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Abstract

We present methods for online linear optimization that take advantage of benign (as op-
posed to worst-case) sequences. Specifically if the sequence encountered by the learner is
described well by a known “predictable process”, the algorithms presented enjoy tighter
bounds as compared to the typical worst case bounds. Additionally, the methods achieve
the usual worst-case regret bounds if the sequence is not benign. Our approach can be
seen as a way of adding prior knowledge about the sequence within the paradigm of online
learning. The setting is shown to encompass partial and side information. Variance and
path-length bounds Hazan and Kale (2010); Chiang et al. (2012) can be seen as particular
examples of online learning with simple predictable sequences.

We further extend our methods to include competing with a set of possible predictable
processes (models), that is “learning” the predictable process itself concurrently with using
it to obtain better regret guarantees. We show that such model selection is possible under
various assumptions on the available feedback.

Keywords:

1. Introduction

No-regret methods are studied in a variety of fields, including learning theory, game the-
ory, and information theory Cesa-Bianchi and Lugosi (2006). These methods guarantee a
certain level of performance in a sequential prediction problem, irrespective of the sequence
being presented. While such “protection” against the worst case is often attractive, the
bounds are naturally pessimistic. It is, therefore, desirable to develop algorithms that yield
tighter bounds for “more regular” sequences, while still providing protection against worst-
case sequences. Some successful results of this type have appeared in Cesa-Bianchi et al.
(2007); Hazan and Kale (2010, 2009); Chiang et al. (2012); Bartlett et al. (2007) within the
framework of prediction with expert advice and online convex optimization.

In Rakhlin et al. (2011), a general game-theoretic formulation was put forth, with “regu-
larity” of the sequence modeled as a set of restrictions on the possible moves of the adversary.
Through a non-constructive analysis, the authors pointed to the existence of general regret-
minimization strategies for benign sequences, but did not provide a computationally feasible
method. In this paper, we present algorithms that achieve some of the regret bounds of
Rakhlin et al. (2011) for sequences that can be described as

sequence = predictable process + adversarial noise

This paper focuses on the setting of online linear optimization, and the results achieved
in the full-information case carry over to online convex optimization as well. To remind
the reader of the setting, the online learning process is modeled as a repeated game with
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convex sets F and X for the learner and Nature, respectively. At each round t = 1, . . . , T ,
the learners chooses ft ∈ F and observes the move xt ∈ X of Nature. The learner suffers a
loss of ⟨ft, xt⟩ and the goal is to minimize regret, defined as

RegT =
T

∑
t=1

⟨ft, xt⟩ − inf
f∈F

T

∑
t=1

⟨f, xt⟩ .

There are a number of ways to model “more regular” sequences. Let us start with the
following definition. Fix a sequence of functions Mt ∶ X

t−1 ↦ X , for each t ∈ {1, . . . , T} ≜ [T ].
These functions define a predictable process M1, M2(x1), . . . , MT (x1, . . . , xT−1) . If, in
fact, xt = Mt(x1, . . . , xt−1) for all t, one may view the sequence {xt} as a (noiseless) time
series, or as an oblivious strategy of Nature. If we knew that the sequence given by Nature
follows exactly this evolution, we should suffer no regret.

Suppose that we have a hunch that the actual sequence will be “roughly” given by this
predictable process: xt ≈Mt(x1, . . . , xt−1). In other words, we suspect that the sequence is
described as predictable process plus adversarial noise. Can we use this fact to incur smaller
regret if our suspicion is correct? Ideally, we would like to “pay” only for the unpredictable
part of the sequence.

Information-Theoretic Justification Let us spend a minute explaining why such regret
bounds are information-theoretically possible. The key is the following observation, made
in Rakhlin et al. (2011). The non-constructive upper bounds on the minimax value of the
online game involve a symmetrization step, which we state for simplicity of notation for the
linear loss case with F and X being dual unit balls:

sup
x1,x′1

Eε1 . . . sup
xT ,x

′

T

EεT ∥
T

∑
t=1

εt(x
′
t − xt)∥

∗
≤ 2 sup

x1
Eε1 . . . sup

xT

EεT ∥
T

∑
t=1

εtxt∥
∗

If we instead only consider sequences such that at any time t ∈ [T ], xt and x′t have to be σt-
close to the predictable process Mt(x1, . . . , xt−1), we can add and subtract the “center” Mt

on the left-hand side of the above equation and obtain tighter bounds for free, irrespective
of the form of Mt(x1, . . . , xt−1). To make this observation more precise, let

Ct = Ct(x1, . . . , xt−1) = {x ∶ ∥x −Mt(x1, . . . , xt−1)∥∗ ≤ σt} (1)

be the set of allowed deviations from the predictable “trend”. We then have a bound

sup
x1,x′1∈C1

Eε1 . . . sup
xT ,x

′

T ∈CT
EεT ∥

T

∑
t=1

εt(x
′
t −Mt(x1, . . . , xt−1) +Mt(x1, . . . , xt−1) − xt)∥

∗
≤ c

¿
Á
ÁÀ

T

∑
t=1

σ2
t

on the value of the game against such “constrained” sequences, where the constant c depends
on the smoothness of the norm. This short description only serves as a motivation, and the
more precise statements about the value of a game against constrained adversaries can be
found in Rakhlin et al. (2011).

The development so far is a good example of how a purely theoretical observation can
point to existence of better prediction methods. What is even more surprising, for the
methods presented below, the individual σt’s need not be known ahead of time except for
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their total sum ∑Tt=1 σ
2
t . Moreover, the latter sum need not be known in advance either,

thanks to the standard doubling trick (see Appendix), and one can obtain upper bounds of

T

∑
t=1

⟨ft, xt⟩ − inf
f∈F

T

∑
t=1

⟨f, xt⟩ ≤ c

¿
Á
ÁÀ

T

∑
t=1

∥xt −Mt(x1, . . . , xt−1)∥
2∗ . (2)

Let us now discuss several types of statistics Mt that could be of interest. Regret bounds
in terms of Mt(x1, . . . , xt−1) = xt−1 are known as path length bounds Chiang et al. (2012);
Rakhlin et al. (2011). Such bounds can be tighter than the pessimistic O(

√
T ) bounds

when the previous instance xt is a good proxy for the next move. Regret bounds in terms of
Mt(x1, . . . , xt−1) =

1
t−1 ∑

t−1
s=1 xs are known as variance bounds (see Cesa-Bianchi et al. (2007);

Hazan and Kale (2009, 2010); Rakhlin et al. (2011)). One may also consider fading memory
statistics. That is, Mt(x1, . . . , xt−1) = ∑

t−1
s=1 αsxs where ∑t−1

s=1 αs = 1 and αs ≥ 0 or even plug in
an auto-regressive model. If “phases” are expected in the data (e.g., stocks tend to go up in
January), one may consider Mt(x1, . . . , xt−1) = xt−k for some phase length k. Alternatively,
one may consider averaging of the past occurrences Tj(t) ⊂ [t] of the current phase j to get
a better predictive power: Mt(x1, . . . , xt−1) = ∑s∈Tt αsxs .

The use of a predictable process (Mt)t≥1 can be seen as a way of incorporating prior
knowledge about the sequence (xt)t≥1. Importantly, the bounds still provide the usual
worst-case protection if the process Mt does not predict the sequence well. To see this,

observe that
√

∑
T
t=1 ∥xt −Mt∥

2∗ ≤ 2 maxx∈X ∥x∥
√
T which is only a factor of 2 larger than

the typical bounds. However when Mt’s do indeed predict xt’s well, we have lower regret,
a property we get almost for free. Notice that in all our analysis the predictable process
(Mt)t≥1 can be any arbitrary function of the past.

A More General Setting The predictable process Mt has been written so far as a func-
tion of x1, . . . , xt−1, as we assumed the setting of full-information online linear optimization
(that is, xt is revealed to the learner after playing ft). Whenever our algorithm is determin-
istic, we may reconstruct the sequence f1, . . . , ft given the sequence x1, . . . , xt−1, and thus
no explicit dependence of Mt of the learner’s moves are required. More generally, however,
nothing prevents us from defining the predictable process Mt as a function

Mt(I1, . . . , It−1, f1, . . . , ft−1, q1, . . . , qt−1) (3)

where Is is the information conveyed to the learner at step s ∈ [T ] (defined on the ap-
propriate information space I) and qs is the randomized strategy of the learner at time s.
For instance, in the well-studied bandit framework, the feedback Is is defined as the scalar
value of the loss ⟨fs, xs⟩, yet the actual move xs may remain unknown to the learner. More
general partial information structures have also been studied in the literature.

When Mt is written in the form (3), it becomes clear that one can consider scenarios
well beyond the partial information models. For instance, the information Is might contain
better or complete information about the past, thus modeling a delayed-feedback setting (see
Section 5.1). Another idea is to consider a setting where Is contains some state information
pertinent to the online learning problem.

The paper is organized as follows. In Section 2, we provide a number of algorithms for
full-information online linear optimization, taking advantage of a given predictable process
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Mt. These methods can be seen as being “optimistic” about the sequence, incorporating
Mt+1 into the calculation of the next decision as if it were the true. We then turn to the
partial information scenario in Section 3 and show how to use the full-information bounds
together with estimation of the missing information. In Section 4 we turn to the question of
learning Mt itself during the prediction process. We present several scenarios which differ
in the amount of feedback given to the learner. Along the way, we need to prove a bound
for nonstochastic multiarmed bandits in terms of the loss of the best arm (proved in the
Appendix) – a result that does not appear to be available in the literature. Finally, we
consider delayed feedback and other scenarios that fall under the general umbrella.

Remark 1 We remark that most of the regret bounds we present in this paper are of the
form Aη−1 + Bη∑Tt=1 ∥xt −Mt∥

2∗. If variation around the trend is known in advance, one
may choose η optimally to obtain the form in (2). Otherwise, we employ the standard
doubling trick which we provide for completeness in Section B. The doubling trick sets η in
a data-dependent way to achieve (2) with a slightly worse constant.

Notation: We use the notation yt′∶t to represent the sequence yt′ , . . . , yt. We also use
the notation x[i] to represent the ith element of vector x. We use the notation x[1 ∶ c] to
represent the vector (x[1], . . . , x[c]). DR(f, f

′) is used to represent the Bregman divergence
between f and f ′ w.r.t. function R. We denote the set {1, . . . , T} by [T ].

2. Full Information Methods

In this section we assume that the value Mt is known at the beginning of round t: it is
either calculated by the learner or conveyed by an external source. The first algorithm
we present is a modification of the Follow the Regularized Leader (FTRL) method with a
self-concordant regularizer. The advantage of this method is its simplicity and the close
relationship to the standard FTRL. Next, we exhibit a Mirror Descent type method which
can be seen as a generalization of the recent algorithm of Chiang et al. (2012). Due to
lack of space, full-information methods based on the idea of a random playout (Follow the
Perturbed Leader) are postponed to the Appendix.

For all the methods presented below, we assume w.l.o.g. that M1 = 0. Since we assume
that Mt can be calculated from the information provided to the learner or the value of Mt

is conveyed from outside, we do not write the dependence of Mt on the past explicitly.

2.1. Follow the Regularized Leader with Self-Concordant Barrier

Let F ⊂ Rd be a convex compact set and let R be a self-concordant function for this set.
W.l.o.g. suppose that minf∈F R(f) = 0. Given f ∈ int(F), define the local norm ∥ ⋅ ∥f with

respect to R by ∥g∥f ≜
√
gT(∇2R(f))g. The dual norm is then ∥x∥∗f =

√
xT(∇2R(f))−1x.

Given the ft defined in the algorithm below, we use the shorthand ∥ ⋅ ∥t = ∥ ⋅ ∥ft .

Optimistic Follow the Regularized Leader
Input: R self-concordant barrier, learning rate η > 0. f1 = arg minf∈F R(f).

Update : ft+1 = arg minf∈F η ⟨f,∑ts=1 xs +Mt+1⟩ +R(f)
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We notice that for Mt+1 = 0, the method reduces to the FTRL algorithm of Abernethy
et al. (2008, 2012). When Mt+1 ≠ 0, the algorithm can be seen as “guessing” the next move
and incorporating it into the objective. If the guess turns out to be correct, the method
should suffer no regret. The following regret bound holds for the proposed algorithm:

Lemma 2 Let F ⊂ Rd be a convex compact set endowed with a self-concordant barrier R
with minf∈F R(f) = 0. For any strategy of Nature, the Optimistic FTRL algorithm yields,
for any f∗ ∈ F ,

T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩ ≤ η−1
R(f∗) + 2η

T

∑
t=1

(∥xt −Mt∥
∗
t )

2 (4)

as long as η∥xt −Mt∥
∗
t < 1/4 for all t.

By the argument of Abernethy et al. (2008, 2012), at the expense of an additive constant
in the regret, the comparator f∗ can be taken from a smaller set, at a distance 1/T from the
boundary. For such an f∗, we have R(f∗) ≤ ϑ logT where ϑ is a self-concordance parameter
of R.

2.2. Mirror-Descent algorithm

The next algorithm is a modification of a Mirror Descent (MD) method for regret mini-
mization. Let R be a 1-strongly convex function with respect to a norm ∥ ⋅∥, and let DR(⋅, ⋅)
denote the Bregman divergence with respect to R. Let ∇R∗ be the inverse of the gradient
mapping ∇R. Let ∥ ⋅ ∥∗ be dual to ∥ ⋅ ∥ (yet we do not require F and X to be dual balls).

Consider the following algorithm:

Optimistic Mirror Descent Algorithm (equivalent form)
Input: R 1-strongly convex w.r.t. ∥ ⋅ ∥, learning rate η > 0, f1 = g1 = arg mingR(g)

Update :

gt+1 = argmin
g∈F

η ⟨g, xt⟩ +DR(g, gt)

ft+1 = argmin
f∈F

η ⟨f,Mt+1⟩ +DR(f, gt+1)

Such a two-projection algorithm for the case Mt = xt−1 has been exhibited recently in
Chiang et al. (2012).

Lemma 3 Let F be a convex set in a Banach space B and X be a convex set in the dual
space B∗. Let R ∶ B ↦ R be a 1-strongly convex function on F with respect to some norm
∥ ⋅ ∥. For any strategy of Nature and any f∗ ∈ F , the Optimistic Mirror Descent yields

T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩ ≤ η−1R2
max +

η

2

T

∑
t=1

∥xt −Mt∥
2
∗

where R2
max = maxf∈F R(f) −minf∈F R(f).
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As mentioned before, the sum ∑Tt=1 ∥xt−Mt∥
2∗ need not be known in advance in order to

set η, as the usual doubling trick can be employed. Both the Optimistic MD and Optimistic
FTRL work in the setting of online convex optimization, where xt’s are now gradients at
the points chosen by the learner. Last but not least, notice that if the sequence is not
following the trend Mt as we hoped it would, we still obtain the same bounds as for the
Mirror Descent (respectively, FTRL) algorithm, up to a constant.

2.2.1. Local Norms for Exponential Weights

For completeness, we also exhibit a bound in terms of local norms for the case of F ⊂ Rd
being the probability simplex and X being the `∞ ball. In the case of bandit feedback, such
bounds serve as a stepping stone to building a strategy that explores according to the local
geometry of the set (see Abernethy et al. (2012)). Letting R(f) = ∑di=1 f(i) log f(i)− 1, the
Mirror Descent algorithm corresponds to the well-known Exponential Weights algorithm.
We now show that one can also achieve a regret bound in terms of local norms defined
through the Hessian ∇2R(f), which is simply diag(f(1)−1, . . . , f(d)−1). To this end, let
∥g∥t =

√
gT∇2R(ft)g and ∥x∥∗t =

√
x∇2R(ft)−1x.

Lemma 4 The Optimistic Mirror Descent on the probability simplex enjoys, for any f∗ ∈ F ,

T

∑
t=1

⟨ft − f
∗, xt⟩ ≤ 2η

T

∑
t=1

(∥xt −Mt∥
∗
t )

2
+

log d

η

as long as η∥xt −Mt∥∞ ≤ 1/4 at each step.

3. Methods for Partial and Bandit Information

We now turn to the setting of partial information and provide a generic estimation procedure
along the lines of Hazan and Kale (2009). Here, we suppose that the learner receives
only partial feedback It which is simply the loss ⟨ft, xt⟩ incurred at round t. Once again,
we suppose to have access to some predictable process Mt. Note the generality of this
framework: in some cases we might postulate that Mt needs to be calculated by the learner
from the available information (which does not include the actual moves xt); in other cases,
however, we may assume that some statistic Mt (such as some partial information about
the past moves) is conveyed to the learner as a side information from an external source.
For the methods we present, we simply assume availability of the value Mt.

As in Section 2.1, we assume to have access to a self-concordant function R for F , with
the self-concordance parameter ϑ. Following Abernethy et al. (2008), at time t we define1 our
randomized strategy qt to be a uniform distribution on the eigenvectors of ∇2R(ht) where
ht ∈ F is given by a full-information procedure as described below. The full-information
procedure is simply Follow the Regularized Leader on the estimated moves x̃1, . . . , x̃t−1

constructed from the information I1, . . . , It−1, f1, . . . , ft−1, q1, . . . , qt−1, with Is = ⟨fs, xs⟩. The
resulting algorithm is dubbed SCRiBLe in (Abernethy et al., 2012). Hazan and Kale (2009)

1. We caution the reader that the roles of ft and xt in Abernethy et al. (2008); Hazan and Kale (2009)
are exactly the opposite. We decided to follow the notation of Rakhlin et al. (2010, 2012), where in the
supervised learning case it is natural to view the move ft as a function.
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observed that this algorithm can be modified by adding and subtracting an estimated mean
of the adversarial moves at appropriate steps of the method. We use this idea with a general
process Mt:

SCRiBLe for a Predictable Process
Input: η > 0, ϑ-self-concordant R. Define h1 = arg minf∈F R(f).
At time t = 1 to T

Let Λ1, . . . ,Λn and λ1, . . . , λn be the eigenvectors and eigenvalues of ∇2R(ht).
Choose it uniformly at random from {1, . . . , n} and εt = ±1 with probability 1/2.

Predict ft = ht + εtλ
−1/2
it

Λit and observe loss ⟨ft, xt⟩.

Define x̃t ∶= n (⟨ft, xt −Mt⟩) εtλ
1/2
it

⋅Λit +Mt.

Update : ht+1 = arg minh∈F [η ⟨h,∑ts=1 x̃s +Mt+1⟩ +R(h)] .

The analysis of the method is based on the bounds for full information predictable
processes Mt developed earlier, thus simplifying and generalizing the analysis of Hazan and
Kale (2009).

Lemma 5 Suppose that F is contained in the `2 ball of radius 1. The expected regret of
the above algorithm (SCRiBLe for a Predictable Process) is

E [
T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩] ≤ η−1
R(f∗) + 2ηn2E [

T

∑
t=1

(⟨ft, xt −Mt⟩)
2
] (5)

≤ η−1
R(f∗) + 2ηn2

T

∑
t=1

E [∥xt −Mt∥
2]

Hence, for any full-information statistic M ′
t =M

′
t(x1, . . . , xt−1),

E [
T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩] ≤ η−1
R(f∗) + 4ηn2

T

∑
t=1

E [∥xt −M
′
t∥

2] + 4ηn2
T

∑
t=1

E [∥Mt −M
′
t∥

2]

(6)

Effectively, Hazan and Kale (2009) show that for the full-information statistic
M ′
t(x1, . . . , xt−1) = 1

t−1 ∑
t−1
s=1 xs, there is a way to construct Mt = Mt(I1∶t−1, f1∶t−1, q1∶t−1) in

such a way that the third term in (6) is of the order of the second term. This is done by
putting aside roughly O(logT ) rounds in order to estimate M ′

t , via a process called reservoir
sampling. However, for more general functions M ′

t , the third term might have nothing to
do with the second term, and the investigation of which M ′

t can be well estimated by Mt is
an interesting topic of further research.

4. Learning The Predictable Processes

So far we have seen that the learner with an access to an arbitrary predictable process

(Mt)t≥1 has a strategy with a regret bound of O (

√

∑
T
t=1 ∥xt −Mt∥

2∗) . Now if the predictable

process is a good predictor of the sequence, then the regret will be low. This raises the
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Optimistic Mirror Descent with Learning the Predictable Process
Input: R 1-strongly convex w.r.t. ∥ ⋅ ∥, learning rate η > 0
Initialize f1 = g1 = arg mingR(g) and initialize q1 ∈ ∆(Π) as, ∀π ∈ Π, q1(π) =

1
∣Π∣

Set M1 = ∑π∈Π q1(π)M
π
1

At t = 1, . . . , T , predict ft, observe xt and update :

∀π ∈ Π, qt+1(π)∝ qt(π) e
−∥Mπ

t −xt∥2∗ and Mt+1 = ∑π∈Π qt+1(π)M
π
t+1

gt+1 = argmin
g∈F

η ⟨g, xt⟩+DR(g, gt) , ft+1 = argmin
f∈F

η ⟨f,Mt+1⟩+DR(f, gt+1)

question of model selection: how can the learner choose a good predictable process (Mt)t≥1?
Is it possible to learn it online as we go, and if so, what does it mean to learn?

To formalize the concept of learning the predictable process, let us consider the case
where we have a set Π indexing a set of predictable processes (strategies) we are interested
in. That is, each π ∈ Π corresponds to predictable process given by (Mπ

t )t≥1. Now if we
had an oracle which in the start of the game told us which π∗ ∈ Π predicts the sequence
optimally (in hindsight) then we could use the predictable process given by (Mπ∗

t )t≥1 and

enjoy a regret bound of O (

√

infπ∈Π∑
T
t=1 ∥xt −M

π
t ∥

2∗) . However we cannot expect to know

which π ∈ Π is the optimal one from the outset. In this scenario one would like to learn
a predictable process that in turn can be used with algorithms proposed thus far to get a
regret bound comparable with regret bound one could have obtained knowing the optimal
π∗ ∈ Π.

4.1. Learning Mt’s : Full Information

To motivate this setting better let us consider an example. Say there are n stock options
we can choose to invest in. On each day t, associated with each stock option one has a
loss/payoff that occurs upon investing in a single share of that stock. Our goal in the long
run is to have a low regret with respect to the single best stock in hindsight. Up to this point,
the problem just corresponds to the simple experts setting where each of the n stocks is one
expert and on each day we split our investment according to a probability distribution over
the n options. However now additionally we allow the learner/investor access to prediction
models from the set Π. These could be human strategists making forecasts, or outcomes of
some hedge-fund model. At each time step the learner can query the prediction made by
each π ∈ Π as to what the loss on the n stocks would be on that day. Now we would like to
have a regret comparable to the regret we can achieve knowing the best model π∗ ∈ Π that
in hind-sight predicted the losses of each stock optimally. We shall now see how to achieve
this.

The proof of the following lemma relies on a particular regret bound of (Cesa-Bianchi
and Lugosi, 2006, Corollary 2.3) for the exponential weights algorithm that is in terms of
the loss of the best arm. Such a bound is an improvement over the pessimistic regret bound
when the loss of the optimal arm is small.

Lemma 6 Let F be a convex subset of a unit ball in a Banach space B and X be a convex
subset of the dual unit ball. Let R ∶ B ↦ R be a 1-strongly convex function on F with respect
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to some norm ∥ ⋅ ∥. For any strategy of Nature, the Optimistic Mirror Descent Algorithm
yields, for any f∗ ∈ F ,

T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩ ≤ η−1R2
max + 3.2η ( inf

π∈Π

T

∑
t=1

∥xt −M
π
t ∥

2
∗ + log ∣Π∣)

where R2
max = maxf∈F R(f) −minf∈F R(f).

Once again, let us discuss what makes this setting different from the usual setting of
experts. The forecast given by prediction models is in the form of a vector, one for each
stock. If we treat each prediction model as an expert with the loss ∥xt −M

π
t ∥

2∗, the experts
algorithm would guarantee that we achieve the best cumulative loss of this kind. However,
this is not the object of interest to us, as we are after the best allocation of our money
among the stocks, as measured by inff∈F ∑

T
t=1 ⟨f, xt⟩.

The algorithm stated above can be seen as separating two steps: learning the model
(that is, predictable process) and then minimizing regret given the learned process. This is
implemented by a general idea of running another (secondary) regret minimizing strategy
where loss per round is simply ∥Mt − xt∥

2
∗ and regret is considered with respect to the best

π ∈ Π. That is, regret of the secondary regret minimizing game is given by

T

∑
t=1

∥xt −Mt∥
2
∗ − inf

π∈Π

T

∑
t=1

∥xt −M
π
t ∥

2
∗

In general, the experts algorithm for minimizing secondary regret can be replaced by any
other online learning algorithm.

4.2. Learning Mt’s : Partial Information

In the previous section we considered the full information setting where on each round we
have access to xt and for each π we get to see (or compute) Mπ

t . However one might be in
a scenario with only partial access to xt or Mπ

t , or both. In fact, there are quite a number
of interesting partial-information scenarios, and we consider some of them in this section.

4.2.1. Partial Information about Loss (Bandit Setting)

In this setting at each time step t, we only observe the loss ⟨ft, xt⟩ and not all of xt.
However, for each π ∈ Π we do get access to (or can compute) Mπ

t for each π ∈ Π. Consider
the following algorithm:

9
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SCRiBLe while Learning the Predictable Process
Input: η > 0, ϑ-self-concordant R. Define h1 = arg minf∈F R(f).
Initialize q1 ∈ ∆(Π) as, ∀π ∈ Π, q1(π) =

1
∣Π∣

Set M1 = ∑π∈Π q1(π)M
π
1

At time t = 1 to T
Let Λ1, . . . ,Λn and λ1, . . . , λn be the eigenvectors and eigenvalues of ∇2R(ht).
Choose it uniformly at random from {1, . . . , n} and εt = ±1 with probability 1/2.

Predict ft = ht + εtλ
−1/2
it

Λit and observe loss ⟨ft, xt⟩.

Define x̃t ∶= n (⟨ft, xt −Mt⟩) εtλ
1/2
it

⋅Λit +Mt.

Update : qt+1(π)∝ qt(π) e
−(⟨ft,xt⟩−⟨ft,Mπ

t ⟩)2 and Mt+1 = ∑π∈Π qt+1(π)M
π
t+1

ht+1 = arg min
h∈F

[η ⟨h,
t

∑
s=1

x̃s +Mt+1⟩ +R(h)] .

The following lemma upper bounds regret of this algorithm. Once again, the proof
requires a regret bound in terms of the loss of the best arm (Cesa-Bianchi and Lugosi, 2006,
Corollary 2.3).

Lemma 7 Suppose that F ,X are contained in the `2 ball of radius 1. The expected regret
of SCRiBLe while Learning the Predictable Process is

E [
T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩] ≤ η−1
R(f∗) + 2ηn2E [

T

∑
t=1

(⟨ft, xt −Mt⟩)
2
] (7)

≤ η−1
R(f∗) + 13ηn2

(E [ inf
π∈Π

T

∑
t=1

∥xt −M
π
t ∥

2
] + log ∣Π∣) .

4.2.2. Partial Information about Predictable Process

Now let us consider the scenario where on each round we get to see xt ∈ X . However, we
only see Mπt

t for a single πt ∈ Π we select on round t. This scenario is especially useful in
the stock investment example provided earlier. While xt the vector of losses for the stocks
on each day can easily be obtained at the end of the trading day, prediction processes
might be provided as paid services by various companies. Therefore, we only get to access
a limited number of forecasts on each day by paying for them. In this section, we provide
an algorithm with corresponding regret bound for this case.

Due to the scarce information about the predictable processes, the proofs of Lemmas 8
and 9 below require an improved regret bound for the multiarmed bandit, an analogue
of (Cesa-Bianchi and Lugosi, 2006, Corollary 2.3). Such a bound is proved in Lemma 11
in Section A. We have not seen this result in the literature, and the bound might be of
independent interest (note that the bound of Auer et al. (2003) in terms of the largest gain
is of a very different nature). Lemma 11 relies on using a self-concordant barrier for the
simplex and utilizing the regret bound in terms of local norms.

Armed with Lemma 11, we can prove the following:

10
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Optimistic MD with Learning the Pred. Proc. with Partial Information
Input: R 1-strongly convex w.r.t. ∥ ⋅ ∥, learning rate η > 0
Initialize g1 = arg mingR(g) and initialize q1 ∈ ∆(Π) as, ∀π ∈ Π, q1(π) =

1
∣Π∣

Sample π1 ∼ q1 and set f1 = argmin
f∈F

η ⟨f,Mπ1
1 ⟩ +DR(f, g1)

At t = 1, . . . , T , predict ft and :
Update qt using SCRiBLe for multi-armed bandit with loss of arm πt :

∥Mπt
t − xt∥

2
∗ and step-size 1/32∣Π∣2.

Sample πt+1 ∼ qt+1 and observe Mπt+1
t+1 . Update

gt+1 = argmin
g∈F

η ⟨g, xt⟩ +DR(g, gt), ft+1 = argmin
f∈F

η ⟨f,Mπt+1
t+1 ⟩ +DR(f, gt+1)

Lemma 8 Let F be a convex set in a Banach space B and X be a convex set in the dual
space B∗, both contained in unit balls. Let R ∶ B ↦ R be a 1-strongly convex function on F
with respect to some norm ∥⋅∥. For any strategy of Nature, the Optimistic MD with Learning
the Predictable Processes with Partial Information Algorithm yields, for any f∗ ∈ F ,

E [
T

∑
t=1

⟨ft, xt⟩] −
T

∑
t=1

⟨f∗, xt⟩ ≤ η−1R2
max +

η

2
E [

T

∑
t=1

∥xt −M
πt
t ∥

2
∗] (8)

≤ η−1R2
max + η (E inf

π∈Π

T

∑
t=1

∥xt −M
π
t ∥

2
∗ + 32∣Π∣

3 log(T ∣Π∣))

where R2
max = maxf∈F R(f) −minf∈F R(f).

4.2.3. Partial Information about both Loss and Predictable Process

In the third partial information variant, we consider the setting where at time t we only
observe the loss ⟨ft, xt⟩ we suffer at the time step (and not entire xt) and also only Mπt

t

corresponding to the predictable process of πt ∈ Π we select at time t. This is a blend of
the two partial-information settings considered earlier.

Lemma 9 Suppose that F ,X are contained in the `2 ball of radius 1. The expected regret
of SCRiBLe for Learning the Predictable Process with Partial Feedback (see next page) is

E [
T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩] ≤ η−1
R(f∗) + 2ηn2E [

T

∑
t=1

(⟨ft, xt −M
πt
t ⟩)

2
] (9)

≤ η−1
R(f∗) + 4ηn2

(E [ inf
π∈Π

T

∑
t=1

∥xt −M
π
t ∥

2
] + 32∣Π∣

3 log(T ∣Π∣)) .
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SCRiBLe for Learning the Predictable Process with Partial Feedback
Input: η > 0, ϑ-self-concordant R. Define h1 = arg minf∈F R(f).
Initialize q1 ∈ ∆(Π) as, ∀π ∈ Π, q1(π) =

1
∣Π∣ and draw π1 ∼ q1

At time t = 1 to T
Let Λ1, . . . ,Λn and λ1, . . . , λn be the eigenvectors and eigenvalues of ∇2R(ht).
Choose it uniformly at random from {1, . . . , n} and εt = ±1 with probability 1/2.

Predict ft = ht + εtλ
−1/2
it

Λit and observe loss ⟨ft, xt⟩.

Define x̃t ∶= n (⟨ft, xt −M
πt
t ⟩) εtλ

1/2
it

⋅Λit +M
πt
t .

Update qt using SCRiBLe for multi-armed bandit with loss
of arm πt ∈ Π: (⟨ft, xt⟩ − ⟨ft,M

πt
t ⟩)2 and step size 1/32∣Π∣2.

Draw πt+1 ∼ qt+1 and update ht+1 = arg minh∈F [η ⟨h,∑ts=1 x̃s +M
πt+1
t+1 ⟩ +R(h)] .

5. Other Examples

5.1. Delayed Feedback

As an example, consider the setting where the information given to the player at round t
consists of two parts: the bandit feedback ⟨ft, xt⟩ about the cost of the chosen action, as
well as full information about the past move xt−k. For t > k, let Mt = Mt(I1, . . . , It−1) =

1
t−k−1 ∑

t−k−1
s=1 xs. Then

∥Mt −M
′
t∥

2 = ∥ 1
t−k−1 ∑

t−k−1
s=1 xs −

1
t−1 ∑

t−1
s=1 xs∥

2
≤ ∥ k
(t−1)(t−k−1) ∑

t−k−1
s=1 xs −

1
t−1 ∑

t−1
s=t−k xs∥

2
≤ 4k2

(t−1)2 ,

where M ′
t =

1
t−1 ∑

t−1
s=1 xs is the full information statistic. It is immediate from Lemma 5 that

the expected regret of the algorithm is

E [∑
T
t=1 ⟨ft, xt⟩ −∑

T
t=1 ⟨f

∗, xt⟩] ≤ η−1R(f∗) + 4ηn2
∑
T
t=1 E [∥xt −M

′
t∥

2] + 32ηn2k2

This simple argument shows that variance-type bounds are immediate in bandit problems
with delayed full information feedback.

5.2. I.I.D. Data

Consider the case of i.i.d. sequence x1, . . . , xT drawn from an unknown distribution with
mean µ ∈ Rd. Let us first discuss the full-information model. Consider the bound of either
Lemma 2 or Lemma 3 for Mt =

1
t−1 ∑

t−1
s=1 xs. For simplicity, let ∥ ⋅ ∥ be the Euclidean norm

(the argument works with any smooth norm). We may write ∥xt −Mt∥
2 ≤ ∥xt − µ∥

2 +

∥Mt −µ∥
2 + 2 ⟨xt − µ,Mt − µ⟩ . Taking the expectation over i.i.d. data, the first term in the

above bound is variance σ2 of the distribution under the given norm, while the third term
disappears under the expectation. For the second term, we perform the same quadratic
expansion to obtain

E∥Mt − µ∥
2 ≤ 1

(t−1)2 ∑
t−1
s=1 E∥xt − µ∥

2 ≤ σ2

t−1 and thus ∑Tt=1 E∥xt −Mt∥
2 ≤ Tσ2 + σ2(logT + 1)

Coupled with the full-information results of Lemma 2 or Lemma 3, we obtain an Õ(σ
√
T )

bound on regret, implying the natural transition from the noisy to deterministically pre-
dictable case as the noise level goes to zero.

The same argument works for the case of bandit information, given that Mt can be
constructed to estimate M ′

t well (e.g. using the arguments of Hazan and Kale (2009)).
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Appendix A. Improved Bounds for Small Losses

While the regret bound for the original SCRiBLe algorithm follows immediately from the
more general Lemma 5, we now state an alternative bound for SCRiBLe in terms of the
loss of the optimal decision. The bound holds under the assumption of positivity on the
losses. Lemma 10 is of independent interest and will be used as a building block for the
analogous result for the multi-armed bandit in Lemma 11. Such bounds in terms of the loss
of the best arm are attractive, as they give tighter results whenever the loss of the optimal
decision is small. Thanks to this property, Lemma 11 is used in Section 4 in order to obtain
bounds in terms of predictable process performance.

Lemma 10 Consider the case when R is a self-concordant barrier over F and sets F and
X are such that each ⟨f, x⟩ ∈ [0, s]. Then for the SCRiBLe algorithm, for any choice of step
size η < 1/(2sn2), we have the bound

E [
T

∑
t=1

⟨ft, xt⟩] ≤
1

1 − (2sn2)η
(
T

∑
t=1

⟨f∗, xt⟩ + η−1
R(f∗))

We now state and prove a bound in terms of the loss of the best arm for the case of
non-stochastic multiarmed bandits. Such a bound is interesting in its own right and, to
the best of our knowledge, it does not appear in the literature.2 Our approach is to use
SCRiBLe with a self-concordant barrier for the probability simplex, coupled with the bound
of Lemma 10. (We were not able to make this result work with the entropy function, even
with the local norm bounds).

Suppose that Nature plays a sequence x1, . . . , xT ∈ [0, s]d. On each round, we chose an
arm jt and observe ⟨ejt , xt⟩.

SCRiBLe for multi-armed Bandit (Abernethy et al., 2012, 2008)
Input: η > 0. Let R(f) = −∑d−1

i=1 log(f[i]) − log(1 −∑d−1
i=1 f[i])

Initialize q1 with uniform distribution over arms. Let h1 = q1[1 ∶ d − 1]
At time t = 1 to T

Let {Λ1, . . . ,Λd−1} and {λ1, . . . , λd−1} be the eigenvectors and eigenvalues of
∇2R(ht).

Choose it uniformly at random from {1, . . . , [d − 1]} and draw εt ∼ Unif{±1}.

Set ft = ht + εtλ
−1/2
it

Λit and qt = (ft,1 −∑
d−1
i=1 ft[i]).

Draw arm jt ∼ qt and suffer loss ⟨ejt , xt⟩.

Define x̃t ∶= d (⟨ejt , xt⟩) εtλ
1/2
it

⋅Λit .

Update : ht+1 = arg minh∈Rd−1 [η ⟨h,∑
t
s=1 x̃s⟩ +R(h)] .

Lemma 11 Suppose x1, . . . , xT ∈ [0, s]d. For any η < 1/(4sd2) the expected regret of the
SCRiBLe for multi-armed Bandit algorithm is bounded as :

E{
T

∑
t=1

⟨ejt , xt⟩} ≤
1

1 − 4ηsd2

⎛

⎝
inf
j∈[d]

T

∑
t=1

⟨ej , xt⟩ + dη
−1 log(dT )

⎞

⎠

2. The bound of Auer et al. (2003) is in terms of maximal gains, which is very different from a bound in
terms of minimal loss. To the best of our knowledge, the trick of redefining losses as negative gains does
not work here.
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Appendix B. The Doubling Trick

For completeness, we now describe a more or loss standard doubling trick, extending it
to the case of partial information. Let I stand for some information space such that the
algorithm receives It ∈ I at time t, as described in the introduction. Let Ψ ∶ ∪s(I ×F)s ↦ R
be a (deterministic) function defined for any contiguous time interval of any size s ∈ [T ].
By the definition, Ψ(Ir, . . . , It, fr, . . . , ft) is computable by the algorithm after the t-th step,
for any r ≤ t. We make the following monotonicity assumption on Ψ: for any I1, . . . , It ∈ I
and any f1, . . . , ft ∈ F , Ψ(I1∶t−1, f1∶t−1) ≤ Ψ(I1∶t, f1∶t) and Ψ(I2∶t, f2∶t) ≤ Ψ(I1∶t, f1∶t).

Lemma 12 Suppose we have a randomized algorithm that takes a fixed η as input and for
some constant A without a priori knowledge of τ , for any τ > 0, guarantees expected regret
of the form

E [
τ

∑
t=1

loss(ft, xt) − inf
f∈F

τ

∑
t=1

loss(f, xt)] ≤ Aη
−1
+ ηE [Ψ(I1∶τ , f1∶τ)]

where Ψ satisfies the above stated requirements. Then using this algorithm as a black-box
for any T > 0, we can provide a randomized algorithm with a regret bound

E [
T

∑
t=1

loss(ft, xt) − inf
f∈F

T

∑
t=1

loss(f, xt)] ≤ 16
√
AE [Ψ(I1∶T , f1∶T )]

Proof The prediction problem is broken into phases, with a constant learning rate ηi = η02−i

throughout the i-th phase, for some η0 > 0. Define for i ≥ 1

si+1 = min{τ ∶ ηiΨ(Isi∶τ , fsi∶τ) > Aη
−1
i }

to be the start of the phase i + 1, and s1 = 1. Let N be the last phase of the game and let
sN+1 = T + 1. Without loss of generality, assume N > 1 (for, otherwise regret is at most
4A/η0). Then

E [
T

∑
t=1

loss(ft, xt) − inf
f∈F

T

∑
t=1

loss(f, xt)] ≤ E
⎡
⎢
⎢
⎢
⎢
⎣

N

∑
k=1

E
fsk ∶sk+1−1

⎡
⎢
⎢
⎢
⎣

sk+1−1

∑
t=sk

loss(ft, xt) − inf
f∈F

sk+1−1

∑
t=sk

loss(f, xt)
⎤
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

≤ E
⎡
⎢
⎢
⎢
⎢
⎣

N

∑
k=1

⎛

⎝
Aη−1

k + ηk E
fsk ∶sk+1−1

[Ψ(Isk ∶sk+1−1, fsk ∶sk+1−1)]
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤ 2E [
N

∑
k=1

Aη−1
k ]

where the last inequality follows because ηkΨ(Isk ∶sk+1−1, fsk ∶sk+1−1) ≤ Aη
−1
k within each phase.

Also observe that
ηN−1Ψ(IsN−1∶sN , fsN−1∶sN ) > Aη−1

N−1,

which implies

η−1
0 2N = η−1

N = 2η−1
N−1 < 2

√
Ψ(IsN−1∶sN , fsN−1∶sN )

A
≤ 2

√
Ψ(I1∶T , f1∶T )

A
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by the monotonicity assumption. Hence, regret is upper bounded by

2
N

∑
k=1

Aη−1
k = 2Aη−1

0 2N
N

∑
k=1

2k−N ≤ 4Aη−1
0 2N ≤ 8

√
A Ψ(I1∶T , f1∶T )

Putting the arguments together,

E [
T

∑
t=1

loss(ft, xt) − inf
f∈F

T

∑
t=1

loss(f, xt)] ≤ 8E [
√
A Ψ(I1∶T , f1∶T )] ≤ 8

√
A E [Ψ(I1∶T , f1∶T )]

Now, observe that the rule for stopping the phase can only be calculated after the first
time step of the new phase. The easiest way to deal with this is to throw out N time
periods and suffer an additional regret of sN (losses are bounded by s). Using η0 = 4A/s
this leads to additional factor of sN ≤ s2N = 4Aη−1

0 2N ≤ 8
√
A Ψ(I1∶T , f1∶T ), which is a gross

over-bound. In conclusion, the overall bound on regret is

E [
T

∑
t=1

loss(ft, xt) − inf
f∈F

T

∑
t=1

loss(f, xt)] ≤ 16
√
AE [Ψ(I1∶T , f1∶T )] .

We remark that while the algorithm may or may not start each new phase from a cold
start (that is, forget about what has been learned), the functions Mt may still contain
information about all the past moves of Nature.

With this doubling trick, for any of the full information bounds presented in the paper
(for instance Lemmas 2, 3, 4 and 6) we can directly get an algorithm that enjoys a regret
bound that is a factor at most 8 from the bound with optimal choice of η.

For Lemmas 5, 7, 8 and 9, we need to apply the doubling trick to an intermediate
quantity, as the final bound is given in terms of quantities not computable by the algorithm.
Specifically, the doubling trick needs to be applied to Equations (5), (7), (8) and (9),
respectively, in order to get bounds that are within a factor 8 from the bounds obtained
by optimizing η in the corresponding equations. We can then upper these computable
quantities by corresponding unobserved quantities as is done in these lemmas. To see this
more clearly let us demonstrate this on the example of Lemma 9. By Equation (9), we have
that

E [
T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩] ≤ η−1
R(f∗) + 2ηn2E [

T

∑
t=1

(⟨ft, xt −M
πt
t ⟩)

2
]

Now note that (⟨ft, xt −M
πt
t ⟩)2 is a quantity computable by the algorithm at each round.

Also note that 2ηn2
∑
T
t=1(⟨ft, xt −M

πt
t ⟩)2 satisfies the condition on Ψ required by Lemma

12, as the sum of squares is monotonic. Hence using the lemma we can conclude that

E [
T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩] ≤ 16

¿
Á
ÁÀ2n2R(f∗)E [

T

∑
t=1

(⟨ft, xt −M
πt
t ⟩)2] (10)

The following steps in Lemma 9 (see proof in the Appendix) imply that

E [
T

∑
t=1

(⟨ft, xt −M
πt
t ⟩)

2
] ≤ 2(E [ inf

π∈Π

T

∑
t=1

∥xt − M̄
π
t ∥

2
] + 32∣Π∣

3 log(T ∣Π∣))
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Plugging the above in Equation 10 we can conclude that

E [
T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩] ≤ 16

¿
Á
ÁÀ4n2R(f∗)(E [ inf

π∈Π

T

∑
t=1

∥xt − M̄π
t ∥

2
] + 32∣Π∣3 log(T ∣Π∣))

This is exactly the inequality one would get if the final bound in Lemma 9 is optimized for
η, with an additional factor of 8. With similar argument we can get the tight bounds for
Lemmas 5, 7 and 8 too, even though they are in the bandit setting.

Appendix C. Proofs

Proof [Proof of Lemma 2] Define gt+1 = arg minf∈F η ⟨f,∑ts=1 xs⟩ + R(f) to be the
(unmodified) Follow the Regularized Leader. Observe that for any f∗ ∈ F ,

T

∑
t=1

⟨ft − f
∗, xt⟩ =

T

∑
t=1

⟨ft − gt+1, xt −Mt⟩ +
T

∑
t=1

⟨ft − gt+1,Mt⟩ +
T

∑
t=1

⟨gt+1 − f
∗, xt⟩ (11)

We now prove by induction that

τ

∑
t=1

⟨ft − gt+1,Mt⟩ +
τ

∑
t=1

⟨gt+1, xt⟩ ≤
τ

∑
t=1

⟨f∗, xt⟩ + η−1
R(f∗).

The base case τ = 1 is immediate since M1 = 0. For the purposes of induction, suppose
that the above inequality holds for τ = T − 1. Using f∗ = fT and adding ⟨fT − gT+1,MT ⟩ +

⟨gT+1, xT ⟩ to both sides,

T

∑
t=1

⟨ft − gt+1,Mt⟩ +
T

∑
t=1

⟨gt+1, xt⟩ ≤
T−1

∑
t=1

⟨fT , xt⟩ + η
−1
R(fT ) + ⟨fT − gT+1,MT ⟩ + ⟨gT+1, xT ⟩

≤ ⟨fT ,
T−1

∑
t=1

xt +MT ⟩ + η
−1
R(fT ) − ⟨gT+1,MT ⟩ + ⟨gT+1, xT ⟩

≤ ⟨gT+1,
T−1

∑
t=1

xt +MT ⟩ + η
−1
R(gT+1) − ⟨gT+1,MT ⟩ + ⟨gT+1, xT ⟩

≤ ⟨g∗,
T

∑
t=1

xt⟩ + η
−1
R(g∗)

by the optimality of fT and gT+1. This concludes the inductive argument, and from Eq. (11)
we obtain

T

∑
t=1

⟨ft − f
∗, xt⟩ ≤

T

∑
t=1

⟨ft − gt+1, xt −Mt⟩ + η
−1
R(f∗) (12)

Define the Newton decrement for Φt(f) ≜ η ⟨f,∑
t
s=1 xs +Mt+1⟩ +R(f) as

λ(f,Φt) ∶= ∥∇Φt(f)∥
∗
f = ∥∇

2Φt(f)
−1
∇Φt(f)∥f .

Since R is self-concordant then so is Φt, with their Hessians coinciding. The Newton
decrement measures how far a point is from the global optimum. The following result can
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be found, for instance, in Nemirovski and Todd (2008): For any self-concordant function
R̃, whenever λ(f, R̃) < 1/2, we have

∥f − arg min R̃∥f ≤ 2λ(f, R̃)

where the local norm ∥ ⋅ ∥f is defined with respect to R̃, i.e. ∥g∥f ∶=

√

gT(∇2R̃(f))g.
Applying this to Φt and using the fact that ∇Φt−1(gt+1) = η(Mt − xt),

∥ft − gt+1∥ft = ∥gt+1 − arg min Φt∥ft ≤ 2λ(gt+1,Φt) = 2η∥Mt − xt∥
∗
ft . (13)

Hence,

T

∑
t=1

⟨ft − f
∗, xt⟩ ≤

T

∑
t=1

∥ft − gt+1∥t∥xt −Mt∥
∗
t + η

−1
R(f∗)

≤ 2η
T

∑
t=1

(∥xt −Mt∥
∗
ft)

2
+ η−1

R(f∗),

which proves the statement.

Proof [Proof of Lemma 3] For any f∗ ∈ F ,

⟨ft − f
∗, xt⟩ = ⟨ft − gt+1, xt −Mt⟩ + ⟨ft − gt+1,Mt⟩ + ⟨gt+1 − f

∗, xt⟩ (14)

First observe that

⟨ft − gt+1, xt −Mt⟩ ≤ ∥ft − gt+1∥ ∥xt −Mt∥∗ ≤
η

2
∥xt −Mt∥

2
∗ +

1

2η
∥ft − gt+1∥

2 . (15)

On the other hand, any update of the form a∗ = arg mina∈A ⟨a, x⟩+DR(a, c) satisfies for any
d ∈ A (see e.g. Beck and Teboulle (2003); Rakhlin (2008))

⟨a∗ − d, x⟩ ≤DR(d, c) −DR(d, a∗) −DR(a∗, c) . (16)

This yields

⟨ft − gt+1,Mt⟩ ≤
1

η
(DR(gt+1, gt) −DR(gt+1, ft) −DR(ft, gt)) (17)

and

⟨gt+1 − f
∗, xt⟩ ≤

1

η
(DR(f∗, gt) −DR(f∗, gt+1) −DR(gt+1, gt)) . (18)

Using Equations (15), (18) and (17) in Equation (14) we conclude that

⟨ft − f
∗, xt⟩ ≤

η

2
∥xt −Mt∥

2
∗ +

1

2η
∥ft − gt+1∥

2

+
1

η
(DR(gt+1, gt) −DR(gt+1, ft) −DR(ft, gt))

+
1

η
(DR(f∗, gt) −DR(f∗, gt+1) −DR(gt+1, gt)))

≤
η

2
∥xt −Mt∥

2
∗ +

1

2η
∥ft − gt+1∥

2
+

1

η
(DR(f∗, gt) −DR(f∗, gt+1) −DR(gt+1, ft))
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By strong convexity of R, DR(gt+1, ft) ≥
1
2 ∥gt+1 − ft∥

2 and thus

⟨ft − f
∗, xt⟩ ≤

η

2
∥xt −Mt∥

2
∗ +

1

η
(DR(f∗, gt) −DR(f∗, gt+1))

Summing over t = 1, . . . , T yields, for any f∗ ∈ F ,

T

∑
t=1

⟨ft − f
∗, xt⟩ ≤

η

2

T

∑
t=1

∥xt −Mt∥
2
∗ +

R2
max

η

where R2
max = maxf∈F R(f) −minf∈F R(f).

Proof [Proof of Lemma 4] The proof closely follows the proof of Lemma 3 and together
with the technique of Abernethy and Rakhlin (2009). For the purposes of analysis, let gt+1

be a projected point at every step (that is, normalized). Then we have the closed form
solution for ft and gt+1:

gt+1(i) =
exp{−η∑ts=1 xs(i)}

∑
d
j=1 exp{−η∑ts=1 xs(j)}

and ft(i) =
exp{−η∑t−1

s=1 xs(i) − ηMt(i)}

∑
d
j=1 exp{−η∑t−1

s=1 xs(j) − ηMt(j)}

Hence,

gt+1(i)

ft(i)
=

exp{−η∑ts=1 xs(i)}

exp{−η∑t−1
s=1 xs(i) − ηMt(i)}

∑
d
j=1 exp{−η∑t−1

s=1 xs(j) − ηMt(j)}

∑
d
j=1 exp{−η∑ts=1 xs(j)}

= exp{−η(xt(i) −Mt(i))}
∑
d
j=1 exp{−η∑t−1

s=1 xs(j) − ηMt(j)}

∑
d
j=1 exp{−η∑ts=1 xs(j)} exp{−η(xt(i) −Mt(i))}

=
exp{−η(xt(i) −Mt(i))}

∑
d
j=1 ft(j) exp{−η(xt(i) −Mt(i))}

(19)

For any f∗ ∈ F ,

⟨ft − f
∗, xt⟩ = ⟨ft − gt+1, xt −Mt⟩ + ⟨ft − gt+1,Mt⟩ + ⟨gt+1 − f

∗, xt⟩ (20)

First observe that

⟨ft − gt+1, xt −Mt⟩ ≤ ∥ft − gt+1∥t ∥xt −Mt∥
∗
t . (21)

Now, since ∇2R is diagonal,

∥ft − gt+1∥
2
t =

d

∑
i=1

(ft(i) − gt+1(i))
2
/ft(i) = −1 +

d

∑
i=1

ft(i)(gt+1(i)/ft(i))
2

using the fact that both ft and gt+1 are probability distributions. In view of (19),

∥ft − gt+1∥
2
t = −1 +E(

exp{−Z}

E exp{−Z}
)

2
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where Z is defined as a random variable taking on values η(xt(i)−Mt(i)) with probability
ft(i). Then, if almost surely EX −X ≤ a/2,

E(
exp{−Z}

E exp{−Z}
)

2

− 1 ≤ E(
exp{−Z}

exp{−EZ}
)

2

− 1 = E exp{2(EZ −Z)} − 1 ≤ 4(
ea − a − 1

a2
)var(Z)

since the function (ey − y − 1)/y2 is nondecreasing over reals. As long as ∣η(xt(i)−Mt(i))∣ ≤
1/4, we can guarantee that EZ −Z < 1/2, yielding

∥ft − gt+1∥t ≤ 2
√
EZ2 = 2

¿
Á
ÁÀ

d

∑
i=1

ft(i)(η(xt(i) −Mt(i)))2 = 2η∥xt −Mt∥
∗
t

Combining with (21), we have

⟨ft − gt+1, xt −Mt⟩ ≤ 2η(∥xt −Mt∥
∗
t )

2 . (22)

The rest similar to the proof of Lemma 3. We have

⟨ft − gt+1,Mt⟩ ≤
1

η
(DR(gt+1, gt) −DR(gt+1, ft) −DR(ft, gt)) . (23)

and

⟨gt+1 − f
∗, xt⟩ ≤

1

η
(DR(f∗, gt) −DR(f∗, gt+1) −DR(gt+1, gt)) , (24)

We conclude that

⟨ft − f
∗, xt⟩ ≤ 2η(∥xt −Mt∥

∗
t )

2

+
1

η
(DR(gt+1, gt) −DR(gt+1, ft) −DR(ft, gt))

+
1

η
(DR(f∗, gt) −DR(f∗, gt+1) −DR(gt+1, gt)))

≤ 2η(∥xt −Mt∥
∗
t )

2
+

1

η
(DR(f∗, gt) −DR(f∗, gt+1) −DR(gt+1, ft))

Summing over t = 1, . . . , T yields, for any f∗ ∈ F ,

T

∑
t=1

⟨ft − f
∗, xt⟩ ≤ 2η

T

∑
t=1

(∥xt −Mt∥
∗
t )

2
+

log d

η

21



Rakhlin Sridharan

Proof [Proof of Lemma 5] In view of Lemma 2, for any f∗ ∈ F

T

∑
t=1

⟨ht, x̃t⟩ −
T

∑
t=1

⟨f∗, x̃t⟩ ≤ η−1
R(f∗) + 2η

T

∑
t=1

(∥x̃t −Mt∥
∗
t )

2

= η−1
R(f∗) + 2η

T

∑
t=1

n2
(⟨ft, xt −Mt⟩)

2
(∥εtλ

1/2
it

Λit∥
∗
t
)

2

≤ η−1
R(f∗) + 2η

T

∑
t=1

n2
(⟨ft, xt −Mt⟩)

2

≤ η−1
R(f∗) + 2ηn2

T

∑
t=1

∥xt −Mt∥
2 .

where for simplicity we use the Euclidean norm and use the assumption ∥ft∥ ≤ 1; any primal-
dual pair of norms will work here. It is easy to verify that x̃t is an unbiased estimate of xt
and E [f]t = ht. Thus, by the standard argument and the above upper bound,

E [
T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩] = E [
T

∑
t=1

⟨ht, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩]

= E [
T

∑
t=1

⟨ht, x̃t⟩ −
T

∑
t=1

⟨f∗, x̃t⟩]

≤ η−1
R(f∗) + 2η

T

∑
t=1

n2E [(⟨ft, xt −Mt⟩)
2]

≤ η−1
R(f∗) + 2ηn2

T

∑
t=1

E [∥xt −Mt∥
2] .

The second statement follows immediately.

Proof [Proof of Lemma 6] First note that by Lemma 3 we have that for the Mt chosen
in the algorithm,

T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩ ≤ η−1R2
max +

η

2

T

∑
t=1

∥xt −Mt∥
2
∗

≤ η−1R2
max +

η

2

T

∑
t=1
∑
π∈Π

qt(π)∥xt −M
π
t ∥

2
∗ (Jensen’s Inequality)

≤ η−1R2
max +

η

2
(

4e

e − 1
)( inf

π∈Π

T

∑
t=1

∥xt −M
π
t ∥

2
∗ + log ∣Π∣)

where the last step is due to Corollary 2.3 of Cesa-Bianchi and Lugosi (2006). Indeed, the
updates for qt’s are exactly the experts algorithm with pointwise loss at each round t for
expert π ∈ Π given by ∥Mπ

t − xt∥
2
∗. Also as each Mπ

t ∈ X the unit ball of dual norm, we can

conclude that ∥Mπ
t − xt∥

2
∗ ≤ 4 which is why we have a scaling by factor 4. Simplifying leads

to the bound in the lemma.
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Proof [Proof of Lemma 7] In view of Lemma 2, for any f∗ ∈ F

T

∑
t=1

⟨ht, x̃t⟩ −
T

∑
t=1

⟨f∗, x̃t⟩ ≤ η−1
R(f∗) + 2η

T

∑
t=1

(∥x̃t −Mt∥
∗
t )

2

= η−1
R(f∗) + 2η

T

∑
t=1

n2
(⟨ft, xt −Mt⟩)

2
(∥εtλ

1/2
it

Λit∥
∗
t
)

2

≤ η−1
R(f∗) + 2ηn2

T

∑
t=1

(⟨ft, xt −Mt⟩)
2

It is easy to verify that x̃t is an unbiased estimate of xt and E [f]t = ht. Thus, by the
standard argument and the above upper bound we get,

E [
T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩] = E [
T

∑
t=1

⟨ht, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩]

= E [
T

∑
t=1

⟨ht, x̃t⟩ −
T

∑
t=1

⟨f∗, x̃t⟩]

≤ η−1
R(f∗) + 2ηn2E [

T

∑
t=1

(⟨ft, xt −Mt⟩)
2
]

This proves the first inequality of the Lemma. Now by Jensen’s inequality, the above bound
can be simplified as:

E [
T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩] ≤ η−1
R(f∗) + 2ηn2E [

T

∑
t=1

(⟨ft, xt −Mt⟩)
2
]

≤ η−1
R(f∗) + 2ηn2E [

T

∑
t=1
∑
π∈Π

qt(π)(⟨ft, xt −M
π
t ⟩)

2
]

≤ η−1
R(f∗) + 8ηn2

(
e

e − 1
)(E inf

π∈Π

T

∑
t=1

(⟨ft, xt −M
π
t ⟩)

2
+ log ∣Π∣) .

where the last step is due to Corollary 2.3 of Cesa-Bianchi and Lugosi (2006). Indeed, the
updates for qt’s are exactly the experts algorithm with point-wise loss at each round t for
expert π ∈ Π given by (⟨ft, xt −M

π
t ⟩)

2. Also as each Mπ
t ∈ X the unit ball of dual norm,

hence we can conclude that (⟨ft, xt −M
π
t ⟩)

2 ≤ 4 which is why we have a scaling by factor 4.
Further since ∥ft∥ ≤ 1 we can conclude that :

E [
T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩] ≤ η−1
R(f∗) + 8ηn2

(
e

e − 1
)(E inf

π∈Π

T

∑
t=1

∥xt −M
π
t ∥

2
+ log ∣Π∣)

≤ η−1
R(f∗) + 13ηn2

(E inf
π∈Π

T

∑
t=1

∥xt −M
π
t ∥

2
+ log ∣Π∣) .

This concludes the proof.
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Proof [Proof of Lemma 8] First note that by Lemma 3, since Mπt
t is the predictable

process we use, we have deterministically that,

T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩ ≤ η−1R2
max +

η

2

T

∑
t=1

∥xt −M
πt
t ∥

2
∗

Hence we can conclude that expected regret is bounded as :

E [
T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩] ≤ η−1R2
max +

η

2
E [

T

∑
t=1

∥xt −M
πt
t ∥

2
∗] (25)

This proves the first inequality in the lemma. However note that the update for qt’s is
using SCRiBLe for multiarmed bandit algorithm where the pointwise loss for any π ∈ Π
at round t given by ∥xt −M

π
t ∥

2
∗. Also note that maximal value of loss is bounded by

maxMt,xt ∥xt −M
π
t ∥∗ ≤ 4. Hence, using Lemma 11 with s = 4 and step size 1/32∣Π∣2, we

conclude that

E [
T

∑
t=1

∥xt −M
πt
t ∥

2
∗] ≤ 2 inf

π∈Π

T

∑
t=1

∥xt −M
π
t ∥

2
∗ + 64∣Π∣

3 log(T ∣Π∣)

Using this in Equation (25) we obtain

E [
T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩] ≤ η−1R2
max + η ( inf

π∈Π

T

∑
t=1

∥xt −M
π
t ∥

2
∗ + 32∣Π∣

3 log(T ∣Π∣))

Proof [Proof of Lemma 9] In view of Lemma 2, for any f∗ ∈ F

T

∑
t=1

⟨ht, x̃t⟩ −
T

∑
t=1

⟨f∗, x̃t⟩ ≤ η−1
R(f∗) + 2η

T

∑
t=1

(∥x̃t −M
πt
t ∥

∗
t )

2

= η−1
R(f∗) + 2η

T

∑
t=1

n2
(⟨ft, xt −M

πt
t ⟩)

2
(∥εtλ

1/2
it

Λit∥
∗
t
)

2

≤ η−1
R(f∗) + 2ηn2

T

∑
t=1

(⟨ft, xt −M
πt
t ⟩)

2 .

We can bound expected regret of the algorithm as:

Eπ1∶T ,i1∶T [
T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩] =
T

∑
t=1

Ei1∶t−1,π1∶t [⟨ht, xt⟩] −
T

∑
t=1

⟨f∗, xt⟩

=
T

∑
t=1

Ei1∶t,π1∶t [⟨ht, x̃t⟩] −
T

∑
t=1

E
it

[⟨f∗, x̃t⟩]

= E [
T

∑
t=1

⟨ht, x̃t⟩ −
T

∑
t=1

⟨f∗, x̃t⟩]

≤ η−1
R(f∗) + 2ηn2E [

T

∑
t=1

(⟨ft, xt −M
πt
t ⟩)

2
] (26)
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This gives the first inequality of the Lemma. However note that the update for qt’s the
distribution over set Π is obtained by running the SCRiBLe for multi-armed bandit algo-
rithm where pointwise loss for any π ∈ Π at round t given by (⟨ft, xt −M

π
t ⟩)

2. Also note
that maximal value of loss is bounded by 4. Hence using Lemma 11 with s = 4 and step
size 1/32∣Π∣2 we conclude by the regret bound in that lemma that

E [
T

∑
t=1

(⟨ft, xt −M
πt
t ⟩)

2
] ≤ 2E [ inf

π∈Π

T

∑
t=1

(⟨ft, xt −M
π
t ⟩)

2
+ 64∣Π∣

3 log(T ∣Π∣)]

Plugging this back in Equation (26) we conclude that

E [RegT ] ≤ η
−1
R(f∗) + 4ηn2

(E [ inf
π∈Π

T

∑
t=1

(⟨ft, xt −M
π
t ⟩)

2
] + 32∣Π∣

3 log(T ∣Π∣))

≤ η−1
R(f∗) + 4ηn2

(E [ inf
π∈Π

T

∑
t=1

∥xt −M
π
t ∥

2
] + 32∣Π∣

3 log(T ∣Π∣)) .

Proof [Proof of Lemma 10] In view of Lemma 2, for any f∗ ∈ F

T

∑
t=1

⟨ht, x̃t⟩ −
T

∑
t=1

⟨f∗, x̃t⟩ ≤ η−1
R(f∗) + 2η

T

∑
t=1

(∥x̃t∥
∗
t )

2

= η−1
R(f∗) + 2η

T

∑
t=1

n2
(⟨ft, xt⟩)

2
(∥εtλ

1/2
it

Λit∥
∗
t
)

2

≤ η−1
R(f∗) + 2s ηn2

T

∑
t=1

⟨ft, xt⟩ (∥εtλ
1/2
it

Λit∥
∗
t
)

2

≤ η−1
R(f∗) + 2s ηn2

T

∑
t=1

⟨ft, xt⟩ .

It is easy to verify that x̃t is an unbiased estimate of xt and E [f]t = ht. Thus,

E [
T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩] = E [
T

∑
t=1

⟨ht, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩]

= E [
T

∑
t=1

⟨ht, x̃t⟩ −
T

∑
t=1

⟨f∗, x̃t⟩]

≤ η−1
R(f∗) + 2s ηn2E [

T

∑
t=1

⟨ft, xt⟩] .

Hence we can conclude that

E [
T

∑
t=1

⟨ft, xt⟩] ≤
1

1 − (2sn2)η
( inf
f∈F

T

∑
t=1

⟨f, xt⟩ + η
−1
R(f∗))

25



Rakhlin Sridharan

Proof [Proof of Lemma 11] We are interested in solving the multi-armed bandit problem
using the self-concordant barrier method so we can get a regret bound in terms of the loss
of the optimal arm. We do this in two steps, first we provide an algorithm for linear bandit
problem over the simplex. That is we provide an algorithm for the case when learner plays
on each round qt ∈ ∆([d]), adversary plays loss vector xt ∈ [0, s]d and learner observes ⟨qt, xt⟩
at the end of the round. Next we show that this bandit algorithm over the simplex can
be converted into a multi-armed bandit algorithm. To this end let us first develop a linear
bandit algorithm over the simplex based on self-concordant barrier algorithm (SCRiBLe).

Bandit algorithm over simplex: Note that one can rewrite the loss of any q ∈ ∆([d])
over any x ∈ [0, s]d as

⟨q, x⟩ = ⟨q[1 ∶ d − 1], x[1 ∶ d − 1]⟩ + (1 − ⟨q[1 ∶ d − 1],1⟩)x[d]

= ⟨q[1 ∶ d − 1], x[1 ∶ d − 1] − 1x[d]⟩ + x[d]

= ⟨(q[1 ∶ d − 1],1), (x[1 ∶ d − 1] − 1x[d], x[d])⟩

Since the above we have for any distribution over the d arms q, and any loss vector x, we
see that solving the linear bandit problem where learner picks from simplex and adversary
picks from [0, s]d is equivalent to the linear bandit game where learner picks vectors from
set F ′ and adversary picks vectors from set X ′ where

F
′
= {(f,1) ∶ f ∈ Rd−1 s.t. ∀i ∈ [d − 1], f[i] ≥ 0,

d−1

∑
i=1

f[i] ≤ 1}

and X ′ = {(x[1 ∶ d − 1] − 1x[d], x[d]) ∶ x ∈ X}. Now we claim that the function R(f) =

−∑
d−1
i=1 log(f[i]) − log(1 −∑d−1

i=1 f[i]) is a self-concordant barrier of the set F ′. To see this
first note that the function R̃(f[1 ∶ d − 1]) = −∑d−1

i=1 log(f[i]) − log(1 −∑d−1
i=1 f[i]) is a self-

concordant barrier on the set {f ∈ Rd−1 ∶ ∀i ∈ [d − 1]f[i] ≥ 0,∑d−1
i=1 f[i] ≤ 1}. Now since the

function R is simply the same as the function R̃ applied only on the first d − 1 coordinates
of the input it is easy to see that R is a self concordant barrier on F ′. Hence using Lemma
10 we can conclude that for the SCRiBLe algorithm with this reduction with any choice of
η > 0 and any q∗ ∈ ∆([d]),

E [
T

∑
t=1

⟨qt, xt⟩] ≤
1

1 − (2sd2)η
(
T

∑
t=1

⟨q∗, xt⟩ + dη−1 max
i∈[d]

log(1/q∗[i]))

≤
1

1 − (2sd2)η

⎛

⎝
inf

q∈∆([d])

T

∑
t=1

⟨q, xt⟩ + 1 + dη−1 log(dT )
⎞

⎠

=
1

1 − (2sd2)η

⎛

⎝
inf
j∈[d]

T

∑
t=1

⟨ej , xt⟩ + 1 + dη−1 log(dT )
⎞

⎠
(27)

where the last step obtained by picking q∗ = (1 − 1/T )ej∗ +∑i≠j∗(1/(d − 1)T )ei with j∗ =

argmin
j∈[d]

∑
T
t=1 ⟨ej , xt⟩.

Thus we have a linear bandit algorithm over the simplex with the bound given in Equa-
tion (27). Now we claim that this algorithm can be used for solving multi-armed bandit
problem.
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Using linear bandit algorithm over simplex for multi-armed bandit problem:
We claim that the algorithm we have developed for the simplex case can be used for the
multi-armed bandit problem. To see this note first that for any choice of q1, . . . , qT ∈ ∆([d])
and any choice of x1, . . . , xT ,

E [
T

∑
t=1

⟨qt, xt⟩] − inf
q∈∆([d])

⟨q, xt⟩ = E [
T

∑
t=1

E
jt∼qt

[⟨ejt , xt⟩]] − inf
i∈[d]

⟨ei, xt⟩

= E
⎡
⎢
⎢
⎢
⎣

T

∑
t=1

⟨ejt , xt⟩ − inf
i∈[d]

⟨ei, xt⟩
⎤
⎥
⎥
⎥
⎦

Hence this shows that if we have an algorithm that outputs q1, . . . , qT then on each round
by sampling the arm to pick from qt we get the same regret bound. However note that to
run a bandit algorithm over the simplex we needed to be able to observe ⟨qt, xt⟩, while in
reality we only observe ⟨ejt , xt⟩. There is an easy remedy for this. Note that we needed to

observe ⟨qt, xt⟩ only to produce the unbiased estimate x̃t ∶= d (⟨qt, xt⟩) εtλ
1/2
it

⋅Λit . However,

d (⟨qt, xt⟩) εtλ
1/2
it
⋅Λit = Ejt∼qt [d (⟨ejt , xt⟩) εtλ

1/2
it

⋅Λit]. Hence, d (⟨ejt , xt⟩) εtλ
1/2
it
⋅Λit is also an

unbiased estimate of x̃t and so the algorithm can simply use ⟨ejt , xt⟩ to build the estimates
while enjoying the same bound in expectation. Thus, SCRiBLe for multi-armed bandit
enjoys the bound

E{
T

∑
t=1

⟨ejt , xt⟩} ≤
1

1 − 4ηsd2

⎛

⎝
inf
j∈[d]

T

∑
t=1

⟨ej , xt⟩ + dη
−1 log(dT )

⎞

⎠

which concludes the proof.
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