 1/
√
k, . . . , 1/

√
k︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
n−k

).

Now we lower bound the difference in (C.1) for this particular choice of P. We first lower
bound the gain of the comparator by the gain of the best of two orthonormal sets, either
{e1, . . . , ek} or {−e1, . . . ,−ek} (these sets maximize the gain on x+ and x− respectively).

Ex1...T∼P [GC ] ≥ Ex1...T∼P

[
T∑
t=1

xᵀ
tDxt + 2cmax

{
µᵀ

+

T∑
t=1

xt,µ
ᵀ
−

T∑
t=1

xt

}]
+ Tc2,

where µ+ and µ− are the first moments of the two sets, that is

µ+ = {1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0} and µ− = {−1, . . . ,−1︸ ︷︷ ︸
k

, 0, . . . 0},

and D =

[
Ik 0
0 0

]
is the common second moment of both sets. Since we only compare to

two sets, the first moment part of the gain is essentially the two experts setting with loss per
round equal to ±2c

√
k. With analysis in Koolen (2011), one can show that the first moment

part is hence lower bounded by Ω(
√
c2kT ). The second moment part, noticing that both

instances x+ and x− lie in the span of D, always attains its maximum T . Finally, since
instances are generated independently between trials with expectation zero (E[xt] = 0), any
algorithm has expected gain 0 in the first moment part, and so

max
alg. A

Ex1...T∼P [GA] ≤ T (1 + c2).

By combining the bounds on comparator and algorithms, we show a Ω(
√
c2kT ) lower bound

of the difference in (C.1) which concludes our proof.
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