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Abstract

We propose a new method for estimating the locations and the value of an absolute maxi-
mum (minimum) of a function from the observations contaminated by random noise. Our
goal is to solve the problem under minimal regularity and shape constraints. In particular,
we do not assume differentiability of a function nor that its maximum is attained at a single
point. We provide tight upper and lower bounds for the performance of proposed estima-
tors. Our method is adaptive with respect to the unknown parameters of the problem over
a large class of underlying distributions.

Keywords: Regression, optimization, level sets, selective sampling, active learning, multi-
armed bandits.

1. Introduction

Let (X,Y ) ∈ Rd × R be a random couple with unknown distribution P and let Π stand
for the marginal distribution of X. In what follows, we will assume that the conditional
expectation η(x) := E(Y |X = x) is well-defined. The main goal of this work is to investigate
the problem of finding location(s) and the value M(η) := sup {η(x), x ∈ supp(Π)} of the
maximum of a regression function η(x). In practice, the only source of information about
η is the collection of noisy measurements (Xi, Yi), 1 ≤ i ≤ n sampled from P (so that
Yi = η(Xi) + ξi). In recent years, there has been a lot of interest in estimation techniques
that can benefit from adaptive design (e.g., so-called active learning framework), as opposed
to the algorithms that are designed to work with the iid samples. This interest is partially
motivated by an observation that in some cases, the cost related to the process of collecting
the data is associated with response variable Y while design points X are freely available.

Some advantages of adaptive design relative to our problem were understood long ago
(Kiefer and Wolfowitz (1952), Blum (1954)). The majority of recent results on optimality of
estimators were obtained under assumptions that the regression function is smooth (at least
twice continuously differentiable) and that the maximum is attained at a unique point (see
e.g. Polyak and Tsybakov (1990), Dippon (2003) and references therein); all these methods
are based on stochastic optimization techniques going back to Robbins and Monro (1951)
and the aforementioned assumptions are crucial to guarantee the success of estimation.
Other references on the topic include Tang et al. (2011) and a recent paper by Belitser
et al. (2012). While the two-stage estimation technique proposed in this work is different,
it still requires same strong assumptions. Our interest in the problem is motivated by the
fact that there is often no reason to believe either in uniqueness of the maximum or in
smoothness of the regression function. We do not assume that the maximum is attained at
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a single point and will propose a method that constructs a set-valued estimator of the level
set LM := {x ∈ supp(Π) : η(x) = M(η)} and attains nearly optimal rates with respect to
the Hausdorff distance (over certain classes). At the same time, proposed technique allows
to estimate the value of M(η). Moreover, our method is adaptive with respect to the
underlying structure of the problem (such as smoothness).

It is necessary to mention that our topic of research is closely related to the “continuum-
armed bandits” problem, see Kleinberg et al. (2008), Bubeck et al. (2011) and numerous
references therein. In the latter framework, the regression function η is usually called the
payoff function. While the case of Lipschitz-continuous payoff functions in Euclidean and
general metric spaces is understood well, the questions related to adaptation to the unknown
smoothness (or metric) are not answered completely, to the best of our knowledge. One
of the main goals of this work is to make a step towards the solution of this problem by
relating in to the adaptive confidence bands for η.

Our algorithm is partially motivated by the active learning literature in the framework
of binary classification (in particular, Minsker (2012b)), which is also a level-set estimation
problem by nature, so there is no wonder that similar ideas allow for improved results in
our context. At the same time, the technique is similar in spirit to the zooming algorithm
of Kleinberg et al. (2008) and the hierarchical optimistic optimization strategy of Bubeck
et al. (2011).

The paper is organized as follows: next section formally introduces necessary notations,
assumptions and briefly explains the main ideas behind our estimation technique. Then we
proceed with the formal statements of main results which are complemented with proofs
and relevant references.

2. Notations, assumptions and overview of results

For x ∈ Rd, let ‖x‖∞ = maxi≤d |xi| and ‖x‖2 =
(∑

i≤d x
2
i

)1/2
. For any two bounded func-

tions f, g : Rd 7→ R and A ⊂ Rd define ‖f − g‖∞,A = sup
x∈A
|f(x)− g(x)|.

Recall that the observations are sampled from the model Y = η(X) + ξ. We denote
M(η) := sup

x∈supp(Π)
η(x) and LM = {x ∈ supp(Π) : η(x) = M(η)}, where supp(Π) stands

for the support of measure Π.

Assumption 1 Assume that one of the following two conditions holds:

1. There exists 0 < T <∞ such that |Y | ≤ T P -almost surely.

2. Random variable ξ is independent of X and has finite ψ1 - norm, where ‖ξ‖ψ1 =
inf {C > 0 : E exp(|ξ/C|) ≤ 2}.

Our framework for selective sampling is governed by the following rules:

1. Design points are sampled sequentially: Xk is sampled from the modified distribution
Π̂k that depends on (X1, Y1), . . . , (Xk−1, Yk−1).

2. Yk is sampled from the conditional distribution PY |X(·|X = x). Yi’s are conditionally
independent given the features Xi, i ≤ n.
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Next, we introduce our assumptions on the design distribution Π. We will also assume
below that Π is known: indeed, since we measure performance only by the number of noisy
function values Yi, Π(A) can be estimated to an arbitrary precision for any measurable set
A.

Assumption 2 Distribution Π is supported in the unit cube [0, 1]d and is absolutely con-
tinuous with respect to Lebesgue measure with a density p(x) such that

0 < c1 ≤ p(x) ≤ c2 <∞ ∀x ∈ [0, 1]d.

This assumption serves two main purposes:

1. It allows to construct the estimators of regression function which are close to η in
sup-norm.

2. It is well-suited for the iterative structure of our algorithm.

More general classes of design distributions can be handled by our method, but we tried to
avoid unnecessary technicalities if favor of emphasizing the main ideas.

In the definition below, bβc stands for the largest integer which is strictly smaller than
β (e.g., b1c = 0).

Definition 1 We say that g : Rd 7→ R belongs to the class Σ(β,B1, [0, 1]d) if g is bβc times
continuously differentiable and for all x, x1 ∈ [0, 1]d satisfies

|g(x1)− Tx(x1)| ≤ B1‖x− x1‖β∞,

where Tx is the Taylor polynomial of degree bβc of g at the point x.

Since our main goal is to design estimation methods that are targeted at non-smooth (in
particular, non-differentiable) functions, we will mostly concentrate on the case β ∈ (0, 1].
Extensions of our methods to higher order of smoothness are possible but can be suboptimal.

Next condition is similar to the well-known margin assumption (also called Tsybakov
low noise assumption (Tsybakov (2004)) that effectively captures the complexity of the
problem in the framework of binary classification.

Assumption 3 There exist K, γ > 0 such that ∀ t > 0

Vol ({x : |η(x)−M(η)| ≤ t}) ≤ Ktγ ,

where Vol(A) stands for the Lebesgue measure of a set A ⊂ Rd.

This condition naturally describes how “flat” or “spiky” the regression function is near its
maximum. Intuitively, the larger value of γ is, the easier it is to identify the set LM . How-
ever, larger values of γ yield smaller values of the smoothness β, while the rate of estimation
depends on the interplay between these parameters, as shown below. The following fact
describes the relationship between β, γ and d.

Lemma 2 Assume that η ∈ Σ(β,B, [0, 1]d) and that Assumption 3 is satisfied for γ > 0.
Then

βmin(1, γ) ≤ d.
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Proof See the proof of the first part of Proposition 3.4 in Audibert and Tsybakov (2005).

For an integer m ≥ 1, let Gm :=
{(

k1
2m , . . . ,

kd
2m

)
, ki = 1 . . . 2m, i = 1 . . . d

}
be the

uniform grid on the unit cube [0, 1]d with mesh size 2−m. It naturally defines a partition
into a set of 2dm open cubes Ri, i = 1 . . . 2dm with edges of length 2−m and vertices in Gm.
Below, we consider the nested sequence of grids {Gm, m ≥ 1} and corresponding dyadic
partitions {Hm, m ≥ 1} of the unit cube.

Given two nonnegative integers r and m, let

Frm :=

f =
2dm∑
i=1

qi(x1, . . . , xd)IRi

 , (1)

where Hm =
{
Ri, 1 ≤ i ≤ 2dm

}
is the aforementioned dyadic partition of the unit cube and

qi(x1, . . . , xd) are the polynomials in d variables of degree at most r. For example, when
r = 0, F0

m can be viewed as the linear span of first 2dm Haar basis functions on [0, 1]d.
Note that {Frm, m ≥ 1} is a nested family. Let η ∈ Σ(β,B, [0, 1]d) for 0 < β ≤ r + 1. By
η̄m(x) we denote the L2(Π) - projection of regression function η(x) onto Frm. The following
assumption is crucial for theoretical justification of our method:

Assumption 4 Assume one of the following two conditions holds:

1. η(x) belongs to Frm0
for some m0 ≥ 1;

2. There exists B2 := B2(η,Π) > 0 such that for all m ≥ 1 the following holds true:

‖η − η̄m‖∞,supp(Π) ≥ B22−βm.

Note that for r = 0 (which will be our main focus), only the second part of Assumption 4 is
meaningful for continuos η (unless η(x) = const). The intuition behind this assumption can
be informally explained as follows: functions that satisfy Assumption 4 are the functions
whose smoothness can be learned from the data.

Assume we know that η ∈ Σ(ν,B1, [0, 1]d) for some ν ∈ (0, 1). While one could use this
information to design an algorithm that achieves optimal rates over the class Σ(ν,B1, [0, 1]d)
without imposing Assumption 4 (in the bandits framework this is done, for example, in
Bubeck et al. (2011)), our goal is to make another step forward. Namely, if it happens
that for some ε > 0, η ∈ Σ(ν + ε,B1, [0, 1]d) ⊂ Σ(ν,B1, [0, 1]d), we want the algorithm
to automatically utilize the additional smoothness and to achieve the rate of convergence
which would be optimal over Σ(ν+ δ,B1, [0, 1]d) rather than Σ(ν,B1, [0, 1]d). We show that
this is possible if Assumption 4 is satisfied. The following statement demonstrates that the
class of functions satisfying Assumption 4 is sufficiently rich.

Lemma 3 Assume one of the following conditions holds:

1. η ∈ Cr+1
(
[0, 1]d

)
, the space of (r + 1)–times continuously differentiable functions.

2. Let fu(t;x0) := η(x0 + tu), t ∈ R, u ∈ Rd, ‖u‖2 = 1. There exist x0 ∈ (0, 1)d and u

such that lim
t→0

∣∣∣∣f (bβc)u (t;x0)−f (bβc)u (0;x0)

|t|β−bβc

∣∣∣∣ = M > 0.
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Then Assumption 4 is satisfied.

Proof See the proof of Propositions 2.5.7 and 2.5.8 in Minsker (2012a).

Definition 4 Let β, γ > 0. We say that P belongs to P(β, γ) if and only if η ∈ Σ(β,B1, [0, 1]d)
and Assumptions 1–4 are satisfied.

2.1. Overview of estimation technique

Our main goal is to design a procedure that would allow to estimate LM and M(η) adap-
tively over

⋃
0<ν≤β≤1

⋃
γ>0
P(β, γ) for some fixed ν. Adaptivity of proposed algorithm is the

main improvement over previously available results (e.g., Bubeck et al. (2011), Kleinberg
et al. (2008), albeit these works impose weaker assumptions). Additionally, we are inter-
ested in estimating the whole level set associated to the absolute maximum of η rather than
just identifying its subset and the value of the maximum. Our approach is closely related
to the methods developed in Minsker (2012b), Minsker (2012a) for the binary classification
problem.

On each iteration, the algorithm attempts to reduce the search domain for the maximum
of η. Reduction is based on sequentially refined estimators of the regression function.
Assume that Âk is the set of possible maximums on step k (e.g., on step 1 A1 = [0, 1]d).
The algorithm constructs an estimator η̂k such that ‖η−η̂k‖∞,Âk ≤ δk with high probability,

where δk is decreasing. In turn, η̂k is used to define Âk+1 :=
{
x ∈ Âk : |η̂k(x)− M̂k| ≤ 2δk

}
,

where M̂k := supx∈Âk η̂k. Improvement is achieved due to the fact that on each step, the

algorithm only requests response Y for an observation X ∈ Âk and ignores X /∈ Âk, since Âk
contains the relevant information about the maximum. Resulting estimator L̂M produced
by the algorithm has the property that LM ⊆ L̂M ⊆

{
x ∈ [0, 1]d : η(x) ≥M(η)− tn

}
with

high probability, where tn . n
− β

2β+d−βγ (up to log-factors). In particular, if βγ = d, then
for any x ∈ L̂M we have |η(x) −M(η)| . n−1/2, which is often the desired property for
applications.

For provable performance guarantees, our algorithm requires the lower bound ν for
regularity of η and a priori estimates on the constants B1 and B2 from Definition 1 and
Assumption 4 respectively.

Complete description is given in Algorithm 1 below, followed by the performance guar-
antees of Theorem 14. See figure 1 below for graphical illustration.

3. Lower bounds

Recall that the Hausdorff distance between two non-empty subsets A,B ⊆ [0, 1]d is defined
as

dH(A,B) = max

(
sup
x∈A

inf
y∈B
‖x− y‖2, sup

y∈B
inf
x∈A
‖x− y‖2

)
,

The main result of this section establishes the minimax lower bound for estimation of the
set LM via selective sampling:
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Figure 1: Estimation algorithm on step k

Theorem 5 Let β ∈ (0, 1]. There exists C > 0 such that for all n large enough and for
any estimator L̂M based on a sample of size n from P we have

sup
P∈P(β,γ)

EP dH
(
L̂M , LM

)
≥ cn−

1
2β+d−βγ .

Remark 6 Note that d− βγ ≥ 0 for 0 < β ≤ 1.

Proof The proof is based on Theorem 2.5 from Tsybakov (2009) and follows the relatively
standard pattern by reducing the problem of estimating the minimax risk to the problem
of hypotheses testing. Let q = 2l, l ≥ 1 and

Gq :=

{(
2k1 − 1

2q
, . . . ,

2kd − 1

2q

)
, ki = 1 . . . q, i = 1 . . . d

}
be the grid on [0, 1]d. For x ∈ [0, 1]d, let nq(x) = argmin {‖x− xk‖2 : xk ∈ Gq} . If nq(x)
is not unique, we choose a representative with the smallest ‖ · ‖2 norm. The unit cube
is partitioned with respect to Gq as follows: x1, x2 belong to the same subset if nq(x1) =
nq(x2). Let ′ �′ be some order on the elements of Gq such that x � y implies ‖x‖∞ ≥ ‖y‖∞.
Assume that the elements of the partition are enumerated with respect to the order of their

centers induced by ′ �′: [0, 1]d =
qd⋃
i=1

Ri. Fix 1 ≤ m ≤ qd and let S :=
⋃m
i=1Ri. Define Hm =

{Pσ : σ ∈ {−1, 1}m \ (−1,−1, . . . ,−1)} to be the collection of probability distributions on
[0, 1]d × R. Here, Pσ is the distributions of a couple (X,Y ), where Y = ησ(X) + ε, the
marginal distribution of X is uniform on the unit cube (in particular, independent of σ), ε
is standard normal and independent of X (so that the conditional distribution P (Y |X = x)

is normal with mean ησ(x) and variance 1). Let φ(x) :=
(

1− ‖x‖β∞
)

exp
(
− 1

1−‖x‖2∞

)
and

ησ(x) :=

{
σiq
−βφ(q[x− nq(x)]), x ∈ Ri, 1 ≤ i ≤ m,

− [infy∈S ‖x− y‖∞]d/γ , else.
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Note that M(ησ) = q−β for any σ ∈ Hm. It is straightforward to check that ησ satisfies
smoothness requirements and second condition of Assumption 4 (by Lemma 3). We will
check that Assumption 3 is satisfied whenever mq−d = O(q−βγ). Indeed, for z ≤ q−β

Vol
{
x : |ησ(x)− q−β| ≤ z

}
≤ m

(
(2zqβ)1/β

q

)d
= 2dzγmzd/β−γ ≤ Kzγ

given that m ≤ Cqd−βγ . For z > q−β, Assumption 3 is also easily verified (by examining
ησ on S and [0, 1]d \ S independently).

The proof proceeds by selecting a “well-separated” subset ofHm. LetH′ := {Pσ0 , . . . , PσM },
where σ0 = (1, 1, . . . , 1), be chosen such that collection {σ0, . . . , σM} satisfies the condi-
tions of Gilbert-Varshamov bound (see Lemma 2.9 in Tsybakov (2009)). It remains to
bound the Kullback-Leibler divergence KL(Pσ,n‖Pσ0,n), where Pσ,n is the joint distribution
of (Xi, Yi)

n
i=1 under the hypothesis that the distribution of a couple (X,Y ) is Pσ. In the

case of adaptive design, this is done is detail in the proofs of Theorem 7 (Minsker (2012b))
or Theorem 3 (Polyak and Tsybakov (1990)) by factorizing Pσ,n and using the fact that

the KL (N(0, 1)‖N(t, 1)) = t2

2 , where N(t, 1) is the normal distribution with mean t and
variance 1; we skip the technical details for brevity and give the final bound:

KL(Pσ,n‖Pσ0,n) ≤ Cn max
x∈[0,1]d

(ησ(x)− ησ0(x))2 ≤ Cnq−2β.

Finally, setting q = bC1N
1

2β+d−βγ c and m = bC2q
d−βγc, it is easy to check that all conditions

of Theorem 2.5 (Tsybakov (2009)) are satisfied for appropriate C1, C2. Since for any
σ1, σ2 ∈ H′ and corresponding level sets LiM = {x : ησi(x) = maxx ησi(x)} , i = 1, 2 we
clearly have dH(L1

M , L
2
M ) ≥ 2q, then Theorem 2.5 in Tsybakov (2009) guarantees that

q = bC1n
1

2β+d−βγ c is the minimax lower bound for the risk, implying the result.

Remark 7 Note that in the case βγ = d, which holds, for example, when the maximum
is unique and η(x) ' M(η) − ‖x‖β in a neighborhood of the maximum, the resulting rate
n−1/2β is dimension-free. This result complements the well-known fact that the optimal rate

for estimating the maximum of a smooth function is n
−β−1

2β , β ≥ 2 (Theorem 3 in Polyak
and Tsybakov (1990)). It is also interesting to compare our result with the optimal rate for
estimating the mode of the univariate unimodal regression function, which is known to be
n−1/(2β+1) for iid (hence, nonadaptive) design; here, β describes the rate of decay in vicinity
of the mode (see Shoung and Zhang (2001)).

Remark 8 It is well-known that the minimax lower bound for estimating the value of the
maximum sup

x∈[0,1]d
η(x) over Hölder balls is n−1/2. It will be shown in the following sections

that our algorithm attains this rate up to logarithmic factors in the case βγ = d. Whenever

0 < β ≤ 1 and βγ < d, we conjecture that the optimal rate is n
− β

2β+d−βγ . Let us mention
that Theorem 2 in Auer et al. (2007) proves the lower bound of the form n−θ for any
θ < − β

2β+1−βγ (in the univariate case d = 1).
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4. Upper bounds

The main goal of this section is to give a rigorous description and analysis of the algorithm
introduced in section 2.1.

4.1. Preliminary results

An important ingredient of our analysis is the bound for estimating η(x) in sup-norm loss.
To obtain such an estimate, we need to

1. Analyze approximation properties of classes Frm defined by (1);

2. Obtain the probabilistic bounds for estimation of elements of Frm from the noisy data.

We will concentrate on the case of piecewise-constant approximation r = 0 which is sufficient
for our purposes. Let Projm be the L2(Π)–projector on F0

m.

Lemma 9 Assume f ∈ Σ(β,B1, [0, 1]d) for 0 < β ≤ 1. Then

‖f − Projmf‖∞,[0,1]d ≤ 2B12−βm.

Proof This immediately follows from the fact that for any dyadic cube R and x ∈ R
f(x)− (Projmf)(x) = 1

Π(R)

∫
R

(f(x)− f(y))dΠ(y).

Let Bm be the sigma-algebra generated by dyadic cubes Rj , 1 ≤ j ≤ 2dm forming
the partition of [0, 1]d. Given a nonempty set A ∈ Bm, define Π̂A(dx) := Π(dx|x ∈ A).
Moreover, set dm,A := dim

(
F0
m

∣∣
A

)
. Next, we introduce an piecewise-constant estimator

of the regression function on the set A. Let (Xi, Yi), i ≤ n be iid observations with
Xi ∼ Π̂A(dx) and m ≥ 1 be the resolution level. Define

η̂m,A(x) :=
∑

j:Rj∩A 6=∅

∑n
i=1 YiIRj (Xi)

nΠ̂A(Rj)
IRj (x) for x ∈ A and 0 otherwise. (2)

This estimator is well-defined since we assumed that Π is known. Let η̄m = Projmη and
note that for all x ∈ A, Eη̂m,A(x) = η̄m(x).

We have the following concentration result:

Proposition 10 Assume that the first condition of Assumption 1 holds. Then, for any
t > 0,

Pr

(
sup
x∈A
|η̂m,A(x)− η̄m(x)| > C · T

[√
t 2dmΠ(A)

n
∨ 2dmΠ(A)

t

n

])
≤ 2dm,Ae

−t.

If the second condition of Assumption 1 holds, then

Pr

(
sup
x∈A
|η̂m,A(x)− η̄m(x)| > C(η, ‖ξ‖ψ1)

[√
t 2dmΠ(A)

n
∨ dm2dmΠ(A)

t

n

])
≤ 2dm,Ae

−t.
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Proof The proof is based on the variants of Bernstein’s inequality for bounded random
variables and for random variables with bounded ψ1-norms, combined with the union bound.
See Appendix for details.

Remark 11 Note that whenever 2dm ≤ n
log4 n

and t ≤ log3 n, bound of Proposition 10

becomes Pr

(
sup
x∈A
|η̂m,A(x)− η̄m(x)| > C

√
t 2dmΠ(A)

n

)
≤ 2dm,Ae

−t, where C = C(T ) or C =

C(η, ‖ξ‖ψ1).

4.2. Model selection

Below, we briefly describe the tools which are needed to make our learning algorithm adap-
tive with respect to the unknown smoothness β. It turns out that if Assumption 4 is
satisfied, then information about smoothness can be captured from the data. Approach
presented below was partially motivated by results of Giné and Nickl (2010) on adaptive
confidence bands in density estimation. Given a sequence of finite dimensional subspaces
Gm( in our case, these are the piecewise–constant functions F0

m, possibly restricted to some
subset of [0, 1]d), define the index set

J (n) :=

{
m ∈ N : 1 ≤ dimGm ≤

n

log4 n

}
(3)

which is the set of all possible resolution levels of an estimator from Gm based on a sample
of size n. For the model selection procedures described below, we will always assume that
the index is chosen from the corresponding J (n).

Given a sample (X1, Y1), . . . , (Xn, Yn) from P , let
{
η̂m := η̂m,[0,1]d , m ∈ J (n)

}
be a

collection of estimators of η on the unit cube defined by formula (2). Our goal is to choose
the resolution level m in an optimal way using the given sample. Optimality is understood
as a balance between the bias term coming from the piecewise-constant approximation and
the random error coming from the use of noisy data. For t > 1, define

m̂ := m̂(t, n) = min

{
m ∈ J (n) : ∀l > m, l ∈ J (n), ‖η̂l − η̂m‖∞ ≤ K1

√
t 2dll

n

}
. (4)

We will compare m̂ to the “optimal” resolution level m̄ defined by

m̄ := min

{
m ∈ J (n) : ‖η − η̄m‖∞ ≤ K2

√
2dmm

n

}
. (5)

For m̄, we immediately get the following:

Lemma 12 If η ∈ Σ(B1, [0, 1]d, β) for 0 < β ≤ r + 1, then 2m̄ ≤ C1 ·
(

nB2
1

log(nB2
1)

)1/(2β+d)
,

where C1 = C1(Π, d, r). Moreover, if Assumption 4 is satisfied with a constant B2, then

2m̄ ≥ C2 ·
(

nB2
2

log(nB2
2)

)1/(2β+d)
.
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We are ready to present the main result of this subsection:

Theorem 13 Assume that η ∈ Σ(β,B1, [0, 1]d) and that Assumption 4 is satisfied with a
constant B2. Then there exists t0 = t0(d) > 0 and K1 large enough such that for all t ≥ t0
we have

m̂ ∈
(
m̄− 1

β

(
log2 t+ log2

B1

B2
+ h

)
, m̄

]
with probability at least 1 − C2dm̄ log n exp(−ctm̄), where h is some fixed positive number
that depends on d, r,Π.

Proof See the proof of Theorem 2.5.6 in Minsker (2012a).

4.3. Estimation procedure: details and analysis

Complete description of estimation procedure is given in Algorithm 1 below; the details are
mostly self-explanatory, and we will just make few clarifying comments. Note that on the
first step of the algorithm, a sample of size 2N0 is divided into two equal parts. The first n0

pairs denoted S0,1 are used to define m̂0 and the rest (denoted S0,2) are used to construct

η̂0. Sample size nk is chosen such that on every step, 2m̂k ≈ n
1/(2β+d)
k (this motivates the

expression for τk).
We are ready to present the main result of this section. We will assume that ε is

small enough so that B1 ≤ log1/2 1
ε , B2 ≥ log−1/2 1

ε , where B1, B2 are the constants from
Definition 1 and Assumption 4 respectively (these can be replaced by any known bounds
on B1, B2).

Theorem 14 Assume that P ∈ P(β, γ) for 0 < ν ≤ β ≤ 1. Then with probability ≥ 1− α
estimators L̂M and M̂ returned by Algorithm 1 satisfy

LM ⊆ L̂M ⊆
{
x ∈ [0, 1]d : η(x) ≥M(η)− 4ε

}
, (6)

|M̂ −M(η)| ≤ ε, (7)

while the total number of noisy function measurements requested by Algorithm 1 is

n ≤ C
(

1

ε

) 2β+d−βγ
β

logp
1

εα
, (8)

where p ≤
(

4+2d
4ν

)2 (
1 + βγ

2β+d−βγ

)
.

Remark 15 Note that whenever η(x) satisfies M(η)− η(x) ≥ B3 inf
y∈LM

‖y − x‖β∞, then (6)

implies that the estimator L̂M produced by Algorithm 1 after requesting n noisy function

values satisfies dH(L̂M , LM ) ≤ C3n
− 1

2β+d−βγ polylog(n/α) with probability ≥ 1 − α, which
is, up to log-factors, the rate given by Theorem 5.
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input : desired accuracy ε; confidence α; minimal regularity 0 < ν ≤ 1
output: L̂M – estimator of the level set LM ; M̂ – estimator of M(η).
ω := 2 + d

2ν

k = 0, Â0 := [0, 1]d

n0 := bε−νc
for i = 1 to 2n0 do

sample i.i.d.
(
X

(0)
i , Y

(0)
i

)
with X

(0)
i ∼ Π

end

S0,1 :=
{(
X

(0)
i , Y

(0)
i

)
, i ≤ n0

}
, S0,2 =

{(
X

(0)
i , Y

(0)
i

)
, n0 + 1 ≤ i ≤ 2N0

}
m̂0 := m̂(s, n0;S0,1) /* see equation (4) */

η̂0 := η̂m̂0,[0,1]d;S0,2
/* see equation (2) */

δ0 := D̃(log 1
εα)

ω
m̂k
m̂0 ·

√
2dm̂0

n0

while δk > ε do

M̂k = max
x∈Âk

η̂k(x)

k := k + 1
Âk :=

{
x ∈ Âk−1 : η̂k−1 ≥ M̂k−1 − 2δk−1

}
/* a new search domain */

m̂k := m̂k−1 + 1
τk := m̂k

m̂k−1

nk := bnτkk−1c
for i = 1 to bnk ·Π(Âk)c do

sample i.i.d.
(
X

(k)
i , Y

(k)
i

)
with X

(k)
i ∼ Π̂k := Π(dx|x ∈ Âk)

Sk :=
{(
X

(k)
i , Y

(k)
i

)
, i ≤ bnk ·Π(Âk)c

}
end
η̂k := η̂m̂k,Âk /* estimator based on Sk */

δk := D̃(log 1
εα)

ω
m̂k
m̂0 ·

√
2dm̂k
nk

/* bound on estimation error */

L̂M := Âk+1, M̂ := M̂k /* keeping track of the most recent estimators */

end
Algorithm 1: Learning the location and the value of max

x∈[0,1]d
η(x).

11
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Proof The proof is conceptually simple but technical. Our main goal will be to construct
high probability bounds for the size of the sets Âk defined by Algorithm 1. In turn, these
bounds depend on the estimation errors δk. Suppose J is the number of steps performed
by the algorithm before termination.

Let nact
k := bnk · Π(Âk)c be the number of samples requested on k-th iteration of the

algorithm. Claim: the following bounds hold uniformly for all 1 ≤ k ≤ J with probability
at least 1− α:

‖η − η̂k‖∞,Âk ≤ δk, δk ≤ C
(

log
1

εα

)ωτ̄
n
−β/(2β+d)
k , (9)

Π(Âk) ≤ C
(

log
1

εα

)γωτ̄
n
−βγ/(2β+d)
k−1 (10)

where ω = 2 + d
2ν and τ̄ = 4 + 2d

ν . Let E be the event on which (9),(10) hold.
Let us first assume that (9) has already been established and derive the result from it. Let
m̄0 be the “optimal” resolution level for the corresponding sample of size n0, see formula
(5). First, we make a useful observation that, with high probability, numbers nk grow
geometrically: indeed, we have by the definition of m̂k

nk+1 = bnm̂k+1/m̂k
k c ≤ nk · n

1/m̂k
k ≤ nk ·

(
n
m̂k
m0
0

) 1
m̂k

= nk · n
1
m̂0
0 ,

and by Theorem 13, if n0 is sufficiently large, as guaranteed by our assumptions, log2 n0

m̄0
≤

log2 n
1/m̂0

0 ≤ log2 n0
1
2
m̄0

with probability ≥ 1− α. Finally, Lemma 12 gives

1

2β + d
log n0 + c ≥ m̄0 ≥

1

2β + d
(log n0 − 2 log log n0)− c

which shows that 0 < C1 ≤ log2 n
1/m̂0

0 ≤ C2.
Next, inequality (9) implies, together with the previous observation, that the number of

labels requested on step k ≥ 1 satisfies nact
k = bnkΠ(Âk)c ≤ C · n

2β+d−βγ
2β+d

k−1

(
log 1

εα

)γωτ̄
with

probability ≥ 1 − 2α. If n is the total number of labels requested by the algorithm, then,
due to geometric growth,

n =

J∑
k=0

nact
k ≤ C3

(
log

1

εα

)γωτ̄ J∑
k=0

n
2β+d−βγ

2β+d

k ≤ C4

(
log

1

εα

)γωτ̄
n

2β+d−βγ
2β+d

J−1 .

At the same time, we have δJ−1 > ε (otherwise algorithm would terminate on step J − 1),

hence by (9) we have C
(
log 1

εα

)ωτ̄
n
−β/(2β+d)
J−1 ≥ ε, and (8) follows by simple algebra.

To derive (6), note that on event E

x /∈ Âk+1 =⇒ η̂k(x) < M̂k − 2δk =⇒ η(x) ≤ M̂k − 2δk + |η(x)− η̂k(x)| ≤
≤M(η) + sup

x∈Âk
|(η − η̂k)(x)| − 2δk + |η(x)− η̂k(x)| ≤M(η)

12
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where we used (9) in the last inequality. This gives LM ⊆ Âk for all 1 ≤ k ≤ J . On the
other hand,

x ∈ Âk+1 =⇒ η̂k(x) ≥ M̂k − 2δk =⇒ η(x) ≥ η̂k(x)− |η(x)− η̂k(x)| ≥
≥M(η)− 2δk − sup

x∈Âk
|(η − η̂k)(x)| − |η(x)− η̂k(x)| ≥M(η)− 4δk, (11)

hence on event E

Âk+1 ⊆
{
x ∈ [0, 1]d : η(x) ≥M(η)− 4δk

}
, (12)

and (10) follows. It remains to show (9), (10). The main tools are given by Proposition
10 and Theorem 13. The proof of (9) consists of applying these results on each step of
the algorithm combined with the union bound; (10) immediately follows from (9), (12) and
Assumption 3. Detailed derivation is given in Appendix (also see the proof of Theorem
2.6.2 in Minsker (2012a) for a similar argument).

5. Concluding remarks

It is easy to see that our approach can be applied for estimation of arbitrary level sets of
the form {x : η(x) = z} for z ∈ Range(η), which might be useful in other applications.

While proposed algorithm possesses several nice properties (such as adaptivity), its
performance is limited by the use of piecewise-constant approximation. Beyond Hölder
smoothness 0 < β ≤ 1, more complicated estimators are required to attain faster rates (e.g.,
classes defined by (1) for r ≥ 1). Such extensions are possible (but not straightforward), and
the resulting number of total noisy function evaluations required by Theorem 14 becomes

n ≤ C
(

1
ε

) 2β+d−(β∧1)γ
β polylog( 1

εα) (compare to (8)). However, in many situations this bound
is suboptimal due to the “zero-order” nature of the algorithm. We omit further details in
this work to avoid associated technicalities.
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Appendix A. Proof of Proposition 10.

We will assume that A = [0, 1]d for simplicity, since the same argument applies to any
A ∈ Bm. Let R ∈ Bm be a dyadic cube and define the random variable Z := Y · I {X ∈ R}.
To prove the first part of the proposition, note that |Z| ≤ T P-a.s. and Var(Z) ≤ EZ2 ≤
T 2Π(R). It remains to apply Bernstein’s inequality (see van der Vaart and Wellner (1996),
Lemma 2.2.9) to Sn

nΠ(R) , where Sn :=
∑n

j=1(Zj − EZj). The union bound over all dyadic

cubes Rj forming the partition of A, together with an observation that Π(Rj) ≥ c12−dm

(by properties of the marginal distribution Π), concludes the proof.
The argument for the second part is slightly more complicated. We start by estimating

‖Z‖ψ1 . Note that the distribution PZ of Z is a mixture PZ = (1−Π(R))δ0 +Π(R)P (Y |X ∈
R). If YR ∼ P (Y |X ∈ R), then

EeD|Z| − 1 = Π(R)
(
EeD|YR| − 1

)
= Π(R)E

YR∫
0

DeDsds = (13)

= Π(R)

∞∫
0

Pr (|YR| > s)DeDsds,

where we used Fubini’s theorem in the last equality. Next, we estimate the moment gener-
ating function of YR as follows: for t > 0,

EetYR = EE
(
et(YR−η(x)+η(x))|X = x

)
= E

[
etη(X)E(etξ|X = x)

]
≤ etmaxx |η(x)|Eetξ.

Since by definition of ψ1-norm Ee
|ξ|
‖ξ‖ψ1 ≤ 2, choosing t := ‖ξ‖−1

ψ1
and setting K(η) :=

maxx |η(x)|, we get EeYR‖ξ‖
−1
ψ1 ≤ 2e

K(η)‖ξ‖−1
ψ1 . Furthermore, Chebyshev inequality applied to

YR and−YR yields Pr (|YR| > s) ≤ inf
t>0

e−ts(EetYR+Ee−tYR) ≤ 4e
−s‖ξ‖−1

ψ1 e
K(η)‖ξ‖−1

ψ1 . Plugging

this back into (13), one easily gets EeD|Z| − 1 ≤ 4Π(R)e
K(η)‖ξ‖−1

ψ1
D

‖ξ‖−1
ψ1
−D . The right-hand

side of the last inequality is not greater than 1 for D−1 ≥ ‖ξ‖ψ1(1+4Π(R)e
K(η)‖ξ‖−1

ψ1 ), hence

‖Z‖ψ1 ≤ ‖ξ‖ψ1(1 + 4Π(R)e
K(η)‖ξ‖−1

ψ1 ).

Set V (η,R) := Π(R)K(η)+‖ξ‖ψ1(1+4Π(R)e
K(η)‖ξ‖−1

ψ1 ) and note that ‖Z−EZ‖ψ1 ≤ V (η,R).
Finally, observe that EZ2 ≤ 2Π(R)(Eξ2+K2(η)). It remains to apply Bernstein’s inequality
for random variables with bounded ψ1 - moments (Theorem 2.7 in Koltchinskii (2011)) to
Sn :=

∑n
j=1(Zj − EZj), which gives

Pr

(
|Sn|
nΠ(R)

≥ C

(
max(K(η),E1/2ξ2)

√
t

nΠ(R)
∨ t

n

V (η,R)

Π(R)
log

V (η,R)

Π(R)

))
≤ e−t.

The proof is concluded by applying the union bound similar to the first part of the propo-
sition.
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Appendix B. Proof of Theorem 14: remaining details

Let η̂k be the estimator obtained on step k. For k = 0, we have

‖η − η̂0‖∞,supp(Π) ≤ ‖η − η̄m̂0‖∞,[0,1]d + ‖η̄m̂0 − η̂0‖∞,[0,1]d .

By Proposition 10 (applied conditionally on S0,1), with probability ≥ 1− α

‖η̄m̂0 − η̂0‖∞,supp(Π) ≤ C log1/2(1/εα)

√
2dm̂0

n0
.

For the bias term ‖η − η̄m̂0‖∞,supp(Π), by our assumptions on η (see Lemma 9),

‖η − η̄m̂0‖∞,supp(Π) ≤ B12−βm̂0 .

By Theorem 13, with probability ≥ 1− α

2−βm̂0 ≤ C

β

(
log

1

εα

)1+ d
2β

√
2dm̂0m̂0

n0
, (14)

and by Theorem 13 and Lemma 12, with probability ≥ 1− α

2dm̂0

n0
≤ 2dm̄0

n0
≤ C1n

−2β/(2β+d)
0 , (15)

so that, with probability ≥ 1− 2α,

‖η − η̂0‖∞,[0,1]d ≤ C(β, d)

(
log

1

εα

)3/2+ d
2β

√
2dm̂0m̂0

n0
:=

δ0

2
≤ (16)

≤ C(β, d)

(
log

1

εα

)2+ d
2β

n
− β

2β+d

0 .

For k ≥ 1, we have in a similar way

‖η − η̂k‖∞,Âk ≤ ‖η − η̄m̂k‖∞,Âk + ‖η̄m̂k − η̂k‖∞,Âk .

By (15) and Proposition 10 applied for A := Âk and n := nact
k = bnk ·Π(Âk)c (conditionally

on
k−1⋃
i=0

Sk, where Sk is the subsample used by the Algorithm 1 on step k), with probability

≥ 1− α

‖η̄m̂k − η̂k‖∞,Âk ≤ C log1/2(1/εα)

√
2dm̂k

nk
≤ C log1/2(1/εα)

√2dm̂0

n0


∏k
i=1 τk

≤

≤ C log1/2(1/εα)n
−β/(2β+d)
k . (17)
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Once again, for the bias term we have by (14)

‖η − η̄m̂k‖∞,Âk ≤ CB12−βm̂k = CB1

(
2−βm̂0

)∏k
i=1 τi ≤

≤ C(ν, d)B1

(log
1

εα

)1+ d
2β

√
2dm̂0m̂0

n0


∏k
i=1 τi

≤ (18)

≤ C(ν, d)

[(
log

1

εα

)2+ d
2ν

]∏k
i=1 τi

√
2dm̂k

nk
:=

δk
2
≤

≤ C(ν, d)

[(
log

1

εα

)2+ d
2ν

]∏k
i=1 τi

n
−β/(2β+d)
k ,

which holds with probability ≥ 1− α and gives together with (17) that

‖η − η̂k‖∞,Âk ≤
δk
2
≤ C(ν, d)

[(
log

1

εα

)2+ d
2ν

]∏k
i=1 τi

n
−β/(2β+d)
k (19)

with probability ≥ 1−2α. Finally, it remains to note that for all 1 ≤ k ≤ J , with probability
≥ 1− 2α,

k∏
i=1

τi ≤
J∏
i=1

τi ≤ 2
2ν + d

ν
:= τ̄ . (20)

This follows from the observation that on step J − 1, we have δJ−1 > ε, hence

C

[(
log

1

εα

)2+ d
2ν

n
−β/(2β+d)
0

]∏J−1
i=1 τi

≥ ε.

Plugging in the value of n0 = bε−νc, we get the bound.
The union bound over all 0 ≤ k ≤ J gives that, with probability ≥ 1 − 4(J + 1)α, on

every iteration we have

‖η − η̂k‖∞,Âk ≤
δk
2
≤ C̄(ν,Π)

(
log

1

εα

)τ̄(2+ d
2ν

)

n
−β/(2β+d)
k .
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