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Abstract

In this paper we consider learning in passive setting but with a slight modification. We as-
sume that the target expected loss, also referred to as target risk, is provided in advance for
learner as prior knowledge. Unlike most studies in the learning theory that only incorpo-
rate the prior knowledge into the generalization bounds, we are able to explicitly utilize the
target risk in the learning process. Our analysis reveals a surprising result on the sample
complexity of learning: by exploiting the target risk in the learning algorithm, we show that
when the loss function is both strongly convex and smooth, the sample complexity reduces
to O(log

(
1
ϵ

)
), an exponential improvement compared to the sample complexity O( 1ϵ ) for

learning with strongly convex loss functions. Furthermore, our proof is constructive and
is based on a computationally efficient stochastic optimization algorithm for such settings
which demonstrate that the proposed algorithm is practically useful.

Keywords: learning theory, risk minimization, stochastic optimization, sample complexity

1. Introduction

In the standard passive supervised learning setting, the learning algorithm is given a set
of labeled examples S = ((x1, y1), · · · , (xn, yn)) drawn i.i.d. from a fixed but unknown
distribution D. The goal, with the help of labeled examples, is to output a classifier h from
a predefined hypothesis class H that does well on unseen examples coming from the same
distribution. The sample complexity of an algorithm is the number of examples which is
sufficient to ensure that, with probability at least 1 − δ (w.r.t. the random choice of S),
the algorithm picks a hypothesis with an error that is at most ϵ from the optimal one.
Sample complexity of passive learning is well established and goes back to early works in
the learning theory where the lower bounds Ω

(
1
ϵ (log

1
ϵ + log 1

δ )
)
and Ω

(
1
ϵ2
(log 1

ϵ + log 1
δ )
)

were obtained in classic PAC and general agnostic PAC settings, respectively (Ehrenfeucht
et al., 1989; Blumer et al., 1989; Anthony and Bartlett, 1999).

In light of no free lunch theorem, learning is impossible unless we make assumptions
regarding the nature of the problem at hand. Therefore, when approaching a particular
learning problem, it is desirable to take into account some prior knowledge we might have
about our problem and use a specialized algorithm that exploits this knowledge into a
learning process or theoretical analysis. A key issue in this regard is the formalization of
prior knowledge. Such prior knowledge can be expressed by restricting our hypothesis class,
making assumptions on the nature of unknown distribution D or formalization of the data
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space, analytical properties of the loss function being used to evaluate the performance,
sparsity, and margin– to name a few.

There has been an upsurge of interest over the last decade in finding tight upper bounds
on the sample complexity by utilizing prior knowledge on the analytical properties of the
loss function, that led to stronger generalization bounds in agnostic PAC setting. In (Lee
et al., 1998) fast rates obtained for squared loss, exploiting the strong convexity of this loss
function, which only holds under pseudo-dimensionality assumption. With the recent devel-
opment in online strongly convex optimization (Hazan et al., 2006), fast rates approaching
O(1ϵ log

1
δ ) for convex Lipschitz strongly convex loss functions has been obtained in (Srid-

haran et al., 2008; Kakade et al., 2008). For smooth non-negative loss functions, (Srebro
et al., 2010) improved the sample complexity to optimistic rates

O
(
1

ϵ

(
ϵopt + ϵ

ϵ

)(
log3

1

ϵ
+ log

1

δ

))
for non-parametric learning using the notion of local Rademacher complexity (Bartlett et al.,
2005), where ϵopt is the optimal risk.

In this work, we consider a slightly different setup for passive learning. We assume that
before the start of the learning process, the learner has in mind a target expected loss, also
referred to as target risk, denoted by ϵprior

1, and tries to learn a classifier with the expected
risk of O(ϵprior) by labeling a small number of training examples. We further assume the
target risk ϵprior is feasible, i.e., ϵprior ≥ ϵopt. To address this problem, we develop an efficient
algorithm, based on stochastic optimization, for passive learning with target risk. The most
surprising property of the proposed algorithm is that when the loss function is both smooth
and strongly convex, it only needs O(d log(1/ϵprior)) labeled examples to find a classifier
with the expected risk of O(ϵprior), where d is the dimension of data. This is a significant
improvement compared to the sample complexity for empirical risk minimization.

The key intuition behind our algorithm is that by knowing target risk as prior knowledge,
the learner has better control over the variance in stochastic gradients, which contributes
mostly to the slow convergence in stochastic optimization and consequentially large sample
complexity in passive learning. The trick is to run the stochastic optimization in multi-
stages with a fixed size and decrease the variance of stochastically perturbed gradients at
each iteration by a properly designed mechanism. Another crucial feature of the proposed
algorithm is to utilize the target risk ϵprior to gradually refine the hypothesis space as the
algorithm proceeds. Our algorithm differs significantly from standard stochastic optimiza-
tion algorithms and is able to achieve a geometric convergence rate with the knowledge of
target risk ϵprior.

We note that our work does not contradict the lower bound in (Srebro et al., 2010)
because a feasible target risk ϵprior is given in our learning setup and is fully exploited by
the proposed algorithm. Knowing that the target risk ϵprior is feasible makes it possible
to improve the sample complexity from O(1/ϵprior) to O(log(1/ϵprior)). We also note that
although the logarithmic sample complexity is known for active learning (Hanneke, 2009;
Balcan et al., 2010), we are unaware of any existing passive learning algorithm that is able
to achieve a logarithmic sample complexity by incorporating any kind of prior knowledge.

1. We use ϵprior instead of ϵ to emphasize the fact that this parameter is known to the learner in advance.
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1.1. More Related Work

Stochastic Optimization and Learnability Our work is related to the recent stud-
ies that examined the learnability from the viewpoint of stochastic convex optimization.
In (Sridharan, 2012; Shalev-Shwartz et al., 2010), the authors presented learning problems
that are learnable by stochastic convex optimization but not by empirical risk minimiza-
tion (ERM). Our work follows this line of research. The proposed algorithm achieves the
sample complexity of O(d log(1/ϵprior)) by explicitly incorporating the target expected risk
ϵprior into the stochastic convex optimization algorithm. It is however difficult to incor-
porate such knowledge into the framework of ERM. Furthermore, it is worth noting that
in (Ramdas and Singh, 2013; Sridharan, 2012; Rakhlin et al., 2010; Ben-David et al., 2009),
the authors explored the connection between online optimization and statistical learning in
the opposite direction. This was done by exploring the complexity measures developed in
statistical learning for the learnability of online learning.

Online and Stochastic Optimization The proposed algorithm is closely related to the
recent works that stated O(1/n) is the optimal convergence rate for stochastic optimization
when the objective function is strongly convex (Iouditski and Nesterov, 2010; Hazan and
Kale, 2011; Rakhlin et al., 2012). In contrast, the proposed algorithm is able to achieve a ge-
ometric convergence rate for a target optimization error. Similar to the previous argument,
our result does not contradict the lower bound given in (Hazan and Kale, 2011) because
of the knowledge of a feasible optimization error. Moreover, in contrast to the multistage
algorithm in (Hazan and Kale, 2011) where the size of stages increases exponentially, in our
algorithm, the size of each stage is fixed to be a constant.

Outline The remainder of the paper is organized as follows: In Section 2, we set up
notation, describe the setting, and discuss the assumptions on which our algorithm relies.
Section 3 motivates the problem and discusses the main intuition of our algorithm. The
proposed algorithm and main result are discussed in Section 4. We prove the main result
in Section 5. Section 6 concludes the paper and the appendix contains the omitted proofs.

2. Preliminaries

As usual in the framework of statistical learning theory, we consider a domain Z := X ×Y
where X ⊆ Rd is the space for instances and Y is the set of labels, andH is a hypothesis class.
We assume that the domain space Z is endowed with an unknown Borel probability measure
D. We measure the performance of a specific hypothesis h by defining a nonnegative loss
function ℓ : H × Z → R+. We denote the risk of a hypothesis h by L(h) = Ez∼D[ℓ(h, z)].
Given a sample S = (z1, · · · , zn) = ((x1, y1), · · · , (xn, yn)) ∼ Dn, the goal of a learning
algorithm is to pick a hypothesis h : X → Y from H in such a way that its risk L(h) is close
to the minimum possible risk of a hypothesis in H.

Throughout this paper we pursue stochastic optimization viewpoint for risk minimiza-
tion as detailed in Section 3. Precisely, we focus on the convex learning problems for which
we assume that the hypothesis class H is a parametrized convex set H = {hw : x 7→ ⟨w,x⟩ :
w ∈ Rd, ∥w∥ ≤ R} and for all z = (x, y) ∈ Z, the loss function ℓ(·, z) is a non-negative
convex function. Thus, in the remainder we simply use vector w to represent hw, rather
than working with hypothesis hw. We will assume throughout that X ⊆ Rd is the unit
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ball so that ∥x∥ ≤ 1. Finally, the conditions under which we can get the desired result
on sample complexity depend on analytic properties of the loss function. In particular, we
assume that the loss function is strongly convex and smooth (Nesterov, 2004).

Definition 1 (Strong convexity) A loss function ℓ(w) is said to be α-strongly convex
w.r.t a norm ∥ · ∥2, if there exists a constant α > 0 (often called the modulus of strong
convexity) such that, for any λ ∈ [0, 1] and for all w1,w2 ∈ H, it holds that

ℓ(λw1 + (1− λ)w2) ≤ αℓ(w1) + (1− λ)ℓ(w2)−
1

2
λ(1− λ)α∥w1 −w2∥2.

When ℓ(w) is differentiable, the strong convexity is equivalent to

ℓ(w1) ≥ ℓ(w2) + ⟨∇ℓ(w2),w1 −w2⟩+
α

2
∥w1 −w2∥2, ∀ w1,w2 ∈ H.

We would like to emphasize that in our setting, we only need that the expected loss function
L(w) be strongly convex, without having to assume strong convexity for individual loss
functions.
Another property of loss function that underline our analysis is its smoothness. Smooth
functions arise, for instance, in logistic and least-squares regression, and in general for
learning linear predictors where the loss function has a Lipschitz-continuous gradient.

Definition 2 (Smoothness) A differentiable loss function ℓ(w) is said to be β-smooth
with respect to a norm ∥ · ∥, if it holds that

ℓ(w1) ≤ ℓ(w2) + ⟨∇ℓ(w2),w1 −w2⟩+
β

2
∥w1 −w2∥2, ∀ w1,w2 ∈ H. (1)

3. The Curse of Stochastic Oracle

We begin by discussing stochastic optimization for risk minimization, convex learnability,
and then the main intuition that motivates this work.

Most existing learning algorithms follow the framework of empirical risk minimizer
(ERM) or regularized ERM, which was developed to great extent by Vapnik and Cher-
vonenkis (Vapnik and Chervonenkis, 1971). Essentially, ERM methods use the empirical
loss over S, i.e., L̂(w) = 1

n

∑n
i=1 ℓ(w, zi), as a criterion to pick a hypothesis. In regularized

ERM methods, the learner picks a hypothesis that jointly minimizes L̂(w) and a regular-
ization function over w. We note that ERM resembles the widely used Sample Average
Approximation (SAA) method in the optimization community when the hypothesis space
and the loss function are convex. If uniform convergence holds, then the empirical risk mini-
mizer is consistent, i.e., the population risk of the ERM converges to the optimal population
risk, and the problem is learnable using ERM.

A rather different paradigm for risk minimization is stochastic optimization. Recall that
the goal of learning is to approximately minimize the risk L(w) = Ez∼D[ℓ(w, z)]. However,
since the distribution D is unknown to the learner, we can not utilize standard gradient
methods to minimize the expected loss. Stochastic optimization methods circumvent this

2. Throughout this paper, we only consider the ℓ2-norm.
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problem by allowing the optimization method to take a step which is only in expectation
along the negative of the gradient. To motivate stochastic optimization as an alternative
to the ERM method, (Shalev-Shwartz et al., 2009b,a) challenged the ERM method and
showed that there is a real gap between learnability and uniform convergence by investigat-
ing non-trivial problems where no uniform convergence holds, but they are still learnable
using Stochastic Gradient Descent (SGD) algorithm (Nemirovski et al., 2009). These re-
sults uncovered an important relationship between learnability and stability, and showed
that stability together with approximate empirical risk minimization, assures learnabil-
ity (Shalev-Shwartz et al., 2010). We note that Lipschitzness or smoothness of loss function
is necessary for an algorithm to be stable, and boundedness and convexity alone are not
sufficient for ensuring that the convex learning problem is learnable.

To directly solve minw∈H L(w) = Ez∼D[ℓ(w, z)], a typical stochastic optimization algo-
rithm initially picks some point in the feasible set H and iteratively updates these points
based on first order perturbed gradient information about the function at those points.
For instance, the widely used SGD algorithm starts with w0 = 0; at each iteration t, it
queries the stochastic oracle (SO) at wt to obtain a perturbed but unbiased gradient ĝt
and updates the current solution by

wt+1 = ΠH (wt − ηtĝt) ,

where ΠH(w) projects the solution w into the domain H. To capture the efficiency of
optimization procedures in a general sense, one can use oracle complexity of the algorithm
which, roughly speaking, is the minimum number of calls to any oracle needed by any
method to achieve desired accuracy (Nesterov, 2004). We note that the oracle complexity
corresponds to the sample complexity of learning from the stochastic optimization viewpoint
previously discussed. The following theorem states a lower bound on the sample complexity
of stochastic optimization algorithms (Nemirovsky and Yudin, 1983).

Theorem 3 (Lower Bound on Oracle Complexity) Suppose L(w) = Ez∼D[ℓ(w, z)] is
α-strongly and β-smooth convex function defined over convex domain H. Let SO be a
stochastic oracle that for any point w ∈ H returns an unbiased estimate ĝ, i.e., E[ĝ] =
∇L(w), such that E

[
∥ĝ −∇L(w)∥2

]
≤ σ2 holds. Then for any stochastic optimization

algorithm A to find a solution ŵ with ϵ accuracy respect to the optimal solution w∗, i.e.,
E [L(ŵ)− L(w∗)] ≤ ϵ, the number of calls to SO is lower bounded by

O(1)

(√
β

α
log

(
β∥w0 −w∗∥2

ϵ

)
+

σ2

αϵ

)
. (2)

The first term in (2) comes from deterministic oracle complexity and the second term is due
to noisy gradient information provided by SO. As indicated in (2), the slow convergence
rate for stochastic optimization is due to the variance in stochastic gradients, leading to
at least O

(
σ2/ϵ

)
queries to be issued. We note that the idea of mini-batch (Cotter et al.,

2011; Duchi et al., 2012), although it reduces the variance in stochastic gradients, does not
reduce the oracle complexity.
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We close this section by informally presenting why logarithmic sample complexity is, in
principle, possible, under the assumption that target risk is known to the learner A. To
this end, consider the setting of Theorem 3 and assume that the learner A is given the
prior accuracy ϵprior and is asked to find an ϵprior-accurate solution. If it happens that
the variance of SO has the same magnitude as ϵprior, i.e., E

[
∥ĝ −∇L(w)∥2

]
≤ ϵprior, then

from (2) it follows that the second term vanishes and the learner A needs to issue only
O (log 1/ϵprior) queries to find the solution. But, since there is no control on SO, except
that the variance of stochastic gradients are bounded, A needs a mechanism to manage the
variance of perturbed gradients at each iteration in order to alleviate the influence of noisy
gradients. One strategy is to replace the unbiased estimate of gradient with a biased one,
which unfortunately may yield loose bounds. To overcome this problem, we introduce a
strategy that shrinks the solution space with respect to the target risk ϵprior to control the
damage caused by biased estimates.

4. Algorithm and Main Result

In this section we proceed to describe the proposed algorithm and state the main result on
its sample complexity.

4.1. Description of Algorithm

We now turn to describing our algorithm. Interestingly, our algorithm is quite dissimilar to
the classic stochastic optimization methods. It proceeds by running the algorithm online
on fixed chunks of examples, and using the intermediate hypotheses and target risk ϵprior
to gradually refine the hypothesis space. As mentioned above, we assume in our setting
that the target expected risk ϵprior is provided to the learner a priori. We further assume
the target risk ϵprior is feasible for the solution within the domain H, i.e., ϵprior ≥ ϵopt. The
proposed algorithm explicitly takes advantage of the knowledge of expected risk ϵprior to
attain an O (log(1/ϵprior)) sample complexity.

Throughout we shall consider linear predictors of form ⟨w,x⟩ and assume that the loss
function of interest ℓ(⟨w,x⟩, y) is β-smooth. It is straightforward to see that L(w) =
E(x,y)∼D [ℓ(⟨w,x⟩, y)] is also β-smooth. In addition to the smoothness of the loss function,
we also assume that L(w) to be α-strongly convex. We denote by w∗ the optimal solution
that minimizes L(w), i.e., w∗ = argminw∈H L(w), and denote its optimal value by ϵopt.

Let (xt, yt), t = 1, . . . , T be a sequence of i.i.d. training examples. The proposed algo-
rithm divides the T iterations into the m stages, where each stage consists of T1 training
examples, i.e., T = mT1. Let (x

t
k, y

t
k) be the t-th training example received at stage k, and

let η be the step size used by all the stages. At the beginning of each stage k, we initialize
the solution w by the average solution ŵk obtained from the last stage, i.e.,

ŵk =
1

T1

T1∑
t=1

ŵt
k, (3)

where ŵt
k denotes the tth solution at stage k. Another feature of the proposed algorithm

is a domain shrinking strategy that adjusts the domain as the algorithm proceeds using
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Algorithm 1 Convex Learning with Target Risk

1: Input: step size η, stage size T1, number of stages m, target expected risk ϵprior,
parameters ε ∈ (0, 1) and τ ∈ (0, 1) used for updating domain size ∆k, and parameter
ξ ≥ 1 used to clip the gradients

2: Initialization: ŵ1 = 0, ∆1 = R, and H1 = H
3: for k = 1, . . . ,m do
4: Set wt

k = ŵk and γk = 2ξβ∆k

5: for t = 1, . . . , T1 do
6: Receive training example (xt, yt)
7: Compute the gradient ĝt

k and the clipped version of the gradient vt
k using Eq. (5)

8: Update the solution wt
k using Eq. (6).

9: end for
10: Update ∆k using Eq. (7).
11: Compute the average solution ŵk+1 according to Eq. (3), and update the domain

Hk+1 using the expression in (4).
12: end for

intermediate hypotheses and target risk. We define the domain Hk used at stage k as

Hk = {w ∈ H : ∥w − ŵk∥ ≤ ∆k} , (4)

where ∆k is the domain size, whose value will be discussed later. Similar to the SGD
method, at each iteration of stage k, we receive a training example (xt

k, y
t
k), and compute the

gradient ĝt
k = ℓ′

(
⟨wt

k,x
t
k⟩, yt

)
xt
k. Instead of using the gradient directly, following (Hazan

and Koren, 2011), a clipped version of the gradient, denoted by vt
k = clip

(
γk, ĝ

t
k

)
, will be

used for updating the solution. More specifically, the clipped vector vt
k ∈ Rd is defined as

[vt
k]i = clip

(
γk,
[
ĝt
k

]
i

)
= sign

([
ĝt
k

]
i

)
min

(
γk,
∣∣[ĝt

k

]
i

∣∣) , i = 1, . . . , d (5)

where γk = 2ξβ∆k with ξ ≥ 1. Given the clipped gradient vt
k, we follow the standard

framework of stochastic gradient descent, and update the solution by

wt+1
k = ΠHk

(
wt

k − ηvt
k

)
. (6)

The purpose of introducing the clipped version of the gradient is to effectively control
the variance in stochastic gradients, an important step toward achieving the geometric
convergence rate. At the end of each stage, we will update the domain size by explicitly
exploiting the target expected risk ϵprior as

∆k+1 =
√

ε∆2
k + τϵprior , (7)

where ε ∈ (0, 1) and τ ∈ (0, 1) are two parameters, both of which will be discussed later.
Algorithm 1 gives the detailed steps for the proposed method. The three important

aspects of Algorithm 1, all crucial to achieve a geometric convergence rate, are highlighted
as follows:
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• Each stage of the proposed algorithm is comprised of the same number of training
examples. This is in contrast to the epoch gradient algorithm (Hazan and Kale, 2011)
which divides m iterations into exponentially increasing epochs, and runs SGD with
averaging on each epoch. Also, in our case the learning rate is fixed for all iterations.

• The proposed algorithm uses a clipped gradient for updating the solution in order to
better control the variance in stochastic gradients; this stands in contrast to the SGD
method, which uses original gradients to update the solution.

• The proposed algorithm takes into account the targeted expected risk and intermedi-
ate hypotheses when updating the domain size at each stage. The purpose of domain
shrinking is to reduce the damage caused by biased gradients that resulted from clip-
ping operation.

4.2. Main Result on Sample Complexity

The main theoretical result of Algorithm 1 is given in the following theorem.

Theorem 4 (Convergence Rate) Assume that the hypothesis space H is compact and
the loss function ℓ is α-strongly convex and β-smooth. Let T = mT1 be the size of the sample
and ϵprior be the target expected loss given to the learner in advance such that ϵopt ≤ ϵprior
holds. Given ε ∈ (0, 1) and τ ∈ (0, 1), set ξ, η, and T1 as

ξ =
4β

ατ
, T1 = 4max

{
ξ3βd+ 2ξβ

√
d

εα
ln

ms

δ
,
16ξ2β2

α2ε2

}
, η =

1

2ξβ
√
T1

,

where

s =

⌈
log2

ξβR2

ϵprior

⌉
. (8)

After running Algorithm 1 over m stages, we have, with a probability 1− δ,

L(ŵm+1) ≤
βR2

2
εm +

(
1 +

τ

1− ε

)
ϵprior,

implying that only O(d log[1/ϵprior]) training examples are needed in order to achieve a risk
of O(ϵprior).

We note that comparing to the bound in Theorem 3, for Algorithm 1 the level of error
to which the linear convergence holds is not determined by the noise level in stochastic
gradients, but by the target risk. In other words, the algorithm is able to tolerate the noise
by knowing the target risk as prior knowledge and achieves a linear convergence to the
level of the target risk even when the variance of stochastic gradients is much larger than
the target risk. In addition, although the result given in Theorem 4 assumes a bounded
domain with ∥w∥ ≤ R, however, this assumption can be lifted by effectively exploring the
strong convexity of the loss function and further assuming that the loss function is Lipschitz
continuous with constant G, i.e., |L(w1) − L(w2)| ≤ G∥w1 − w2∥, ∀ w1,w2 ∈ H. More
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specifically, the fact that the L(w) is α-strongly convex with first order optimality condition,
for the optimal solution w∗ = argminw∈H L(w), we have

L(w)− L(w∗) ≥
α

2
∥w −w∗∥2, ∀w ∈ H.

This inequality combined with Lipschitz continuous assumption implies that for any w ∈ H
the inequality ∥w−w∗∥ ≤ R∗ := 2G/α holds, and therefore we can simply set R = R∗. We
also note that this dependency can be resolved with a weaker assumption than Lipschitz
continuity, which only depends on the gradient of loss function at origin. To this end,
we define |ℓ′(0, y)| = G. Using the fact that L(w) is α-strongly, it is easy to verify that
α
2 ∥w∗∥2 − G∥w∗∥ ≤ 0, leading to ∥w∗∥ ≤ R∗ := 2

αG and, therefore, we can simply set
R = R∗.

We now use our analysis of Algorithm 1 to obtain a sample complexity analysis for
learning smooth strongly convex problems with a bounded hypothesis class. To make it
easier to parse, we only keep the dependency on the main parameters d, α, β, T , and ϵprior
and hide the dependency on other constants in O(·) notation. Let ŵ denote the output of
Algorithm 1. By setting ε = 0.5 and letting c = O(τ) to be an arbitrary small number,
Theorem 4 yields the following:

Corollary 5 (Sample Complexity) Under the same conditions as Theorem 4, by run-
ning Algorithm 1 for minimizing L(w) with a number of iterations (i.e., number of training
examples) T , if it holds that,

T ≥ O
(
dκ4

(
log

1

ϵprior
log log

1

ϵprior
+ log

1

δ

))
where κ = β/α denotes the condition number of the loss function and d is the dimension of
data, then with a probability 1− δ, ŵ attains a risk of O(ϵprior), i.e., L(ŵ) ≤ (1 + c)ϵprior.

As an example of a concrete problem that may be put into the setting of the present
work is the regression problem with squared loss. It is easy to show that average square loss
function is Lipschitz continuous with a Lipschitz constant β = λmax(X

⊤X) which denotes
the largest eigenvalue of matrix X⊤X where X is the data matrix. The strong convexity
is guaranteed as long as the population data covariance matrix is not rank-deficient and
its minimum eigenvalue is lower bounded by a constant α > 0. For this problem, the
optimal minimax sample complexity is known to be O(1ϵ ), but as it implies from Corollary 5,
by the knowledge of target risk ϵprior, it is possible to reduce the sample complexity to
O(log(1/ϵprior)).

Remark 6 It is indeed remarkable that the sample complexity of Theorem 4 has κ4 =
(β/α)4 dependency on the condition number of the loss function, which is worse than the√

β/α dependency in the lower bound in (2). Also, the explicit dependency of sample
complexity on dimension d makes the proposed algorithm inappropriate for non-parametric
settings.
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5. Analysis

Now we turn to proving the main theorem. The proof will be given in a series of lemmas
and theorems where the proof of few are given in the appendix. The proof makes use of
the Bernstein inequality for martingales, idea of peeling process, self-bounding property
of smooth loss functions, standard analysis of stochastic optimization, and novel ideas to
derive the claimed sample complexity for the proposed algorithm.

The proof of Theorem 4 is by induction and we start with the key step given in the
following theorem.

Theorem 7 Assume ϵprior ≥ ϵopt. For a fixed stage k, if ∥ŵk − w∗∥ ≤ ∆k, then, with a
probability 1− δ, we have

∥ŵk+1 −w∗∥2 ≤ a∆2
k + bϵprior

where

a =
2

αT1

(
2ξβ

√
T1 +

[
ξ3βd+ 2ξβ

√
d
]
ln

s

δ

)
, b =

8

αξ
(9)

and s is given in (8), provided that ξ ≥ 16β/α and η = 1/(2ξβ
√
T1) hold.

Taking this statement as given for the moment, we proceed with the proof of Theorem 4,
returning later to establish the claim stated in Theorem 7.

Proof [of Theorem 4] By setting a and b in (9) in Theorem 7 as a ≤ ε and b ≤ 2τ/β, we
have ξ ≥ 4β/(ατ) and

T1 ≤
2

αε

(
2ξβ

√
T1 +

[
ξ3βd+ 2ξβ

√
d
]
ln

s

δ

)
implying that

T1 ≥ 4max

{
ξ3βd+ 2ξβ

√
d

εα
ln

s

δ
,
16ξ2β2

α2ε2

}
.

Thus, using Theorem 7 and the definition of ξ and T1, we have, with a probability 1− δ,

∆2
k+1 ≤ ε∆2

k +
2τ

β
ϵprior.

After m stages, with a probability 1−mδ, we have

∆2
m+1 ≤ εm∆2

1 +
2τ

β
ϵprior

m−1∑
i=0

εi ≤ εm∆2
1 +

2τ

β(1− ε)
ϵprior.

By the β-smoothness of L(w), it implies that

L(ŵm+1)− L(w∗) ≤
β

2
∥ŵm+1 −w∗∥2 ≤ β

2
εm∆2

1 +
τ

1− ε
ϵprior,

≤ βR2

2
εm +

τ

1− ε
ϵprior,

where the last inequality follows from ∆1 ≤ R. The bound stated in the theorem follows
the assumption that L(w∗) = ϵopt ≤ ϵprior.

10
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5.1. Proof of Theorem 7

To bound ∥ŵk+1−w∗∥ in terms of ∆k, we start with the standard analysis of online learning.
In particular, from the strong convexity assumption of L(w) and updating rule (6) we have,

L(wt
k)− L(w∗) ≤ ⟨∇L(wt

k),w
t
k −w∗⟩ −

α

2
∥wt

k −w∗∥2

= ⟨vt
k,w

t
k −w∗⟩+ ⟨∇L(wt

k)− vt
k,w

t
k −w∗⟩ −

α

2
∥wt −w∗∥2

≤
∥wt+1

k −w∗∥2 − ∥wt+1
k −w∗∥2

2η
+

ηd

2
γ2k

+ ⟨∇L(wt
k)− vt

k,w
t
k −w∗⟩︸ ︷︷ ︸

≜vtk

−α

2
∥wt −w∗∥2, (10)

where the last step follows from ∥vt
k∥ ≤ γk

√
d. By adding all the inequalities of (10) at

stage k, we have

T1∑
t=1

L(wt
k)− L(w∗) ≤ ∥ŵk −w∗∥2

2η
+

dη

2
γ2kT1 +

T1∑
t=1

vtk −
α

2

T1∑
t=1

∥wt −w∗∥2

≤
∆2

k

2η
+

dη

2
γ2kT1 + Vk −

α

2
Wk, (11)

where Vk and Wk are defined as Vk =
∑T1

t=1 v
t
k and Wk =

∑T1
t=1 ∥wt

k −w∗∥2, respectively.
In order to bound Vk, using the fact that ∇L(wt

k) = Et[ĝ
t
k], we rewrite Vk as

Vk =

T1∑
t=1

⟨−vt
k + Et[v

t
k],w

t
k −w∗⟩︸ ︷︷ ︸

≜dtk

+

T1∑
t=1

⟨Et

[
ĝt
k

]
− Et[v

t
k],w

t
k −w∗⟩︸ ︷︷ ︸

≜etk

= Dk +Ek,

where Dk =
∑T1

t=1 d
t
k and Ek =

∑T1
t=1 e

t
k which represent the variance and bias of the clipped

gradient vt
k, respectively. We now turn to separately upper bound each term.

The following lemma bounds the variance term Dk using the Bernstein inequality for
martingale. Its proof can be found in Appendix A.

Lemma 8 For any L > 0 and µ > 0, we have

Pr

(
Wk ≤ ϵpriorT1

2µβ

)
+ Pr

(
Dk ≤ 1

L
Wk +

(
Lγ2kd+ γk∆k

√
d
)
ln

s

δ

)
≥ 1− δ

where s is given by

s =

⌈
log2

8βµR2

ϵprior

⌉
.

The following lemma bounds Ek using the self-bounding property of smooth functions and
the proof is deferred to Appendix B.

11
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Lemma 9

Ek ≤ 4T1

ξ
ϵopt +

4β

ξ
Wk ≤ 4T1

ξ
ϵprior +

4β

ξ
Wk.

Note that without the knowledge of ϵprior, we have to bound ϵopt by Ω(1), resulting in a
very loose bound for the bias term Ek. It is knowledge of the target expected risk ϵprior
that allows us to come up with a significantly more accurate bound for the bias term Ek,
which consequentially leads to a geometric convergence rate.

We now proceed to bound
∑T1

t=1 L(wt
k)−L(w∗) using the two bounds in Lemma 8 and

9. To this end, based on the result obtained in Lemma 8, we consider two scenarios. In the
first scenario, we assume

Wk ≤ ϵpriorT1

2µβ
(12)

In this case, we have

T1∑
t=1

L(wt
k)− L(w∗) ≤

β

2
Wk ≤ ϵprior

2µ
T1. (13)

In the second scenario, we assume

Dk ≤ 1

L
WT +

(
Lγ2kd+ γk∆k

√
d
)
ln

s

δ
. (14)

In this case, by combining the bounds for Dk and Ek and setting L = ξ
4β , we have

Vk ≤ 8β

ξ
Wk +

(
ξd

4β
γ2k + γk∆k

√
d

)
ln

s

δ
+

4T1

ξ
ϵprior

=
8β

ξ
Wk +

(
ξ3βd+ 2ξβ

√
d
)
∆2

k ln
s

δ
+

4T1

ξ
ϵprior,

where the last equality follows from the fact γk = 2ξβ∆k. If we choose ξ such that 8β
ξ ≤ α

2

or ξ ≥ 16β
α > 1 holds, we get

Vk ≤ α

2
Wk +

(
ξ3βd+ 2ξβ

√
d
)
∆2

k ln
s

δ
+

4T1

ξ
ϵprior

Substituting the above bound for Vk into the inequality of (11), we have

T1∑
t=1

L(wt
k)− L(w∗) ≤

∆2
k

2η
+

η

2
γ2kT1 +

(
ξ3βd+ 2ξβ

√
d
)
∆2

k ln
s

δ
+

4T1

ξ
ϵprior

By choosing η as η = ∆k

γk
√
T1

= 1
2ξβ

√
T1
, we have

L(ŵk+1)− L(w∗) ≤
1

T1

(
2ξβ

√
T1 +

[
ξ3βd+ 2ξβ

√
d
]
ln

s

δ

)
∆2

k +
4

ξ
ϵprior. (15)

12
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By combining the bounds in (13) and (15), under the assumption that at least one of the
two conditions in (12) and (14) is true, by setting µ = B/8, we have

L(ŵk+1)− L(w∗) ≤
1

T1

(
2ξβ

√
T1 +

[
ξ3βd+ 2ξβ

√
d
]
ln

s

δ

)
∆2

k +
4

ξ
ϵprior,

implying

∥ŵk+1 −w∗∥ ≤ 2

αT1

(
2ξβ

√
T1 +

[
ξ3βd+ 2ξβ

√
d
]
ln

s

δ

)
∆2

k +
8

αξ
ϵprior.

We complete the proof by using Lemma 8, which states that the probability for either of
the two conditions hold is no less than 1− δ.

6. Conclusions

In this paper, we have studied the sample complexity of passive learning when the target
expected risk is given to the learner as prior knowledge. The crucial fact about target
risk assumption is that, it can be fully exploited by the learning algorithm and stands in
contrast to most common types of prior knowledges that usually enter into the generalization
bounds and are often perceived as a rather crude way to incorporate such assumptions. We
showed that by explicitly employing the target risk ϵprior in a properly designed stochastic
optimization algorithm, it is possible to attain the given target risk ϵprior with a logarithmic

sample complexity log
(

1
ϵprior

)
, under the assumption that the loss function is both strongly

convex and smooth.
There are various directions for future research. The current study is restricted to the

parametric setting where the hypothesis space is of finite dimension. It would be interesting
to see how to achieve a logarithmic sample complexity in a non-parametric setting where hy-
potheses lie in a functional space of infinite dimension. Evidently, it is impossible to extend
the current algorithm for the non-parametric setting; therefore additional analysis tools are
needed to address the challenge of infinite dimension arising from the non-parametric set-
ting. It is also an interesting problem to relate target risk assumption we made here to the
low noise margin condition which is often made in active learning for binary classification
since both settings appear to share the same sample complexity. However it is currently
unclear how to derive a connection between these two settings. We believe this issue is
worthy of further exploration and leave it as an open problem.
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Appendix A. Proof of Lemma 8

The proof is based on the Bernstein inequality for martingales (see, e.g., Cesa-Bianchi and
Lugosi (2006)).

Lemma 10 (Bernstein inequality for martingales). Let X1, . . . , Xn be a bounded martin-
gale difference sequence with respect to the filtration F = (Fi)1≤i≤n and with ∥Xi∥ ≤ M .
Let Si =

∑i
j=1Xj be the associated martingale. Denote the sum of the conditional variances

by

Σ2
n =

n∑
t=1

E
[
X2

t |Ft−1

]
Then for all constants κ, ν > 0,

Pr

[
max

i=1,...,n
Si > ρ and Σ2

n ≤ ν

]
≤ exp

(
− ρ2

2(ν +Mρ/3)

)
and therefore,

Pr

[
max

i=1,...,n
Si >

√
2νρ+

√
2

3
Mρ and Σ2

n ≤ ν

]
≤ e−ρ.

Proof [of Lemma 8] Define martingale difference dtk =
⟨
wt

k −w∗,Et[v
t
k]− vt

k

⟩
and martin-

gale Dk =
∑T1

t=1 d
t
k. Let Σ

2
T denote the conditional variance as

Σ2
T =

T1∑
t=1

Et

[
(dtk)

2
]

≤
T1∑
t=1

Et

[∥∥Et[v
t
k]− vt

k

∥∥2] ∥wt
k −w∗∥2

≤
T∑
t=1

dγ2k∥wt
k −w∥2 = dγ2kWk,

which follows from the Cauchy’s Inequality and the definition of clipping. Define M =
max

t
|dtk| ≤ 2

√
dγk∆k. To prove the inequality in Lemma 8, we follow the idea of peeling

process (Koltchinskii, 2011). Since Wk ≤ 4R2T1, we have

Pr
(
Dk ≥ 2γk

√
Wkdρ+

√
2Mρ/3

)
= Pr

(
Dk ≥ 2γk

√
Wkdρ+

√
2Mρ/3,Wk ≤ 4R2T1

)
= Pr

(
Dk ≥ 2γk

√
Wkdρ+

√
2Mρ/3,Σ2

T ≤ γ2kdWk,Wk ≤ 4R2T1

)
≤ Pr

(
Dk ≥ 2γk

√
Wkdρ+

√
2Mρ/3,Σ2

T ≤ γ2kdWk,Wk ≤ ϵpriorT1/(2βµ)
)

+

s∑
i=1

Pr

(
Dk ≥ 2γk

√
Wkdρ+

√
2Mρ/3,Σ2

T ≤ γ2kdWk,
ϵprior2

i−1T1

2βµ
< Wk ≤ ϵprior2

iT1

2βµ

)

≤ Pr

(
Wk ≤ ϵpriorT1

2βµ

)
+

s∑
i=1

Pr

Dk ≥

√
ϵprior2i+1T1γ2kd

2βµ
ρ+

√
2

3
Mρ,Σ2

T ≤
ϵprior2

iT1γ
2
kd

2βµ


≤ Pr

(
Wk ≤ ϵpriorT1

2βµ

)
+ se−ρ,
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where s is given by

s =

⌈
log2

8βµR2

ϵprior

⌉
.

The last step follows the Bernstein inequality for martingales. We complete the proof by
setting ρ = ln(s/δ) and using the fact that

2γk
√

Wkρd ≤ 1

L
Wk + γ2kρdL.

Appendix B. Proof of Lemma 9

To bound Ek, we need the following two lemmas. The first lemma bounds the deviation of
the expected value of a clipped random variable from the original variable, in terms of its
variance (Lemma A.2 from (Hazan and Koren, 2011)).

Lemma 11 Let X be a random variable, let X̃ = clip(X,C) and assume that |E[X]| ≤ C/2
for some C > 0. Then

|E[X̃]− E[X]| ≤ 2

C
|Var[X]|

Another key observation used for bounding Ek is the fact that for any non-negative
β-smooth convex function, we have the following self-bounding property. We note that this
self-bounding property has been used in (Srebro et al., 2010) to get better (optimistic) rates
of convergence for non-negative smooth losses.

Lemma 12 For any β-smooth non-negative function f : R → R, we have |f ′(w)| ≤√
4βf(w)

As a simple proof, first from the smoothness assumption, by setting w1 = w2 − 1
β f

′(w2) in

(1) and rearranging the terms we obtain f(w2)− f(w1) ≥ 1
2β |f

′(w2)|2. On the other hand,

from the convexity of loss function we have f(w1) ≥ f ′(w2)+ ⟨f ′(w1), w1 − w2⟩. Combining
these inequalities and considering the fact that the function is non-negative gives the desired
inequality.

Proof [of Lemma 9] To apply the above lemmas, we write etk as

etk =

d∑
i=1

Et

[
ℓ′(⟨wt

k,x
t
k⟩, yt)[xt

k]i − clip
(
γk, ℓ

′(⟨wt
k,x

t
k⟩, yt)[xt

k]i
)]

[wt
k −w∗]i

In order to apply Lemma 11, we check if the following condition holds

γk ≥ 2
∣∣Et

[
ℓ′
(
⟨wt

k,x
t
k⟩, yt

)
[xt

k]i
]∣∣ (16)
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Since ∣∣Et

[
ℓ′
(
⟨wt

k,x
t
k⟩, yt

)
[xt

k]i
]∣∣

≤
∣∣Et

[{
ℓ′
(
⟨wt

k,x
t
k⟩, yt

)
− ℓ′

(
⟨w∗,x

t
k⟩, yt

)}
[xt

k]i
]∣∣+ ∣∣Et

[
ℓ′
(
⟨w∗,x

t
k⟩, yt

)
[xt

k]i
]∣∣

≤ β∥wt
k −w∗∥ ≤ β∆k

where the last inequality follows from Et

[
ℓ′
(
⟨w∗,x

t
k⟩, yt

)
[xt

k]i
]
= 0 sincew∗ is the minimizer

of L(w), we thus have

γk = 2ξβ∆k ≥ 2β∆k ≥ 2
∣∣Et

[
ℓ′
(
⟨wt

k,x
t
k⟩, yt

)
[xt

k]i
]∣∣

where ξ ≥ 1, implying that the condition in (16) holds. Thus, using Lemma 11, we have

etk ≤
d∑

i=1

∣∣[wt
k −w∗]i

∣∣ 1

γk
Et

[(
ℓ′(⟨wt

k,x
t
k⟩, yt)[xt

k]i
)2]

≤
2∥wt

k −w∗∥∞
γk

Et

[(
ℓ′(⟨wt

k,x
t
k⟩, yt)

)2]
Using Lemma 12 to upper bound the right hand side, we further simplify the above bound
for etk as

etk ≤
8β∥wt

k −w∗∥∞
γk

Et

[
ℓ
(
⟨wt

k,x
t
k⟩, yt

)]
=

8β∥wt
k −w∗∥∞
γk

L(wt
k)

≤ 8β∆k

γk
L(wt

k)

=
4

ξ
L(wt

k)

where the second inequality follows from ∥wt
k −w∗∥∞ ≤ ∥wt

k −w∗∥ ≤ ∆k. Therefore we
obtain

Ek =

T1∑
t=1

etk ≤ 4

ξ

T1∑
t=1

L(wt
k) =

4

ξ

T1∑
t=1

L(w∗) +
4

ξ

T1∑
t=1

L(wt
k)− L(w∗)

≤ 4T1

ξ
L(w∗) +

4β

ξ

T1∑
t=1

∥wt
k −w∗∥2

=
4T1

ξ
L(w∗) +

4β

ξ
Wk,

where the second inequality follows from the smoothness assumption of L(w).
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