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Abstract

In this paper, we summarize some recent results in Li et al. (2012), which can be used to
extend an important PAC-Bayesian approach, namely the Gibbs posterior, to study the
nonadditive ranking risk. The methodology is based on assumption-free risk bounds and
nonasymptotic oracle inequalities, which leads to nearly optimal convergence rates and
optimal model selection to balance the approximation errors and the stochastic errors.
Keywords: Gibbs posterior, model selection, oracle inequalities, ranking, risk minimiza-
tion.

1. Introduction

As summarized in an authoritative text Catoni (2007), the PAC-Bayesian approach has
found great success in supervised classification. There has been a lot of interest over the
past few years in using the Gibbs posterior, and more generally the exponential weights, to
derive finite sample oracle inequalities (e.g. Alquier and Lounici 2011, Lecué 2007, Rigollet
and Tsybakov 2011). Although these studies have mostly focused on iid (independent and
identically distributed) data, recent works have extended to the study of weakly dependent
time series in, for example, Alquier and Wintenberger (2012).

The current paper summarizes some recent results we obtained (Li et al. 2012) on the
risk performance of the Gibbs posterior. Our results are different in nature from those of
Catoni (2007), in the sense that the relation we revealed does not depend on the specific
form of risk functions, nor on the data generation process. The relation is the same whether
we have additive empirical risk or not, whether we have independent or dependent data.
Therefore it is more general than the ones appeared in existing literature. It is both general
and simple, and therefore fundamental. The flip side of being very general is that our ap-
proach may not always lead to optimal oracle inequalities. As we will discuss later, in some
situations, the Gibbs posterior could produce less sharp results compared to the state-of-art
PAC-Bayesian methods.

Below, we will first introduce the framework of the Gibbs posterior, and summarize

the general relations derived in Li et al. (2012). Then we will apply these relations to the
ranking problem, which involves a nonadditive empirical risk that has not been addressed
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in the PAC-Bayesian literature before. Li et al. (2012) also considered another application
to the generalized method of moments (GMM), which is a popular research direction in
econometrics and is not included in this paper.

2. The Gibbs posterior

The Gibbs posterior is a randomization method of empirical risk minimization obtained
from an analogy to statistical physics, where the empirical risk is identified with the energy
and low probabilities are assigned to high energy configurations. The method has recently
been recognized by researchers from various fields, for example, information theorists (e.g.
Zhang 1999, 2006), econometricians (e.g. Chernozhukov and Hong 2003), and statisticians
(e.g. Jiang and Tanner 2008). Due to its Bayesian flavor, the Gibbs posterior allows
application of convenient computational algorithms such as Markov chain Monto Carlo
(e.g. Chernozhukov and Hong 2003, Belloni and Chernozhukov 2009, Chen et al. 2010).
Given the observed data D = {D;,i = 1,2,...,n}, the general form of Gibbs posterior @ is
defined as a probability measure constructed from an empirical risk R,;:
e Min(0) 7 (d9)

Q(do) = f@ €_>‘R”(0)7T(d9)’ (1)

where 6 is the parameter of interest, © is the space of 0, R,,(6) is an empirical risk function
that depends on both 6 and the sample D, X is a positive scalar and 7 is a prior distribution
over O.

Compared to the posterior distribution derived from a likelihood based procedure, the
Gibbs posterior may no longer have the usual interpretation of conditional probability given
observed data unless AR, () is exactly the negative log-likelihood. However, it can achieve
better risk performance under model misspecification compared to the likelihood based
Bayesian method, since the Gibbs posterior is directly associated with the risk function of
interest (Jiang and Tanner 2008, 2010).

The goal of the current paper is to derive oracle inequalities for model selection using
the Gibbs posterior, so that nearly optimal risk performance will be achieved across a range
of models under consideration. In the definition of the Gibbs posterior (1), we let the
parameter § = (b,m), where m is a model index (m = 1,2,...) with corresponding model
space By, and b is a parameter in B,,. Sometimes without confusion, we also use m to
denote the dimension of B,,. In the model selection framework, the prior distribution can
be usually decomposed into 7 (db, m) = 7(db|m)m,, where m,, is a discrete prior distribution
over all models considered, and 7 (db|m) is the prior of b on model space B,,. Then (1) can
be equivalently written as

e M ®m) 7 (dblm) 7y,

db =
Qdb:m) = S SR (bl

(2)

In general, we are interested in some theoretical risk R(#), for which R, (6) is the corre-
sponding empirical risk. With slight abuse of notation, we sometimes also write R(b) and
R, (b) since b is the primary parameter to be estimated in the risk functions.
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3. General oracle inequalities for risk convergence and model selection

In this section, we will make no assumptions and describe an inequality for some theoretical
risk of interest R(6), which will be related to the empirical risk R,, and the prior = used
to construct the Gibbs posterior (1). Due to the assumption-free nature of this approach,
the relations here can (at least in principle) apply to a wide variety of cases, with either
additive or nonadditive empirical risk, with iid data, time series, panel data, or spatial data.

We study, for a € R, the expected posterior probability that a (nonstochastic) theoretic
risk R exceeds a, i.e. PQ(R(A) > a), where P corresponds to the underlying true distri-
bution of data D, and () corresponds to the Gibbs posterior conditional on data D. The
probability distribution P@), which is different from the prior 7 used in the Gibbs posterior,
can be understood as a mixture distribution that measures the random outcome of the
following sampling process: (i) sampling a data set D from the underlying true distribution
P, (ii) sampling a parameter # from the resulting Gibbs posterior @) conditional on the data
D sampled from step (i).

To bound the probability PQ(R(6) > a), we construct a simultaneous coverage inter-
val for the empirical risk R,, appearing in the Gibbs posterior, using the theoretic risk R.
Let 0 < s1 < s9 and A(f) > 0 be some nonstochastic quantities, possibly dependent on
sample size n. Define an event A = [V0,s1R(0) — A(0) < R,(6) < s2R(0) + A(0)] and its
complement A°. Then P(A) is the (uniform) coverage probability of [siR — A, soR + A
for R,. ' Note that A is related to the radius of the coverage interval and is analogous to
the standard deviation of R, which characterizes its stochastic error. In applications, the
quantity A usually decreases with n and increases with the model complexity. Although it
is ideal to have s1 = s9 = 1 for strict oracle inequalities, we will later see that sometimes
it is better to take s; = 1 — § and so = 1 + § for some small positive J, to allow a smaller
radius A for a given coverage probability.

We define the quantity

3)

3 e—)\(SQR+A)7T do
R= —(81)\)_1 log [f fe)‘ATI'(dQ)( )]

for general 6. For model selection framework with 6 = (b,m), we let the radius of the
coverage interval A depend on m but not on b, and we write A,, instead for this dependence.
We define for any model m and any v > 0,

Rp(v) = inf R+wv+ (so20) togn(R < inf R4 vjm)™}]
bEBm bEBm

and also } . )
R(v) = inf(soRm(v) + Ay + A Hogm,b) /51 + AJ sy, (4)

m

1. This involves a joint probability over a possible uncountable space of §. One can use the outer probability
P* if the measurability problem is of concern. See for example, Section 1.2 of van der Vaart and Wellner
(1996).
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where

A=)t 1og(z Tme 2m).

Then we have the following proposition for the excess probability PQ(R(#) > a) and
oracle inequality for R(#). The proofs are given in Li et al. (2012).

Proposition 1 (i) When A is possibly dependent on 0, for any u € R:

PQ [R>R+ S“A] ge’“+P{39:Rng[is—A,32R+A]}, (5)
1

where R is defined in (3).

(it) (Oracle Inequality) In model selection case, for any u € R and v > 0,

PQ [R > R(U) + Slu)\:| < e "+ P{H(b,m) ' Ry ¢ [SIR - Ama soR + Am]} (6)

where R(v) is defined in (4).

Here R(v) is chosen to be slightly larger than R, so inequality (5) is tighter than (6) but
the latter will be more useful when applied to model selection problems. If we use Proposi-
tion 1 to bound the probability of a large excess risk R—infg R, then these inequalities reveal
the fundamental relation that the performance of excess risk R—infy R is mainly determined
by two factors: the excess of a nonstochastic bound R — infg R or R(v) — infy R, as well
as a stochastic difference between R,, and R, as reflected in P{EIQ 'Ry & [s1R—A, 82R+A]}.

Now we will discuss our choices of the tuning parameters s1, so, A, u, A, v and 7 in the
proposition.

Strict oracle inequalities are supposed to have s; = so = 1. But sometimes we can
choose s1 =1 — ¢ and so = 1 + ¢ for some small positive §. This can lead to a better
risk convergence rate compared to the choice s; = so = 1 made in Jiang and Tanner
(2008), Proposition 6.

The scalar A is usually set to be A = ny, where ¢ > 0 is a constant sometimes called
“inverse temperature” in statistical mechanics.

We will let u = 2logn so that e™* = n~2,

We will choose A,, such that P{El(b, m) : Ry, & [s1R — Ap,,s2R + Am]} can be
controlled by e~ = n~2. To achieve this, we make use of the concentration tools in
our proofs (e.g. Massart 2003). In later examples, typically A,, = m/n® up to some
logarithm factors, where c =1/2if 51 =s; =landec=1if sy =1—9 and so = 1+9.
We will choose v = A,,, (or about the same order up to some logarithm factors).

We will choose m,, o< e~ ?**m_ This induces a BIC-type penalty on the model com-
plexity, which reflects our preference for more parsimonious models.
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Therefore, given the choices of all tuning parameters, by setting u = 2logn, A = n,
the right-hand side of both inequalities can be bounded by 2n~2, implying that

2logn
nsiy

for all large n, almost surely in the measure PQ, by Borel-Cantelli lemma. Here “almost
surely in the measure PQ” can be understood in the following way. First, we can rewrite
P as P, and @ as ), because both the true probability P and the Gibbs posterior @)
depend on the sample size n. Now we want to study the probability that the joint event
“Ap, = {R < R(A) + 2logn/(ns1th)} happens for all large enough n”. Consider a setup
where the data D are drawn independently across different n and define the product mea-
sure PQ = P1Q1 x P2Q2 X ... Then the event A,, happens for all large enough n, almost
surely with respect to this PQ) measure by the Borel-Cantelli lemma. Without confusion, we
will still write “A,, happens for all large n almost surely with respect to the measure PQ”. 2

R < R(A) + (7)

To derive an oracle inequality, we still need to simplify the nonstochastic bound R(v)
in (3). Given the choice of w and A,,, it can be shown that A will approximately have the
same order as A;. Furthermore, since only linear ranking rules will be considered in our
application, we can prove that

inf [(v + (s2A) log (R — inf R <ov|lm)™'] =0(An),
v>0 beBm
as long as the prior m(-|m) on each model space B, does not vanish exponentially fast in

sample size n for any small neighborhood contained in the subspace B,,. Therefore, in the
expression (4), we have

R(v) = (s2/51) inf { inf R+0(An) +O(Am)} +0(A1) = (s2/s1) inf { inf R+O(Am)},

since A, increases with m and O(A;) can be absorbed into O(A,,). Combining this with
(7) leads to

52 . .
< 2
R < - lng { bé%fm R+ O(Am)} (8)

for all large n, almost surely in PQ, which is the oracle inequality for model selection.

Based on this “almost surely” statement, in our ranking example, we can further obtain
the oracle inequality of Gibbs posterior mean

52, .
< = .
PQR < . 171711f { bl%f;n R+ O(Am)} 9)

The oracle inequalities (8) and (9) imply that even if the underlying best candidate
model B, is unknown, the theoretical risk R(b) with b sampled from the Gibbs posterior

2. Here we used the PQ measure instead of the more common P measure. This is a consequence related
to the generality of the relation we obtained, which is not dependent on the risk function or the data
generation process. For example, using the P measure together with the posterior mean, instead of PQ,
often would require the loss function to be convex, while our result holds in PQ measure regardless of
the form of the loss function.
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will always have the best possible convergence rate among all candidate models, both in
the posterior mean and in the sense of almost surely convergence. In (8) and (9), infyep,, R
measures the accuracy of model m, which typically improves (decreases) when the dimension
or complexity m increases, and the radius of the coverage interval A,, measures the size of
the stochastic error of model m, which typically increases with the model dimension m and
decreases with the sample size n. The leading constant sa/s; is either 1 or 1—fg for small

T
6 > 0 such that the ratio is close to 1.

4. Oracle performance of ranking risk with model selection
In ranking estimation, the empirical risk function is defined as

1

el = =)

STI(Y: - Y))r(Xi, X53b) < 0], (10)
i#]j

where Y is a scalar random variable, X € X is a random vector in  and the ranking rule
r: X x X — R follows r(x,2’;b) > 0 if x ranks higher than 2’ and r(x,2’;b) < 0 otherwise.
Since R, involves averaging over paired data, it is a nonadditive empirical risk and is anal-
ogous to the energy of pairwise interactions in statistical physics. In this paper, our goal
is to minimize the theoretical risk of mismatch R(b) = P[(Y — Y')r(X, X’;b) < 0]. The
consistency and fast convergence rate of general ranking estimator that minimizes (10) and

its convex upper bounds have been studied in recent frequentist papers such as Clémencon
et al. (2008) and Rejchel (2012).

We now apply Proposition 1 to the model selection problem of the ranking risk R,
to select the best linear rule ranking rules of the form 7(z,2’;b) = (z — 2/)Tb for b €
RP in which only part of the components in X are active. Proposition 1 in Clémencon
et al. (2008) indicates that the best rule possible in theory, namely the Bayes rule, is
r(X,X')=P(Y-Y'>0/X,X)—P(Y-Y' <0|X,X’), (or any sign-preserving equivalent).
Define the corresponding theoretical risk R* = P[(Y — Y")r*(X, X") < 0] as the optimal
Bayes risk. In general, r* may depend on X, X’ nonparametrically. In the following,
we focus on the case where Y is a binary variable taking values in {—1,1}, X is a p-
dimensional random vector with p growing with n, and consider the set of linear rules
R =1{be R :r(zx,2";b) = (x —2')Tb}. We assume that the constant component X; = 1
is always present in the model, and restrict by = +1 as a normalization for identification
purpose. The parameter is then = (b, m) with m = 1,2, ..., p, where b € B,,, and B,,, is the
union of all m-dimensional coordinate subspaces B,,; for j = 1,2, ..., ( 7?; ) We then have the
following theorem for R(6) with 6 = (b, m) sampled from the Gibbs posterior. The proofs
are given in Li et al. (2012).

Theorem 1 Suppose the following regularity conditions R1-R/ hold:
R1) For any m =0,1,2,...,p, T X e=2¢m(osn)® yyith b > 0 @ constant. The priors o,
( y
all submodels By,j with size m are the same (T%)_lﬂ'm.
(R2) w(blm, j) is a continuous distribution restricted on By,; MO, with ©, = {b: ||b]| <
plognt, forl<m<pandl<j<(P). Foranyby € B,,,;NO,, any small enough § > 0,
m J
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there exists a constant ¢ > 0 such that ©({b: ||b — bo|| < 6}|m,7) > (6n=)™ uniformly for
all m, j and all sufficiently large n.

(R3) Exy I[(y — Y')(x — X')Tb < 0] is continuously differentiable in b for all x,y,
and the partial derivatives are bounded as |0 Ex:y+ I[(y —Y")(z — X')Tb < 0]/9by| < nt for
some constant £ > 0 uniformly for k =1,2,....p, all x,y, and all sufficiently large n.

(R4) The conditional expectation n(X) = E[Y|X] = P(Y = 1|X) has an absolute
continuous distribution on [0,1] with density bounded above by constant f,.

Then for p = o(n/(logn)3), for allm =1,2,....,p and j = 1,2, ..., (ﬁ),

(i) for any § > 0, almost surely in the measure PQ for all sufficiently large n, there
exists a constant C1 > 0, such that

3
R—R < (1+0)inf | inf (R_R*HM}

m,) bEij n

where (b,m) is randomly drawn from the Gibbs posterior (2);
(ii) for any 6 > 0, for each sufficiently large n, there exists a constant Cy > 0, such that

Com(log n)?
PQR < R*+(1+0)inf | inf (R—R*)+M]
m,j LbEBp,; n

This theorem has extended the “bipartite” ranking example (Example 5.1) in Clémencon
et al. (2008) in two ways. First, we allow a framework of adaptive model selection with-
out knowing the best model dimension m. Second, we achieve a fast oracle rate of about
O(m/n), which does not depend on the smoothness parameter « in their Assumption 4.
In fact, our condition R4 guarantees that the o parameter in their paper can take a value
arbitrarily close to 1, which allows us to make it depend on n and derive an improved
convergence rate, as compared to Corollary 8 of Clémencon et al. (2008).

Our regularity conditions R1 and R2 on the prior are mild and general. The assumption
R1 assigns a prior on models that decreases exponentially fast with the model size, which
favors parsimonious models. The assumption R2 says that the prior on B;,; does not vanish
too fast in n» on any small neighborhood and has a uniform lower bound over all submodels,
which is satisfied by many commonly used priors, such as a uniform prior or a normal prior
truncated on the Ly bounded set ©,. Note that since the radius of ©,, is growing with n,
such a prior is not restrictive.

R3 and R4 impose mild upper bounds on the partial derivatives of the conditional
expectation Ex/y/ I[(y — Y')(x — X')Tb < 0] and the density of random variable n(X).
In general, we do not require that the Bayes rule r*(x, z’) belongs to the linear family %,
nor do we make any model assumptions on the relation between Y and X. Han (1987)
proposed a generalized regression model Y = Fy o Fy (X Tb*, ¢), with b* being the unknown
true parameter, € independent of X, F} strictly increasing in both arguments, and F5
monotonely increasing. By taking F)(x1,x2) = x1 + 22 and Fy(z) = I(z > 0), this becomes
a binary choice model of ¥ = I[XTb* + ¢ > 0] and b* can be estimated by minimizing
(10). This maximum rank correlation estimator is shown to be y/n consistent for b* and
asymptotically normal in Sherman (1993). In our general setup, the true parameter b*
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may not exist since we do not assume the existence of such a single index model. Instead,
the Bayes rule always exists and we are interested in the performance of the excess risk
R(0) — R* with 6 sampled from the Gibbs posterior.

5. Discussion

In this paper, we have introduced assumption-free oracle inequalities that are useful for
studying the performance of Gibbs posterior as a random method of risk minimization and
model selection. Our method can be generally applied to nonadditive risk functions, and
can give adaptive and nearly optimal oracle rate.

The generality of our inequalities could potentially lead to less sharp results compared
to PAC-Bayesian methods. Specifically, when considering model selection in classification
with large margin for iid data, we will get a nonstrict oracle inequality with an additional
(149) factor, while the techniques in Catoni (2007) are more refined for this situation and
can achieve the strict oracle inequality with a better leading constant 1. 3

We have only considered prior distributions with compact support ©, in our ranking
example. However, our general inequalities can be directly extended to accommodate prior
distributions with thin tails on a noncompact support, such as a normal prior. It is also
possible to include high dimensional predictors with p > n in the ranking example, with
some additional adjustment of the concentration tools used in the proofs. For example, we
can impose an additional model size cap in order to keep the number of candidate models
from growing too fast.

In the formula of the Gibbs posterior (1), the scaling parameter A has been taken to
be ny in this paper, where 1 can be any positive constant, without affecting the risk
performance results derived in this paper. We note that 1 corresponds to the inverse
temperature in statistical mechanics, and in the classification literature, researchers have
considered choosing v using data-driven methods such as cross validation (see, e.g., Zhang
1999, Audibert 2004, Catoni 2007). It is an interesting future problem to explore how
to choose 1 based on data in our more general setup with possibly dependent data and
nonadditive empirical risk.
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