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Abstract

The existence of a compression scheme for every concept class with bounded VC-dimension
is one of the oldest open problems in statistical learning theory. Here we demonstrate
the existence of such compression schemes under stronger assumptions than finite VC-
dimension. Specifically, for each concept class we associate a family of concept classes that
we call the alternating concept classes. Under the assumption that these concept classes
have bounded VC-dimension, we prove existence of a compression scheme. This result
is motivated by recent progress in the field of model theory with respect to an analogues
problem. In fact, our proof can be considered as a constructive proof of these advancements.
This means that we describe the reconstruction function explicitly. Not less important, the
theorems and proofs we present are in purely combinatorial terms and are available to the
reader who is unfamiliar with model theory. Also, using tools from model theory, we apply
our results and prove existence of compression schemes in interesting cases such as concept
classes defined by hyperplanes, polynomials, exponentials, restricted analytic functions and
compositions, additions and multiplications of all of the above.
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1. Introduction

A concept class (X, C) consists of a set of points X which we refer to as the domain, and a
family of subsets of X (i.e., C ⊂ 2X) which we refer to as concepts. Given a concept class
(X, C), a k-sample compression scheme for C is a mapping from sequences of elements of X
labeled according to some concept C ∈ C to sub-sequences of length k. It is required that
the labeling of the input sequence can be reconstructed from the subsequence.

Compression schemes were first introduced by Littlestone and Warmuth (1986), where
their close relation to learnability was established. Namely, the existence of a k-compression
scheme implies an order k bound on VC-dimension. The reverse implication: whether a
bounded VC-dimension implies a k−sample compression scheme is an unresolved question in
statistical learning theory. A stronger version of this question is the compression conjecture,
that every concept class with VC-dimension d has an order O(d) compression scheme.
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1.1. Meanwhile in Model Theory

Interestingly the problem has also caught the attention of model theorists. Laskowski (1992)
was the first to observe that the property of having finite VC-dimension had been investi-
gated simultaneously and independently in both fields. In model theory, it appeared under
the name “NIP” (Negation of the Independence Property). Later Johnson and Laskowski
(2010) observed that the compression scheme conjecture had a very natural model-theoretic
analogue. Some special cases of the latter conjecture are obtained by Johnson and Laskowski
(2010) and Guingona (2012). More recently, Chernikov and Simon (2010, 2012) managed
to prove a weak version of this conjecture. Specifically, this latter result assumes finite
VC-dimension not only for the concept class C, but also for certain other concept classes
built from it. Model-theoretically, this is a very natural assumption which is satisfied by
many classes that are known to be of finite VC-dimension.

1.2. Our Main Result

For every concept class (X, C) we associate a family of concept classes that we call the
alternating concept classes. Under the assumption that these concept classes have finite
VC-dimension, we prove existence of a compression scheme. Furthermore, we show that it
is enough to verify this assumption for one specific member of the family.

This assumption might seem strange at first. However, we know from model theory that
many interesting cases satisfy it. For example, as a special case, we cover concept classes
defined by compositions of polynomials, exponentials and restricted analytic functions. An
alternative, model theoretic, proof of this case was given by Johnson and Laskowski (2010).

More generally, our assumption is fulfilled by any concept class definable in an NIP
structure; this case was proved by Chernikov and Simon (2012). Our proof can be considered
as a constructive proof of their result. Our statement, though, demands a simpler and
weaker condition. The advantage of our constructive proof is twofold: First, we describe
the reconstruction function explicitly. Second, our main result and proof are accessible to
the reader who is not familiar with model theory.

1.3. Related Work

The compression conjecture was first introduced by Littlestone and Warmuth (1986). Later,
compression schemes were studied by Floyd (1989); Floyd and Warmuth (1995). These
papers establish the existence of compression schemes for an important family of concept
classes, specifically maximum concept classes.

Ben-David and Litman (1998) showed a wide family of classes for which compression
schemes of size VC-dim exist. They also proved the existence of compression schemes with
additional information for geometric concept classes (specifically k-size array compression
scheme). The bounds for the compression scheme may be computed in terms of the com-
plexity of the defining formula. Their proof relied on Tarski’s theorem stating that any
first order formula in the structure 〈R; +, ·,≤, 0, 1〉 is equivalent to one without quantifiers
(which is the main step in proving that this structure is NIP). In that respect, Chernikov
and Simon (2012) extends this result from geometric concept classes to any concept class
in an NIP structure.
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More recently Kuzmin and Warmuth (2005) showed the existence of unlabeled com-
pression schemes for maximum concept classes. They conjectured that such compression
schemes have a geometric interpretation. Rubinstein et al. (2009), and later Rubinstein and
Rubinstein (2012) gave a positive result in that direction by using representation of concept
classes in piecewise linear hyperplane arrangement. They further study compressions that
arise through operations on geometric representations. Many of the representations they
give define geometric concept classes. We discuss this further in Section 6.

Two other works that are relevant to our paper, yet not so much to the compression
conjecture, are the works of Macintyre and Sontag (1993); Karpinski and Macintyre (1995).
They too applied model theoretic results. Together, these works show polynomial bounds
on the VC-dimension of concept classes defined by certain neural networks. The bounds
are derived by exploiting the fact that these neural networks are definable in o−minimal
structures, a property which implies NIP. We elaborate on this in Section 5.

The main focus of this paper is the conceptual connection between learnability and
compressibility. The bounds we produce are far from O(d). It is worth comparing our
result to results on data size dependent compression schemes. Compression schemes that
compress a sample of size m to a subset of size O(d logm) exist (see for example Freund
(1995)). The compression schemes presented here compress a sample set of size m to a
subset of size c, where c is a constant independent of m. However, since our bounding
techniques involve tools like Ramsey theory, it is questionable if for reasonable size m, the c
we present is smaller than O(d logm). (And in case one has so many examples that d logm
happens to be comparable to c, considering a larger concept class would make sense).

1.4. Structure of the Paper

The structure of this paper is as follows. In Section 2 we elaborate on the results in model
theory and further explain them. The rest of the paper is independent of this section. We
will however refer to the fact that certain structures are NIP when we will wish to apply our
results. In Section 3 we give the necessary definitions, some preliminary facts from Ramsey
theory and other combinatorial results. We proceed to our main result in Section 4 which is
Theorem 21. We then continue in Section 5 to some applications and to a counter example
where our assumptions in Theorem 21 do not apply, thus concluding that the problem of
compression scheme is not yet resolved. We conclude in Section 6 where we discuss some
notions that arise from our analysis and potential directions for further advancement.

2. NIP Theories and the UDTFS Conjecture

Let us introduce the model-theoretic framework in a simplified version tailored to our needs.
An R-structure is a (usually infinite) set M equipped with a distinguished binary relation
R(x, y) (which is just a subset of M2). An R-formula is a syntactically correct formula
written using any number of variable symbols x1, x2, . . . , y1, y2, . . ., quantifiers ∃, ∀, logical
connectives ∧,∨,¬, . . . and the binary symbols R and =. For example

φ(x1; y1) := R(y1, x1) ∧ (∀x2)(R(y1, x2)→ (x2 = y1 ∨R(x1, x2)))

is a formula which, in the case where R happens to be an ordering, says that x1 is the
successor of y1. We see that the variables x1, y1 are not under the scope of any quantifier.
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They can thus be replaced by parameters from M : if a1, b1 are in M it makes sense to ask
whether the formula φ(a1; b1) is true. If this is the case, we write M |= φ(a1; b1).

Assume that φ(x;y) is a formula, where x,y are two sequences of variables of respective
lengths |x| and |y|. Given a sequence c ∈ M |y|, we can consider the set φ(M ; c) ⊆ M |x|

defined as φ(M ; c) = {a ∈ M |x| : M |= φ(a, c)}. Such a set is called a definable set of M .
We associate to the formula φ(x;y) the family Fφ = {φ(M ; c) : c ∈M |y|} ⊆ P(M |x|).

We say that the formula φ(x;y) is NIP (No Independence Property) if the family Fφ
has finite VC-dimension. We say that the structure M is NIP if all R-formulas are NIP.
Note that if M is NIP, then in particular the family {R(M ; c) : c ∈ M} of subsets of M
has finite VC-dimension, but the converse need not hold. The class of NIP structures has
been introduced in Shelah (1971) and has been investigated in a number of papers since.
See Simon (2012) for a survey.

If A ⊆ M is an arbitrary subset of M , we similarly define φ(A; b) = {a ∈ A|x| : M |=
φ(a; b)}. It is the trace of the formula φ(x; b) on the set A. Understanding such traces of
definable sets on small subsets is a recurring theme in model theory. A nice situation for
example is when this trace coincides with some other trace ψ(A;d) where the parameters
d come from the set A itself. As we will see, existence of compression schemes is strongly
related to this property.

How does this framework relate to concept classes? We have explained how, given a
structure M , one associates various concept classes Fφ on cartesian powers of M . Con-
versely, starting with a set X and a concept class C of subsets of X, we can construct an
R-structure M as follows. Let the set M consist of the disjoint union of the sets X and C.
Let R(a, b) hold for a, b ∈M if and only if a is in X, b is in C and a belongs to b. Then the
formula R(x, y) is NIP if and only if the class C has finite VC-dimension. Note that saying
that the structure M is NIP is a much stronger statement.

In general, model theory considers structures M which are equipped with any—finite or
infinite—number of relations Ri, functions fj : Mkj →M and constants ck ∈M . We write
such a structure as 〈M ; (Ri)i, (fj)j , (ck)k〉. The definition of a formula and a definable set
extend naturally. For example the structure 〈R; +, ·,≤, 0, 1〉 of real numbers, equipped with
two ternary relations +, · for addition and multiplication, a binary relation ≤ for the order
and two constant symbols for 0 and 1, is an NIP structure. Any semi-algebraic set is a
definable set in that structure (and by Tarski’s theorem, they are the only ones). If we add
a symbol for the exponential function, we obtain the structure Rexp = 〈R; +, ·,≤, exp, 0, 1〉
which is also NIP. Furthermore, we may add symbols for an arbitrary number of restricted
analytic functions (fi)i, that is restrictions to [0, 1]n of some analytic function defined on a
neighborhood of [0, 1]n. (The arity n may vary from function to function.) See Speissegger
(2012).

It turns out that many concept classes which are known to be of finite VC-dimension can
be written in the form Fφ for some formula φ(x,y) from one of those structures: it is the
case for example of any concept class defined by polynomial—or exponential polynomial—
inequalities. The set of half spaces (in any dimension n) is the simplest example of such.
A more complicated example is that of neural networks which we discuss in Section 5. We
thus see that the condition that M is NIP as mentioned in the previous paragraph is not
as restrictive as it might seem at first.
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Johnson and Laskowski (2010) observed that the problem of compression schemes has
a natural model-theoretic analogue which they called the UDTFS-conjecture (uniform de-
finability of types over finite sets).

Conjecture 1 (UDTFS) Let φ(x;y) be an NIP-formula. Then there exists a formula
ψ(x; z) such that for any finite subset A ⊂M and tuple c ∈M , there is some d ∈ A|z| such
that φ(A; c) = ψ(A;d).

This conjecture should be thought of as saying that there is a definable compression
scheme for the family Fφ. The compression function takes as input a finite subset A and
the trace φ(A; c) and outputs the tuple d. The reconstruction function takes the tuple d
as input and outputs the definable set ψ(M ;d).

In Chernikov and Simon (2012), the following theorem is proved.

Theorem 2 Let M be an NIP structure, then the UDTFS conjecture holds for all formulas
over M .

Note that this statement is weaker than the original conjecture in that it assumes NIP for
all formulas and not just for one. From a model-theoretic perspective, this is a very natural
assumption. As noted above, it is satisfied in particular by all concept classes defined in
the field of real numbers with exponential; this includes many interesting examples.

The proof of this theorem requires two ingredients. The first one is the notion of ‘honest
definitions’ introduced in Chernikov and Simon (2010).

Theorem 3 Assume that M is an NIP structure and let φ(x;y) be a formula. Fix some
parameters c ∈M |y| and subset A ⊆M . Then there is a formula ψ(x; z) with the following
property: For any finite A0 ⊆ A, there is some dA0 ∈ A|z| such that φ(A0; c) = ψ(A0;dA0)
and ψ(A;dA0) ⊆ φ(A; c).

The condition ψ(A;dA0) ⊆ φ(A; c) is called the honesty condition because it says that
the formula ψ(x;dA0) does not lie on A: whenever it holds on some a ∈ A, then the initial
formula φ(x; c) also holds on a. This theorem can be seen as saying that the trace of a
definable set on an arbitrary set A is approximable from the inside by instances of some
formula ψ(x; z) taking the parameters in A. Note that as we assumed the structure M to
be NIP, the family {ψ(A;dA0) : A0 ⊂ A} of approximations has finite VC-dimension.

The other ingredient in the proof of Theorem 2 is Matoušek’s (p, k)-theorem which we
discuss later in this paper. It is used to show that in the special case where A is finite, one
can find a small number of approximations whose union is equal to the full set φ(A; b).

3. Preliminaries and Notations

3.1. VC-Dimension and Compression Schemes

We start with the definition of a concept class with a finite VC-dimension.

Definition 4 (Concept class) A concept class (X, C) consists of a pair: a domain X,
and a family C of subsets of X. The elements of X are called points and the elements of C
are called concepts. We will call a concept class non-degenerate if for every x ∈ X there is
a concept C ∈ C such that x ∈ C.

5



Livni Simon

With abuse of notation we will identify a concept with its indicator function. In other
words, a concept C will also denote a function from X to {0, 1}. Given a sequence x of
length m, we will notate by C(x) the sequence: (C(x1), C(x2), . . . , C(xm)) ∈ {0, 1}m.

Definition 5 (VC dimension) Given a concept class (X, C), a finite set A ⊆ X is said
to be shattered if {A∩C : C ∈ C} = 2A. The VC dimension of a concept class, VC-dim(C),
is defined as the maximal cardinality of a finite set A that is shattered. If such a maximum
doesn’t exists, we write VC-dim(C) =∞.

The relation between finite VC-dimension and the learnability of a concept class was es-
tablished in Vapnik and Chervonenkis (1971), and is arguably the most important result in
statistical learning theory.

Definition 6 (Sample) The set S(Xm) of samples of size m contains all the sequences
in (X × {0, 1})m. Given a concept C and a sequence x = (x1, . . . , xm) of size m, we will
denote by SC(x) the sample S whose coordinates are (xi, C(xi)).

We continue to the definitions of compression schemes. We begin with the basic com-
pression scheme, first introduced in Littlestone and Warmuth (1986).

Definition 7 (Compression scheme) Given a concept class C, a k-compression scheme
consists of a pair of mappings

κ : ∪∞m=kS(Xm)→ S(Xk) and ρ : S(Xk)×X → {0, 1}

such that:

1. For any C ∈ C, m ≥ k and x ∈ Xm, κ(SC(x)) is a subsequence of SC(x).

2. For any C ∈ C, m ≥ k, x ∈ Xm and a point xi in x, ρ(κ(SC(x)), xi) = C(xi).

We call the function κ, the compression function and the function ρ the reconstruction
function. In this paper we we will focus on compression schemes with additional information
also introduced in the same paper.

Definition 8 (Compression scheme with additional information) Given a finite
set Q, a k-compression scheme with additional information Q consists of a pair of functions
ρ and κ, as in Definition 7, with the modification that the image of κ is Q×S(Xk) and the
domain of ρ is

(
Q× S(Xk)

)
×X.

It is often convenient to encode the additional information via reordering of the subsequence
or using a bounded amount of repetitions of certain elements. In our case we will use
the following type of a compression scheme, which can be considered a special case of a
compression scheme with additional information.

Definition 9 (Word compression scheme with an extra bit- b) A k-word compres-
sion scheme with an extra bit b consists of a pair of functions ρ and κ, as in Definition 7,
with the modification that the image of κ is (b∪X)k and the domain of ρ is

(
(b ∪X)k

)
×X.

We replace requirement 1 with the requirement that all elements in the sequence κ(SC(x))
are either the extra bit b or elements in the sequence x.
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To see that this is a special case of a compression scheme with additional information, note
that given a k-word compression function κ, we can define a compression function κ̃ whose
image consists of a subsequence of SC(x) that contains all elements that appear in the word
κ(SC(x)) (there are at most k such elements) and as additional information we need (k+1)k

elements in order to encode all the possible arrangements of k+ 1 symbols in a sequence of
length k.

3.2. Homogeneous and Alternating Sequences

In this section we discuss some relevant results that are corollaries of Ramsey’s theorem.

Definition 10 (Homogeneous sequence) Let (X, C) be a concept class. A sequence x
of elements in X is called d-homogeneous if for any two subsequences of size d, x(1) and
x(2), for any concept C1 ∈ C, there is a concept C2 ∈ C such that

C1(x
(1)) = C2(x

(2)).

The following result is an immediate corollary of Ramsey’s Theorem for hypergraphs,
applied to the coloring of all d subsequences using the 22

d
possible concept classes over sets

of size d as our colors (see for example Graham et al. (1990)).

Theorem 11 For any k and d, there exists a large enough p such that: Given a concept
class (X, C), any sequence x of size p has a d-homogeneous subsequence of size k.

Definition 12 (Alternation number) Given a concept class (X, C), a sequence y is said
to be alternating in C if there is a concept C ∈ C such that C(yi) 6= C(yi−1) for every
1 < i ≤ |y|. The alternation number of a sequence x in C, denoted alt(x; C), is the size of
the largest subsequence of x that is alternating in C. Formally

alt(x; C) := max
C∈C
|{i : C(xi) 6= C(xi−1)}|+ 1.

Theorem 13 Let (X, C) be a concept class of VC dimension d and let x be a (d + 1)-
homogeneous sequence, then alt(x; C) ≤ 2d+ 1.

A proof of Theorem 13 can be found for example in Adler (2008) (Proposition 3). For
those who wish to avoid model theoretic terminology we repeat the proof in Appendix A.1.

As a corollary of Theorem 13 and Theorem 11 we have the following result:

Corollary 14 For any k and d, there exists a large enough p such that, given a concept
class (X, C) with VC-dim(C) = d, any sequence x of length p has a subsequence y of length
k such that

alt(y; C) ≤ 2d+ 1.
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3.3. Alternating Concept Classes and Honest Concepts

The next definition is the last definition needed to formulate our main result.

Definition 15 (Alternating concept class) Given a concept class (X, C) and x such
that |x| = m, for every i ≤ m, we consider the subset of X:

ALT(x; C) := {y : alt((y, x1, . . . , x2, . . . , xm); C) ≤ 2VC-dim(C) + 1} .

Given m and a subset (possibly infinite) A, we define the following family of subsets of X:

ALT m(A; C) = {ALT(x; C) : x ∈ Am} .

The concept class (X,ALT m(A; C)) is called “The alternating concept class of (X, C) with
respect to sequences of length m from A”.

We leave the proof of the following lemma to Appendix A.2.

Lemma 16 If ALT 2VC-dim(C)+1(X; C) has finite VC-dimension then for every m

ALT m(X; C) has finite VC-dimesnion.

Definition 17 (Honest concept) Given a concept C and a finite set A, we say that the
set C̃ (not necessarily a concept in C) is honest for A with respect to C if C̃ ∩A ⊆ C ∩A.

Definition 18 (Honest alternating concept class) Let (X, C) be a concept class, A ⊆
X a finite set and C ∈ C a concept. The concept class (X,ALT m(A,C; C)) consists of all
concepts in (X,ALT m(A; C)) that are honest for A with respect to C.

3.4. The (p,k) Theorem

We now proceed to a result by Matoušek (2004) that is the backbone of our proof.

Definition 19 ((p,k) property) Given a concept class (X, C), a finite set A ⊆ X is said
to have the (p, k) property with respect to (X, C), if for every subset A0 of cardinality p,
A0 ∩ C is of cardinality at least k for some C ∈ C.

Theorem 20 ((p,k) Theorem for bounded VC dimension concept class) For ev-
ery k and p there exists an N such that: Given a non degenerate concept class (X, C)
with VC-dim(C) < k, if a finite subset A ⊆ X has the (p, k) property with respect to (X, C),
then there are N concepts C1, . . . , CN such that A ⊆ ∪Ni=1Ci.

Matoušek’s original result is formalized in a dual form and applies to a wider class of
concepts for which N is not uniform. We go through the full derivation in Appendix A.3.
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4. Main Result

The following theorem is the main result of this paper.

Theorem 21 Let (X, C) be a concept class with VC-dimension d and assume that
ALT 2d+1(X; C) has finite VC dimension. Then (X, C) has a bounded compression scheme
with additional information.

The proof is a corollary of Lemma 24 and Theorem 23 which is a generalization of
Matoušek’s theorem. We first present the idea of proof, which illustrates how the tools we
developed can be used to construct compression schemes.

Idea of proof By the assumptions of Theorem 21 and by Lemma 16, the VC-dimension
of ALT m(A,C; C) is bounded uniformly for all A and C. Now assume that for some
m, ALT m(A,C; C) is non degenerate and A ∩ C has the (p, k) property with respect to
ALT m(A,C; C) for all A, C ∈ C, a fixed p and sufficiently large k.

Matoušek’s theorem states that there are N sequences x1, . . . ,xN of length m such
that A ∩ C ⊆ ∪Nj=1ALT(xj ; C). We compress our sample to (x1, . . . ,xN ). We then define
ρ([x1,x2, . . . ,xN ])(x) = 1 if for some j we have x ∈ ALT(xj ; C). The honesty property
of ALT(xj ; C) ensures we won’t be wrong on any x ∈ A such that C(x) = 0. Matoušek’s
theorem ensures that we are not wrong on any x ∈ A such that C(x) = 1.

In general, ALT m(A,C; C) need not have the (p, k) property. That is why we need to
relax the assumptions of Theorem 20. We do that by introducing the (p, k, k) property
which is weaker then the (p, k) property.

The structure of the rest of this section is as follows: In Definition 22 we define the
(p, k, k) property. In Theorem 23 we prove the analogous of Matoušek’s theorem to the
(p, k, k) property. In Lemma 24 we show that indeed the (p, k, k) property may be assumed
for the complex ALT (X; C). We finish this section with a formal proof of Theorem 21 and
Corollary 25.

Definition 22 ((p,k1,k2, . . . ,kd) property) Let (X,C) = (X, C1, C2, . . . , Cd) be d con-
cept classes sharing a common domain X.

A subset A0 ⊆ X of size p is said to suggest property (p, kn) with respect to Cn if A0∩Cn
is of cardinality at least kn for some Cn ∈ Cn.

A subset A ⊆ X is said to have the (p, k1, k2, . . . , kd) property with respect to (X,C) if
every subset A0 ⊆ A of size p suggests property (p, kn) with respect to Cn for some n ≤ d.

Theorem 23 ((p,k1, . . . ,kd) Theorem for bounded VC dimension concept classes)
For every p, k1, . . . , kd there exists an N such that: Given d non-degenerate concept classes
sharing a common domain (X,C) = (X, C1, C2, . . . , Cd), with VC-dim(Ci) < ki for every i,
for any finite subset A with the (p, k1, . . . , kd) property with respect to (X,C), there are N
concepts {C1, . . . , CN} ⊆ ∪di=1 Ci such that A ⊆ ∪Nj=1Cj.

Proof The concept class (X,∪di=1Ci) is the union of d concept classes with finite VC-
dimension hence its VC-dimension is bounded, say by D (a bound D that is dependent
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on k1, . . . , kd may be produced). If we can show that the (p, k1, . . . , kd) property implies
(P,D + 1)-property with respect to (X,∪di=1Ci) for some P , we are done by Theorem 20.

Let N be larger then any bound Ni whose existence follows from Theorem 20 applied
to a subset with the (p, ki) property with respect to a concept class with VC-dim(Ci) < ki.

For each subset A0 ⊆ A of cardinality p color it with some n such that it suggests
property (p, kn) with respect to Cn . We now apply Ramsey’s theorem for hypergraph with
respect to this coloring. There is a P large enough so that any subset of size P contains
a monochromatic subset of cardinality N · (D + 1). In other words, a set A of size P will
contain a subset A0 of size N · (D+ 1) with the (p, ki) property with respect to Ci for some
i. By Theorem 20, there are Ni < N concepts such that any element in A0 is in one of
them. By the pigeonhole principle one concept contains D + 1 points.

Lemma 24 For every θ1, θ2, . . . , θd+1 there exists a p such that: Given (X, C), a con-
cept class of VC-dimension d, for any finite set A and concept C, the set A ∩ C has the
(p, θ1, θ2, . . . , θd+1) property with respect to the concept classes

(X,C) =
(
X,ALT 2d+2(A,C; C),ALT θ1+2d+2(A,C; C), . . . ,ALT ∑d

i=1 θi+2d+2
(A,C; C)

)
.

Proof Choose p such that any sequence x of size p contains a subsequence y of length
m =

∑d+1
i=1 θi + 2d+ 2 with alt(y; C) ≤ 2d+ 1 (by Corollary 14). We claim that this p will

suffice.
Indeed, given a set A0 ⊆ A ∩ C of size p, let t be the maximal number (may be 0), for

which there is a sequence

yt =
〈
y1, y2, . . . yθd+1−t+1, z1, yθd+1−t+2, z2, . . . , yθd+1−t+t, zt, yθd+1−t+t+1, yθd+1−t+t+2, . . . , yn

〉
such that

1. {y1, y2, . . . , yn} ⊆ A0;

2. {z1, . . . , zt} are in A but not in C;

3. alt(yt; C) ≤ 2d+ 1;

4. |yt| =
∑d+1−t

i=1 θi + 2d+ 2 (where we define
∑d+1−t

i=1 θi = 0 for t > d).

We have t ≥ 0 by the property of p (by simply arranging the elements of A0 in some sequence
and taking the proper subsequence), and t < d+1 because otherwise alt(yt; C) > 2d+1 (by
considering C). Consider the sequence yt+1 defined by removing the first θd+1−t elements
in yt. The cardinality of yt+1 is

∑d−t
i=1 θi+ 2d+ 2. If ALT(yt+1; C) is not honest for A with

respect to C, there must be some z0 ∈ A such that z0 /∈ C and alt((z0,y
t+1); C) ≤ 2d+ 1.

Note that the property alt(x; C) ≤ 2d + 1 is preserved under cyclic permutation of x.
Indeed, if xi1 , . . . xi2d+2

is alternating in C then for any cyclic permutation, since the number
of elements in the sequence is even, we will get a sequence that is alternating in C.

Apply a cyclic permutation that takes the last θd−t+1 elements in the sequence (z0,y
t+1)

and moves them to the beginning of the sequence. Next, remove the last element of the

10
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permuted sequence (recall that we added z0 to the sequence and increased its size by one).
We Finally get the following sequence which contradicts the maximality of t:〈

yn−θd−t
, . . . , yn, z0, yθd+1−t+1, z1, . . . , yθd+1−t+t, zt, . . . , yn−θd−t−2

〉
.

Hence ALT(yt+1; C) is honest. Also we have {y1, . . . , yθd+1−t
} ⊆ A0 ∩ALT(yt+1; C).

Proof of Theorem 21: Let C and SC(x) ∈ S(Xm) be given. We will prove the existence
of a word compression scheme with extra bit defined in Definition 9. Existence of a com-
pression scheme with additional information then follows as discussed in the last paragraph
of Subsection 3.1.

First, let S̃ be the set of all elements x ∈ X that appear in the sample SC(x).
The VC-dimension of ALT k(S̃, C; C) is bounded by the VC-dimension of ALT k(X; C)

which is finite by Lemma 16.
Define θ1 := VC-dim

(
ALT 2d+2(X; C)

)
+ 1. Define inductively for every n ≤ d+ 1

θn := VC-dim
(
ALT ∑n−1

i=1 θi+2d+2
(X; C)

)
+ 1.

Lemma 24 states that for an appropriate p, S̃ ∩ C has the (p, θ1, θ2, . . . , θd+1) property
with respect to the d+ 1 concept classes with common domain X:(

X,ALT 2d+2(S̃, C; C), . . . ,ALT ∑d
i=1 θi+2d+2

(S̃, C; C)
)
. (1)

First, for simplicity, assume that all concepts ALT (S̃, C; C) that appear in Equation 1
are non-degenerate.

By Theorem 23 there are N honest concepts in
⋃
ALT (S̃, C; C), say

{ALT(x1; C), . . . ,ALT(xN ; C)} ,

such that for every x ∈ S̃ ∩ C, we have x ∈ ALT(xi; C) for some i. Each xi is at most of
size

∑d
i=1 θi + 2d+ 2. Define:

κ(SC(x)) = (x1, b,x2, b, . . . , b,xN ).

The reconstruction function works as follows: for any x we put ρ(x) = 1 if for some sequence
xi we have x ∈ ALT(xi; C); otherwise we set ρ(x) = 0. The honesty property ensures that
if C(x) = 0 then ρ(x) = 0. Matoušek’s theorem ensures that if C(x) = 1, we will have
ρ(x) = 1.

When some of the concepts in Equation 1 are degenerate, simply add to the degenerate
concept classes ALT (S̃, C; C) all the singletons. This will increase the VC dimension by
only a constant factor. By the same method of proof one will still obtain for some N , N
bounded concepts, {{x1}, {x2}, . . . , {xM},ALT(xM+1; C), . . . ,ALT(xN ; C)} . The concepts
of the form ALT(x; C) will be honest. As for the singleton concepts, we may assume {xi}
is contained in S̃ ∩ C and we add them to the compressed sequence.

11
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It is easy to see that in any structure where the original concept class is definable, the
alternating concept classes are also definable using a single quantifier over concepts.

Our result covers as a special case the existence of compression schemes in o-minimal
structures established in Johnson and Laskowski (2010). An immediate corollary is the
following generalization of Ben-David and Litman (1998) result on compression schemes for
geometric concept classes.

Corollary 25 Let R(x,y) be a j + m-ary relation on the field R which is definable in a
structure of the form 〈R; +, ·,≤, exp, (fi)i〉 where the fi’s are restricted analytic functions
of any arity, then R(x,y) has a compression scheme with additional information.

5. Applications and Examples

Example 1 (Application to neural networks) Neural networks with activation func-
tion σ = 1

1+e−x are definable in the NIP structure 〈R,+, ·,≤, exp, 0, 1〉. It follows from
Corollary 25 that any such neural network has a compression scheme with additional infor-
mation.

For an elaborate discussion on neural networks see Macintyre and Sontag (1993). There
the question whether any such neural network has finite VC-dimension was resolved. Later,
using the theory of o-minimal structures, polynomial bounds were attained in Karpinski
and Macintyre (1995).

Next we construct a concept class such that VC-dim (ALT m(X; C)) is infinite.

Example 2 (Counter example) Construct a set X1 = {(B, i) : B ⊂ N |B| < ∞, i =
{1, · · · , 5}}.

We consider the domain X = N ∪ X1. For each |B| < ∞ and n ∈ B let C(B,n) =
{n, (B, 2), (B, 4)} and finally let C = {C(B,n), |B| < ∞}. It is easy to verify that
VC-dim(C) = 2.

Consider the sequence: xn = n, (B, 1), (B, 2), (B, 3), (B, 4), (B, 5).
For every n ∈ B we have alt(xn; C) = 6 and for every n /∈ B we have alt(xn; C) = 5.

Hence for every finite set A ⊆ N and subset B, we have Bc = ALT((B, 1), . . . , (B, 5); C),
and A is shattered.

6. Discussion

The compression conjecture is one of the oldest open problems in the field of statistical
learning theory. The UDTFS conjecture discussed in Section 2 is a stronger version of the
original conjecture (without O(d) bound). In a sense, it states that we can find not just
any compression scheme, but one that can be computed via simple queries on the existence
of certain elements and certain concepts in our theory. This is done without imposing any
additional structure on our data (e.g. ordering, linearity, convexity etc.). Concept classes
definable in NIP structures have this type of compression scheme.

The reconstruction function that arises from our construction has some interesting prop-
erties. For any point x the labeling depends only on the trace of the concept class on the
set x ∪ x where x is the compressed sample. In other words, if one can efficiently compute

12



Honest Compressions

the trace of the concept class, then one can efficiently reconstruct. It would be surpris-
ing if such a simple compression scheme would work for every concept class. Indeed, the
compactness theorem of first order logic would imply the existence of a uniform formula
defining a reconstruction function for all concept classes of given VC-dimension. One could
however imagine such a uniform formula with, for example, quantifiers over the domain X.
The computation would then involve queries on the whole underlying concept class (X, C).
Its computational complexity would then depend on the concept class.

Our results apply to a wide family of concept classes, most notably, geometric concept
classes and concept classes definable in the structure 〈R; +, ·,≤, exp, 0, 1〉. One important
family of concept classes for which we do not know if our theorem applies is the family of
maximum concept classes, first studied by Floyd and Warmuth (1995). A concept class
(X, C) is called maximum if for every finite set A, the number of concepts on A equals the
upper bound attained by Sauer’s lemma. As discussed earlier, such concept classes always
have a VC-dim compression scheme (in fact an unlabeled compression scheme).

Rubinstein and Rubinstein (2012) suggest studying compression schemes via operating
on geometric representations. They study classes that correspond to Hyperbolic arrange-
ments and PL hyperplanes. It is natural to ask what kind of compression schemes arise from
general representations in NIP structures. If any maximal concept class can be represented
in an NIP structure, this would give a positive solution to the problem of sample compres-
sion (without O(d) bound however). On the other hand, a maximal concept class with
VC-dim(ALT (X; C)) =∞ cannot be embedded in an NIP structure without an increase in
the VC-dimension.

Finally we wish to discuss further directions toward a complete solution to the problem.
Due to our extensive use of Ramsey’s theorem, it would be challenging to use our methods
to obtain VC-dim bounds on compression schemes. However the methods presented in this
paper might be used for the construction of compression schemes in general, in particular
definable compression schemes. Theorem 20 due to Matoušek is part of a family of Helly type
theorems. An analogue theorem exists, for example, for convex sets whose VC-dimension is
unbounded (see, Alon and Kleitman (1992)). Thus, our requirements from ALT (X;C) may
be relaxed or altered. Other concept classes derived from the original concept class might
also be exploited. Finally, it would be interesting to know if there are necessary conditions
to the existence of compression schemes that relate to NIP structures. This might enable
the construction of a counter example to the compression conjecture.
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Appendix A.

A.1. A proof of Theorem 13

Let x be a (d + 1) homogeneous sequence with alt(x; C) ≥ 2d + 2. We will show that
VC-dim(C) ≥ d + 1. Without loss of generality we may assume that x is a sequence of
length 2d+ 2, and there is a concept C such that C(xi) = 1 if and only if i is even. Given
a boolean sequence b ∈ {0, 1}d+1 we construct a subsequence y of x such that C(y) = b.

Choose y1 = x1 if b1 = 0 and y1 = x2 otherwise. We define yn inductively for every
n ≤ d + 1. Assume we chose xi to be yn−1. Let yn = xi+2 if bn = bn−1, and yn = xi+1 if
bn 6= bn−1.

By homogeneity there exists a concept C2 such that C2(x1, . . . , xd+1) = C(y) = b. As
b was arbitrary, x1, . . . , xd+1 is shattered.

A.2. A proof of Lemma 16

Let (X, C) be a concept class with VC-dimension d. Given m and y ∈ X. If y /∈ ALT(x; C) 6=
∅ for some ALT(x; C) ∈ ALT m(X; C) then x has a subsequence x̂ = (xi1 , xi2 , . . . , xi2d+1

)
such that

alt((y, xi1 , . . . , . . . , x2d+1); C) = 2d+ 2. (2)

In other words y /∈ ALT(x; C) if and only if x has a subsequence such that

y /∈ ALT((xi1 , . . . , xi2 , . . . , xi2d+1
); C).

We’ve shown that we can describe every element in ALT m(X; C) as the finite intersection
of
(
m

2d+1

)
elements in ALT 2d+1(X; C). The result follows immediately.
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A.3. Derivation of Theorem 20

The (p, k) Theorem for bounded VC dimension concept classes is formalized as follows:

Theorem 26 Let F be a set system with π∗F (m) = o(mk) for some integer k, and let p ≥ k.
Then there is a constant N such that the following holds for every finite family G ⊂ F : If
G has the (p, k)-property, meaning amongst every p sets of G, some k intersect, then there
is an N -point set intersecting all sets of G.

Recall that the dual shatter function π∗F (m) is defined to be the maximum number of
nonempty fields of the Venn diagram of m sets of F .

Given a non degenerate concept class (X, C) with VC dimension d, consider the set
system

F = {Fx : Fx = {C ∈ C : x ∈ C}}.

By the definition of the dual shatter function and Sauer’s Lemma, it is easy to see that
π∗(F) = o(mk) for any k > d.

For a finite set G ⊆ X we associate a finite set G ⊆ F by

G = {Fx : x ∈ G}.

It is easy to see that if G has the (p, k) property with respect to (X, C) then G ⊆ F has the
(p, k) property (i.e. every subset of cardinality p of G, some k intersect). By Matousek’s
theorem there are N concepts Ci ∈ C such that every Fx ∈ G contains some Ci. In other
words G ⊆ ∪Ci.

The N given so far is not uniform for all concept classes of VC dimension smaller then
k. To see that it can be chosen uniformly, simply apply the result to a concept class (X, C)
that contains all possible finite concept classes with VC dimension smaller then k. One can
construct such a universal concept class by simply taking the disjoint countable union of all
such concept classes. Since any finite set is embeddable in such a concept class, we obtain
a uniform N .
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