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Abstract

Stochastic exp-concave optimization is an important primitive in machine learning that
captures several fundamental problems, including linear regression, logistic regression and
more. The exp-concavity property allows for fast convergence rates, as compared to general
stochastic optimization. However, current algorithms that attain such rates scale poorly
with the dimension n and run in time O(n*), even on very simple instances of the problem.
The question we pose is whether it is possible to obtain fast rates for exp-concave functions
using more computationally-efficient algorithms.

Consider the problem of minimizing a convex function F' over a convex set X C R"™ where
our only access to F' is via a stochastic gradient oracle, that given a point x € K returns a
random vector g, for which E[g,;] = VF(x). We make the following assumptions:

(i) F is a-exp-concave and twice differentiable; that is, if g, = VF(x) and H, = V2F(x)
are the gradient and Hessian at some point = € K, then H, > o g.g, .

(ii) The gradient oracle has |||, < G with probability 1 at any point € K, for some
positive constant G.

(iii) For concreteness, we assume the case that = {x € R" : ||z||, < 1} is the Euclidean
unit ball.

An important special case is when F' is given as an expectation F(x) = E,p[f(x, 2)]
over an unknown distribution D of parameters z, where for every fixed parameter value z
the function f(z,z) is a-exp-concave with gradients bounded by G. Indeed, this implies
that F' is itself a-exp-concave (see Appendix A). Given the ability to sample from the
distribution D, we can implement a gradient oracle by setting g, = V f(x, z) where z ~ D.

For example, f(z,(a,b)) = 1(a"z — b)? corresponds to linear regression. In a learn-
ing scenario it is reasonable to assume that f(z,(a,b)) < M with probability 1 for some
constant M, which also guarantees that f is exp-concave with o = 1/M. Additional
examples include the log-loss f(x,a) = —log(a'z) and the logistic loss f(z,(a,b)) =
log(1+exp(—b-a'x)), both are exp-concave provided that a,b and 2 are properly bounded.

The goal of an optimization algorithm, given a target accuracy e, is to compute a
point Z for which F(Z) —mingex F(x) < € (either in expectation, or with high probability).
The standard approach to general stochastic optimization, namely the Stochastic Gradient
Descent algorithm, computes an e-approximate solution using O(1/¢2) oracle queries. Since
each iteration runs in linear time!, the total runtime of this approach is O(n/e?).

1. We assume that an oracle query runs in time O(1).
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However, the exp-concavity property of F' allows for better convergence rates. A stan-
dard online-to-batch conversion of the Online Newton Step (ONS) algorithm (Hazan et al.,
2007) yields an algorithm? that attains a rate of O(n/e) for exp-concave functions. Never-
theless, the runtime per iteration of this algorithm is O(n?), which implies a total runtime
of O(n3 /€) ignoring projections. When considering the time required to compute a “gen-
eralized projection” used by ONS, the runtime becomes as high as O(n4 /€), even for very
simple domains K (such as the unit ball). For the technical details, refer to Appendix B.

The poor dependence of the ONS algorithm on the dimension n hinders it from becoming
relevant to practical learning applications. Thus, we propose the following problem.

Open Problem: Is it possible to find an optimization algorithm that attains the rate of
O(n/e) for exp-concave objectives, with only linear-time computation per iteration?
Is it possible to perform any better than O(n*/e) overall?

Note that in the case of strongly conver functions (which is a subclass of exp-concave
functions, see Hazan et al. 2007), it is well known that an e-approximate solution can be
computed in time O(n/e) (Hazan et al., 2007; Kakade and Shalev-Shwartz, 2009). Recently,
Hazan and Kale (2011) proposed an optimal algorithm for this case that runs in time O(n/¢),
avoiding any logarithmic terms.

We conjecture that better runtimes should be possible for exp-concave functions as well,
using algorithms that are based on simple gradient steps. Our intuition is as follows: an exp-
concave function can be thought of as a function which is strongly convex in the direction
of its gradient. As a concrete example, consider the simple case of linear regression with the
squared loss in which the Hessian H = V2F is fixed and does not depend on z. Any small
eigenvalue of H (that prevents F' from being strongly convex) corresponds to a direction in
space that does not affect the objective value much, and so the algorithm need not converge
quickly in that direction. In other directions, the “directional strong convexity” property
should enable a gradient-based algorithm to converge in the fast 1/e rate. The difficulty
is in tuning (perhaps adaptively) the learning rate of such algorithm so as to attain fast
convergence in all directions simultaneously.
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2. Here we assume that F' is an expectation of exp-concave functions f(z,z) and the algorithm has access
to a gradient oracle of the form g, = V f(z, z) with z ~ D.
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Appendix A. Exp-concavity of E, p[f(z, 2)]

Lemma 1 If f(x, z) is a-ezp-concave for any z, then F(z) = E..p[f(x, 2)] is also a-exp-
concave.

Proof Fix a point z and denote g = VF(x) and H = V2F(x). For all 2, let g, = V f(x, 2)
and H, = V2f(z,2). Then clearly E.plg.] = ¢ and E..p[H.] = H. In addition, since
f(-, 2) is exp-concave, we have H, ~ ag.g, for all z which means that u Hou > au' §.3.) u
for all ©w € R™ with probability 1. Hence, for all u,

uw' Hou = E[H,]u
> aB[u’ 5.9; u] = oB[[5; ul]’]
> o|E[g; ull* = allg) ul?

T T
=au gzg,u

which implies that H, > « gzng, i.e. F' is a-exp-concave. |

Appendix B. The Online Newton Step (ONS) Algorithm

We give a high-level overview of the ONS algorithm and demonstrate its high computational
complexity; for a detailed description of ONS, see Hazan et al. (2007). The algorithm
maintains an intermediate solution z; and a matrix A, and uses an update rule of the form

Tp1 o, (20 — A7 gr), A1 < A+ gigd

where g; is the vector returned by the oracle on iteration ¢ and the “general projection”
operator Il4, is the projection onto the set K with respect to the norm induced by the
matrix A, defined as [|z|,, = /& A;x. The regret bound of ONS directly implies that

O(n/¢) iterations of the above form are sufficient for convergence.

The matrix A;, which stands as a proxy for the Hessian of F, is the source of the high
computational complexity. Up to generalized projections, each update can be implemented
in O(n?) time3. In the case that K is the Euclidean unit ball, the projection Il4, requires
matrix factorizations and thus computed in time O(n?).

3. The inverse A; ' can be updated efficiently via the Sherman-Morrison formula.
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