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Abstract

In many real-world classification problems, the labels of training examples are randomly
corrupted. Thus, the set of training examples for each class is contaminated by examples
of the other class. Previous theoretical work on this problem assumes that the two classes
are separable, that the label noise is independent of the true class label, or that the noise
proportions for each class are known. We introduce a general framework for classification
with label noise that eliminates these assumptions. Instead, we give assumptions ensuring
identifiability and the existence of a consistent estimator of the optimal risk, with associated
estimation strategies. For any arbitrary pair of contaminated distributions, there is a unique
pair of non-contaminated distributions satisfying the proposed assumptions, and we argue
that this solution corresponds in a certain sense to maximal denoising. In particular, we
find that learning in the presence of label noise is possible even when the class-conditional
distributions overlap and the label noise is not symmetric. A key to our approach is
a universally consistent estimator of the maximal proportion of one distribution that is
present in another, a problem we refer to as “mixture proportion estimation.” This work
is motivated by a problem in nuclear particle classification.
Keywords: Label noise, consistency, error estimation, mixture proportion estimation

1. Introduction

In binary classification, one observes multiple realizations of two different classes,

X1
0 , . . . , X

m
0

iid∼ P0, X1
1 , . . . , X

n
1
iid∼ P1,
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where P0 and P1, the class-conditional distributions, are probability distributions on a
measurable space (X ,S). The feature vector Xy

i ∈ X denotes the i-th realization from
class y ∈ {0, 1}. The general goal is to construct a classifier from this data.

There are several kinds of noise that can affect a classification problem. A first type
of noise is when P0 and P1 have overlapping support, meaning that the label is not a
deterministic function of the feature vector. In this situation, even an optimal classifier
makes mistakes. In this work, we consider a second type of noise, label noise, that can
occur in addition to the first type of noise. With label noise, some of the labels of the
training examples are corrupted. We focus in particular on random label noise, as opposed
to feature-dependent or adversarial label noise.

To model label noise, we represent the training data via contamination models:

X1
0 , . . . , X

m
0

iid∼ P̃0 := (1− π0)P0 + π0P1, (1)

X1
1 , . . . , X

n
1
iid∼ P̃1 := (1− π1)P1 + π1P0. (2)

According to these mixture representations, each “apparent” class-conditional distribution
is in fact a contaminated version of the true class-conditional distribution, where the con-
tamination comes from the other class. Thus, P̃0 governs the training data with apparent
class label 0. A proportion 1 − π0 of these examples have 0 as their true label, while the
remaining π0 have a true label of 1. Similar remarks apply to P̃1. The noise is asymmetric
in that π0 need not equal π1. We emphasize that π0 and π1 are unknown. The distributions
P0 and P1 are also unknown, and we do not wish to impose models for them. In particular,
the supports of P0 and P1 may overlap, so that the classes are not separable.

This work is motivated by a nuclear particle classification problem that is critical for
nuclear nonproliferation. An organic scintillation detector converts the energy of traversing
particles to a pulse-shaped waveform that is in turn sampled into a digital signal X ∈
Rd. The device is sensitive to high-energy neutrons as well as gamma rays, which need
to be separated based on their measured pulses, a problem referred to as pulse shape
discrimination (PSD) (Adams and White, 1978; Ambers et al., 2011). Unfortunately, even
in controlled laboratory settings, it is very difficult to obtain pure samples of neutron and
gamma-ray pulses: the fission events that produce neutrons also yield gamma rays in a
proportion that is intrinsic to the source material, and cannot be changed. Furthermore,
gamma rays are strongly present in background radiation, as well as some neutrons. Thus,
PSD is naturally described by the proposed label noise model.

Previous work on classification with random label noise, reviewed below, has not con-
sidered the problem in this generality. Our contribution is to introduce general sufficient
conditions on the elements P0, P1, π0, π1 of the contamination models for the existence of a
consistent discrimination rule; these conditions are the following:

• (Total noise level) π0 + π1 < 1,

• (Mutual irreducibility) It is not possible to write P0 as a nontrivial mixture of P1 and
some other distribution, and vice versa.

We present a consistent discrimination rule that leverages consistent estimates of the noise
proportions. These proportions are recovered in turn via mixture proportion estimation,
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which is the problem of estimating the proportion of one distribution present in another,
given random samples from both distributions.

To shed some light on these conditions, we remark that in the absence of any assumption,
the solution (P0, P1, π0, π1) to (1)-(2), when the contaminated distributions P̃0, P̃1 are given,
is non-unique. In particular, were the condition on total label noise not required, for any
solution, swapping the role of classes 0 and 1 would also be a solution (with complementary
contamination probabilities), while leaving the apparent labels unchanged.

Furthermore, we describe in detail (at the population level) the geometry of the set of
all possible solutions (P0, P1, π0, π1) to (1)-(2). We argue that for any pair P̃0 6= P̃1, there
always exists a unique solution satisfying the above two conditions. Moreover, this solution
uniquely corresponds to the maximum possible total label noise level (π1 + π0) compatible
with the observed contaminated distributions, and also to the maximum possible total
variation separation ‖P1 − P0‖TV under the condition π1 + π0 < 1. In this sense, P0 and
P1 satisfying the second condition are maximally denoised versions of the contaminated
distributions. Under these conditions, we therefore establish universally consistent learning
of (i) a classifier that compensates for everything that could be construed as label noise,
and (ii) the corresponding contamination proportions. In particular, we emphasize that the
proposed conditions do not put any restrictions on the possible apparent label distributions
P̃0, P̃1, so that our consistency result is distribution-free.

An alternative way to view the contamination model (1)-(2) is to interpret it as a
source separation problem. In the usual source separation setting, the realizations from the
different sources are linearly mixed, whereas in the present model, the source probability
distributions are (we do not observe a signal superposition, but a signal coming from one
or the other source). As a common point with the source separation setting, it is necessary
to postulate additional constraints on the sources in order to resolve non-uniqueness of the
possible solutions. In Independent Component Analysis, for instance, sources are assumed
to be independent. Our assumption of mutual irreducibility between the sources plays a
conceptually comparable role here. Similarly, the assumption on the total noise level resolves
the ambiguity that the sources would be otherwise only identifiable up to permutation.

1.1. Problem Statement and Notation

We consider the problem of designing a discrimination rule, in the presence of label noise,
that is consistent with respect to a given performance measure. To state the problem
precisely, we define the following terms. A classifier is a measurable function f : X → {0, 1}.
A performance measure R(f) assigns every classifier to a nonnegative real number, and
depends on the true distributions, P0 and P1. The optimal performance measure is denoted
R∗ = inf R(f), where the infimum is over all classifiers. A discrimination rule is a function
f̂m,n : Xm×X n → (X → {0, 1}) mapping training data to classifiers. A discrimination rule
is consistent iff R(f̂m,n)→ R∗ in probability as min{m,n} → ∞.

We focus on the minmax criterion, for which R(f) = max{R0(f), R1(f)}, where

R0(f) := P0(f(X) = 1) , R1(f) := P1(f(X) = 0),

are the Type I and Type II errors. The optimal performance R∗ is called the minmax error.
This choice of performance measure is primarily for concreteness; we expect no difficulty in
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extending our analysis to other performance measures, both frequentist and Bayesian, that
can be defined in terms of R0 and R1, such as Neyman-Pearson or expected misclassification
cost. This is because our approach is grounded on a technique to estimate R0(f) and R1(f).

We also introduce the contaminated Type I and II errors:

R̃0(f) := P̃0(f(X) = 1) = (1− π0)R0(f) + π0(1−R1(f)), (3)

R̃1(f) := P̃1(f(X) = 0) = (1− π1)R1(f) + π1(1−R0(f)). (4)

1.2. Related Work

Classification in the presence of label noise has drawn the attention of numerous researchers.
One common approach is to assume that corrupted labels are more likely to be associated
with outlying data points. This has inspired methods to clean, correct, or reweight the
training data (Brodley and Friedl, 1999; Rebbapragada and Brodley, 2007), as well as the
use of robust (usually nonconvex) losses (Mason et al., 2000; Xu et al., 2006; Masnadi-Shirazi
and Vasconcelos, 2009; Ding and Vishwanathan, 2010; Denchev et al., 2012). The above
approaches are not necessarily based on a random label noise model, but rather assume
that noisy labels are more common near the decision boundary.

Generative models have also been applied in the context of random label noise. These
impose parametric models on the data-generating distributions, and include the label noise
as part of the model. The parameters are then estimated using an EM algorithm (Bouveyron
and Girard, 2009). The method of Lawrence and Schölkopf (2001) employs kernels in this
approach, allowing for the modeling of more flexible distributions.

Negative results for convex risk minimization in the presence of label noise have been
established by Long and Servido (2010) and Manwani and Sastry (2011). These works
demonstrate a lack of noise tolerance for boosting and empirical risk minimization based on
convex losses, respectively, and suggest that any approach based on convex risk minimization
will require modification of the loss, such that the risk minimizer is the optimal classifier
with respect to the uncontaminated distributions. Along these lines, Stempfel and Ralaivola
(2009) recently developed a support vector machine with a modified hinge loss. Proper
modification of the loss, however, requires knowledge of the noise proportions. Since these
proportions are typically not known a priori, our consistent estimators of these proportions
could make approaches based on convex risk minimization more broadly applicable.

Classification with random label noise has also been studied in the PAC literature.
Most PAC formulations assume that (i) P0 and P1 have non-overlapping support (i.e., there
is a deterministic “target concept” that provides the true labels), (ii) the label noise is
symmetric (i.e., independent of the true class label), and (iii) the performance measure
is the probability of error (Angluin and Laird, 1988; Kearns, 1993; Aslam and Decatur,
1996; Cesa-Bianchi et al., 1997; Bshouty et al., 1998; Kalai and Servedio, 2003). Under
these conditions, it typically suffices to train on the contaminated data; only the sample
complexity changes. The case of asymmetric label noise was addressed by Blum and Mitchell
(1998) under (i), as the basis of co-training. Some new directions and a thorough review
of this body of work were recently presented in Jabbari (2010). As we discuss in the next
section, new challenges emerge when (i), (ii), and (iii) are not assumed.
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To our knowledge, previous work under the asymmetric noise model has not addressed
a minimal set of conditions for either consistent classification or for consistent estimation
of the label noise proportions.

Classification with label noise is related to several other machine learning problems. It
is the basis of co-training (Blum and Mitchell, 1998). When π1 = 0, we have “one-sided”
label noise, and the problem reduces to learning from positive and unlabeled examples, also
known as semi-supervised novelty detection; see Blanchard et al. (2010) for a review of this
literature. Finally, a basic form of multiple instance learning can be reduced to classification
with one-sided label noise (see Sabato and Tishby, 2012).

2. The Challenge of Label Noise

In this section, we overview the challenges posed by label noise. We focus on the population
setting (m,n =∞) and compare classifier design based on the contaminated distributions,
P̃0 and P̃1, versus the true ones, P0 and P1. We introduce the following condition on the
total amount of label noise.

(A) π0 + π1 < 1.

This condition states, in a certain sense, that a majority of the labels are correct on average.
It even allows that one of the proportions be very close to one if the other proportion is
small enough. This condition was previously adopted by Blum and Mitchell (1998).

In this section, we assume that P0 and P1 are absolutely continuous with respect to
a common dominating measure, such as Lebesgue. Let p0 and p1 denote corresponding
densities. Thus

p̃0(x) := (1− π0)p0(x) + π0p1(x), p̃1(x) := (1− π1)p1(x) + π1p0(x),

are respective densities of P̃0 and P̃1.

Proposition 1 Assume (A) holds. For all γ ≥ 0, and every x such that p0(x) > 0 and
p̃0(x) > 0,

p1(x)
p0(x)

> γ ⇐⇒ p̃1(x)
p̃0(x)

> λ, where λ :=
π1 + γ(1− π1)
1− π0 + γπ0

. (5)

The proof involves a sequence of simple algebraic steps to transform one likelihood ratio
into another, and the use of (A) to ensure that the direction of the inequality is preserved.

Regardless of the performance measure chosen (probability of error, Neyman-Pearson,
etc.), the optimal classifier takes the form of a likelihood ratio test (LRT) based on the true
densities. According to the proposition, every true LRT is identical to a contaminated LRT
with a different threshold. As the threshold of one LRT sweeps over its range, so too does the
threshold of the other LRT. Equivalently, both LRTs generate the same receiver operating
characteristic (ROC). However, if we design a classifier with respect to the contaminated
Type I and II errors, we will not obtain a classifier that is optimal with respect to the true
Type I and II errors, except in very special circumstances. To make this point concrete, we
now consider two specific performance measures.
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Probability of error. When the feature vector X and label Y are jointly distributed,
the probability of misclassification is minimized by a LRT, where the threshold γ is given
by the ratio of a priori class probabilities. If γ = 1, then the corresponding threshold
for the contaminated LRT is also 1, regardless of π0 and π1, which follows directly from
(5). Furthermore, with some simple algebra it is easy to show that λ = γ only if γ = 1.
Thus, unless the two classes are equally probable a priori, setting the correct λ for the
contaminated LRT is not possible, since π0 and π1 are unknown.

Minmax. The minmax classifier corresponds to the point on the ROC of the
true and contaminated LRTs where R0(f) = R1(f). Indeed, if R0(f) 6= R1(f), then
max{R0(f), R1(f)} can be decreased by moving along the ROC such that the larger of
R0(f), R1(f) is decreased. Thus, designing a classifier with respect to the contaminated
distributions yields a point on the optimal ROC where R̃0(f) = R̃1(f). Using equations
(3) and (4), simple algebra reveals that R̃0(f) = R̃1(f) and R0(f) = R1(f) for the same f
iff π0 = π1 or R0(f) = R1(f) = 1

2 . The first condition is not satisfied for asymmetric label
noise, and the latter condition is not true for an optimal classifier unless P0 = P1.

Similar arguments can be made for other criteria, such as Neyman-Pearson. In summary,
a classifier that is optimal with respect to the contaminated Type I and II errors is not
optimal with respect to the true Type I and II errors, except in special cases. Based on the
above discussion, in the setting of asymmetric, random label noise, it is essential to have
accurate estimates of true Type I and Type II errors. These estimates, in turn, facilitate
the design of discrimination rules with respect to any criterion. For concreteness, in later
sections we examine the minmax criterion in detail. However, our approach readily extends
to other performance measures that are based on the false positive and negative rates.

3. Alternate Mixture Representation

We introduce an alternative mixture representation that facilitates our subsequent analysis.
The following lemma reformulates the problem.

Lemma 1 Assume (1)-(2) hold. If P0 6= P1 and (A) holds, then P̃1 6= P̃0, and there exist
unique 0 ≤ π̃0, π̃1 < 1 such that

P̃0 = (1− π̃0)P0 + π̃0P̃1, (6)

P̃1 = (1− π̃1)P1 + π̃1P̃0. (7)

In particular π̃0 = π0
1−π1

< 1 and π̃1 = π1
1−π0

< 1.

Proof To see that P̃1 6= P̃0, assume by contraposition that equality holds. Plugging in
(1)-(2), we obtain

(1− π1 − π0)P1 = (1− π1 − π0)P0,

which, since P0 6= P1, would imply π1 + π0 = 1 and contradict (A).
We turn to identity (6). Matching distributions, the identity holds iff

P1(π0 − π̃0(1− π1)) = P0(1− π̃0 + π1π̃0 − (1− π0)) = P0(π0 − π̃0(1− π1)).
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Since P0 6= P1, the unique solution is π̃0 = π0
1−π1

. From (A) it follows that π̃0 < 1. Similar
reasoning applies to the second identity.

This lemma motivates estimates of the true Type I and Type II errors. For any classifier
f , we may express the contaminated Type I and Type II errors as

R̃0(f) = P̃0(f(X) = 1) = (1− π̃0)R0(f) + π̃0(1− R̃1(f)), (8)

R̃1(f) = P̃1(f(X) = 0) = (1− π̃1)R1(f) + π̃1(1− R̃0(f)), (9)

where Equations (8) and (9) follow from Lemma 1. By solving for R0(f) and R1(f) in (8)
and (9), we find

R0(f) =
R̃0(f)− π̃0(1− R̃1(f))

1− π̃0
= 1− R̃1(f)− 1− R̃0(f)− R̃1(f)

1− π̃0
, (10)

R1(f) =
R̃1(f)− π̃1(1− R̃0(f))

1− π̃1
= 1− R̃0(f)− 1− R̃1(f)− R̃0(f)

1− π̃1
. (11)

We can estimate R̃0(f) and R̃1(f) from the training data. Therefore, if we can estimate π̃0

and π̃1, then we can estimate R0(f) and R1(f), and thereby design a classifier. In the next
section we address the estimation of π̃0 and π̃1. Note that it is not necessary to estimate
π0 and π1, although that would be possible in light of Lemma 1.

We conclude this section with a converse to Lemma 1:

Lemma 2 Assume that (6)-(7) hold and P̃1 6= P̃0. Then P1 6= P0 and there exist unique
π1, π0 ∈ [0, 1) (namely π0 = π̃0(1−π̃1)

1−π̃1π̃0
and π1 = π̃1(1−π̃0)

1−π̃1π̃0
) so that (1)-(2) hold; furthermore,

(A) is satisfied.

Proof Assume (6)-(7) hold. Since we assume P̃1 6= P̃0, it holds that π̃1, π̃0 < 1. To see
that P0 6= P1, assume by contraposition that equality holds. Plugging in (6)-(7) and after
straightforward manipulation, we obtain equivalently

1− π̃1π̃0

(1− π̃1)(1− π̃0)
P̃1 =

1− π̃1π̃0

(1− π̃1)(1− π̃0)
P̃0,

which would contradict the assumption P̃1 6= P̃0.
Next, for (1) to hold, by matching distributions in a similar way as in the proof of

Lemma 1, we arrive at the equivalent relation (π̃0(1 − π1) − π0)P̃0 = (π̃0(1 − π1) − π0)P̃1.
Since P̃1 6= P̃0, the unique solution is π0 = π̃0(1− π1). Similarly, for (2) to hold the unique
solution is π0 = π̃0(1− π1). From these we derive the announced expression for π0, π1. It is
then easy to check that π0 + π1 − 1 = − (1−π̃1)(1−π̃0)

1−π̃1π̃0
< 0, so that (A) holds.

Together, Lemmas 1 and 2 imply that for known, distinct uncontaminated distributions
P0 6= P1, there is an explicit one-to-one correspondence between the contamination pro-
portions (π1, π0) of the initial contamination models (1)-(2) under constraint (A), and the
proportions (π̃1, π̃0) in the representation (6)-(7) (with the only constraint 0 ≤ π̃1, π̃0 < 1).

In the next section, we turn to estimation of π̃0, π̃1. We also address the question: Given
the contaminated distributions P̃1, P̃0, while (P0, P1) are unknown, what are the solutions
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(π0, π1, P0, P1) satisfying model (1)-(2)? The equivalent representations (6)-(7) are pivotal
to answering both questions, because they are decoupled in the sense that the unknown
distribution P0 only enters in (6), and P1 only in (7). Therefore, we can solve (6) and (7)
separately, and each of these reduces to a problem of mixture proportion estimation, as we
explain next.

4. Mixture Proportion Estimation and Mutual Irreducibility

Let F , G, and H be distributions on (X ,S) such that

F = (1− ν)G+ νH,

where 0 ≤ ν ≤ 1. Mixture proportion estimation is the following problem: given iid
training samples ZmF ∈ Xm and ZnH ∈ X n of sizes m and n from F and H respectively, and
no information about G, estimate ν. This problem was previously addressed by Blanchard
et al. (2010), and here we relate the necessary definitions and results from that work.

Without additional assumptions, ν is not an identifiable parameter, as noted by Blan-
chard et al. In particular, if F = (1 − ν)G + νH holds, then any alternate decomposition
of the form F = (1 − ν + δ)G′ + (ν − δ)H , with G′ = (1 − ν + δ)−1((1 − ν)G + δH) ,
and δ ∈ [0, ν) , is also valid. Because we have no direct knowledge of G , we cannot decide
which representation is the correct one. Therefore, to make the problem well-defined, we
will consider estimation of the largest valid ν. The following definition will be useful.

Definition 1 Let G , H be probability distributions. We say that G is irreducible with
respect to H if there exists no decomposition of the form G = γH + (1− γ)F ′, where F ′ is
some probability distribution and 0 < γ ≤ 1 . We say that G and H are mutually irreducible
if G is irreducible with respect to H and vice versa.

The following was established by Blanchard et al. (2010).

Proposition 2 Let F , H be probability distributions. If F 6= H, there is a unique ν∗ ∈
[0, 1) and G such that F = (1− ν∗)G+ ν∗H, and such that G is irreducible with respect to
H . If we additionally define ν∗ = 1 when F = H, then in all cases

ν∗ = max{α ∈ [0, 1] : ∃G′ probability distribution: F = (1− α)G′ + αH} .

By this result, the following is well-defined.

Definition 2 For any two probability distributions F , H, define

ν∗(F,H) := max{α ∈ [0, 1] : ∃G′ probability distribution: F = (1− α)G′ + αH} .

Thus, G is irreducible with respect to H if and only if ν∗(G,H) = 0. Additionally, it is
not hard to show that for any two distributions F and H, ν∗(F,H) = infA∈S F (A)/H(A).
Similarly, when F and H have densities f and h, ν∗(F,H) = ess infx∈supp(H) f(x)/h(x).
These identities make it possible to check irreducibility in different scenarios. For example,
ν∗(G,H) = 0 whenever the support of G does not contain the support of H. Even if the
supports are equal, two distributions can be mutually irreducible, as in the case of two
Gaussians with distinct means and equal variances.

To consolidate the above notions, we state the following corollary.
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Corollary 1 If F = (1 − γ)G + γH, and G is irreducible with respect to H, then γ =
ν∗(F,H).

Blanchard et al. also studied an estimator ν̂ = ν̂(ZmF , Z
n
H) of ν∗(F,H). They show that

ν̂ is strongly universally consistent, i.e., that for any F and H, ν̂ → ν∗(F,H) almost surely.
The particular form of the estimator is not important here; only its consistency is relevant
for our purposes. See Appendix A for a correction to the statement of the consistency result
of Blanchard et al. (2010); this correction does not affect the present analysis.

Lemma 1 allows us to estimate π̃0 and π̃1 using ν̂. Recalling the result of Lemma 1, the
distributions P̃0 and P̃1 can be written

P̃0 = (1− π̃0)P0 + π̃0P̃1 ; P̃1 = (1− π̃1)P1 + π̃1P̃0.

By Corollary 1, we can estimate π̃0 and π̃1 provided the following condition holds:

(B) P0 is irreducible with respect to P̃1 and P1 is irreducible with respect to P̃0.

To ensure this condition, we now introduce the following identifiability assumption:

(C) P0 and P1 are mutually irreducible.

Note that it follows from assumption (C) that P0 6= P1. We now establish that (C) and
(B) are essentially equivalent.

Lemma 3 P0 is irreducible with respect to P̃1 if and only if P0 is irreducible with respect
to P1 and π1 < 1. The same statement holds when exchanging the roles of the two classes.
In particular, under assumption (A), (C) is equivalent to (B) .

Proof This will be a proof by contraposition. Assume first that P0 is not irreducible with
respect to P̃1. Then there exists a probability distribution Q′ and 0 < γ ≤ 1 such that

P0 = γP̃1 + (1− γ)Q′.

Now, plugging in Equation (2) for P̃1 yields

P0 = γ((1− π1)P1 + π1P0) + (1− γ)Q′.

Solving for P0 produces

P0 = (1− β)Q′ + βP1,

where β := γ( 1−π1
1−γπ1

). Now, in the case where π1 < 1, then 1 − γπ1 > 0, and γ − γπ1 > 0.
Since 0 < γ ≤ 1, we deduce 0 < β ≤ 1, so that P0 is not irreducible with respect to P1.

Conversely, assume by contradiction that P0 is not irreducible with respect to P1, i.e.,
there exists a decomposition P0 = γP1 + (1 − γ)Q′ with γ > 0. Then the decomposition
P0 = βP̃1 + (1 − β)Q′ holds with β := γ

γ+(1−π1)(1−γ) ∈ (0, 1], so that P0 is not irreducible

with respect to P̃1. Finally, in the case π1 = 1, we have P̃1 = P0, in which case, trivially,
P0 is not irreducible with respect to P̃1 either.
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To summarize, if (A) and (C) hold, then we can consistently estimate π̃0 and π̃1, and
therefore can also consistently estimate R0(f) and R1(f) via Eqns. (10)-(11). These ideas
are developed in the next section.

To conclude this section, we present a result that rounds out the discussion of the initial
and modified contamination models, and mutual irreducibility. In particular, we describe all
possible solutions (π0, π1, P0, P1) to our model equations (1)-(2) when P̃0, P̃1 are given and
arbitrary, and an equivalent characterization of the unique mutually irreducible solution. It
can be seen as an analogue of Proposition 2 for the label noise contamination model.

Proposition 3 Let P̃1 6= P̃0 be two given distinct probability distributions. Denote by Λ the
feasible set of quadruples (π0, π1, P0, P1) such that (A) and equations (1)-(2) are satisfied.

1. There is a unique quadruple (π∗0, π
∗
1, P

∗
0 , P

∗
1 ) ∈ Λ so that (C) holds.

2. Denoting π̃∗0 := ν∗(P̃0, P̃1) < 1 and π̃∗1 := ν∗(P̃1, P̃0) < 1, it holds

π∗0 =
π̃∗0(1− π̃∗1)
1− π̃∗1π̃∗0

, π∗1 =
π̃∗1(1− π̃∗0)
1− π̃∗1π̃∗0

. (12)

3. The feasible region R for the proportions (π0, π1) (that is, the projection of Λ to its
first two coordinates, which is also one-to-one), is the closed quadrilateral defined by
the intersection of the positive quadrant of R2 with the half-planes given by

π0 + π1π̃
∗
0 ≤ π̃∗0, π1 + π0π̃

∗
1 ≤ π̃∗1 . (13)

4. The mutually irreducible solution (π∗0, π
∗
1, P

∗
0 , P

∗
1 ) is also equivalently characterized as:

• the unique maximizer of (π0 + π1) over Λ;
• the unique extremal point of Λ where both of the constraints in (13) are active;
• the unique maximizer over Λ of the total variation distance ‖P0 − P1‖TV .

The proof of the proposition relies on the explicit one-to-one correspondence established
in Lemmas 1 and 3 between the solutions of the original decomposition (1)-(2) and its
decoupled reformulation (6)-(7). The result of Proposition 2 is applied to the decoupled
formulation, then pulled back, via the correspondence, in the original representation. The
last statement concerning the total variation norm is based on the relation

(P1 − P0) = (1− π0 − π1)−1(P̃1 − P̃0),

obtained by subtracting (1) from (2). Therefore, the maximum feasible value of ‖P1 − P0‖TV
corresponds to the maximum of (π0 + π1), i.e. the unique mutually irreducible solution.

The geometrical interpretation of this proposition is visualized on Figure 1 (see ap-
pendix). In particular, point 1 of the proposition shows that conditions (A) and (C) do
not restrict the class of possible observable contaminated distributions (P̃1, P̃0); rather, they
ensure in all cases the identifiability of the mixture model. Point 4 indicates that the unique
solution satisfying the mutual irreducibility condition (C) can be characterized as maxi-
mizing the possible total label noise level (π0 +π1), or, still equivalently, the total variation
separation of the source probabilities P0, P1. In this sense, the mutually irreducible solu-
tion can also be interpreted as maximal label denoising or maximal source separation of the
observed contaminated distributions.

10
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5. Estimating Type I and Type II Errors

We denote the training data by Zm0 = (X1
0 , ..., X

m
0 ) ∈ Xm, and Zn1 = (X1

1 , ..., X
n
1 ) ∈ X n.

Given a classifier f , and iid samples Zm0 and Zn1 , we define the following estimates of the
contaminated Type I and Type II errors:

̂̃R0(f, Zm0 ) :=
1
m

m∑
i=1

1{f(Xi
0)6=0},

̂̃R1(f, Zn1 ) :=
1
n

n∑
i=1

1{f(Xi
1)6=1}.

Following the theory developed in Section 4, define the estimates of π̃0 and π̃1 as

̂̃π0(Zm0 , Z
n
1 ) := ν̂(Zm0 , Z

n
1 ), ̂̃π1(Zm0 , Z

n
1 ) := ν̂(Zn1 , Z

m
0 ),

where ν̂ is the estimator of Blanchard et al. (2010).
Plugging these estimates into Equations (10) and (11), we define the following estimates

for the Type I and Type II errors:

R̂0(f, Zm0 , Z
n
1 ) := 1− ̂̃R1(f, Zn1 )− 1− ̂̃R0(f, Zm0 )− ̂̃R1(f, Zn1 )

1− ̂̃π0(Zm0 , Z
n
1 )

, (14)

R̂1(f, Zm0 , Z
n
1 ) := 1− ̂̃R0(f, Zm0 )− 1− ̂̃R1(f, Zn1 )− ̂̃R0(f, Zm0 )

1− ̂̃π1(Zm0 , Z
n
1 )

.

For brevity, we will sometimes write R̂i(f). The following theorem shows that the estimators
R̂i(f) converge uniformly in probability to Ri(f).

Theorem 1 Let {Fk}∞k=1 denote a family of sets of classifiers, with Fk having finite VC-
dimension Vk. Let k(m,n) take values in N such that

Vk(m,n) log(min(m,n))
min(m,n)

→ 0,

as min(m,n)→∞. If assumptions (A) and (C) hold, then, as min(m,n)→∞,

sup
f∈Fk(m,n)

|R̂i(f, Zm0 , Zn1 )−Ri(f)| → 0

in probability for i = 0, 1.

The proof consists of a showing that ̂̃R0(f, Zm0 ) and ̂̃R1(f, Zn1 ) converge uniformly to R̃0(f)
and R̃1(f) (by the VC inequality), that ̂̃πi → π̃i in probability, i = 0, 1 (by the result of
Blanchard et al.), and a continuity argument.

In the next section, we use R̂0 and R̂1 to develop a consistent minmax classifier. A
similar development should be possible for other criteria depending on Type I and II errors.

11
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6. Minmax Consistency

Define the max error of a classifier f as

R(f) := max{R0(f), R1(f)}. (15)

Let F denote an arbitrary set of classifiers. We define the minmax error over F as

R(F) := inf
f∈F

R(f).

Let F0 denote the set of all classifiers, and define R∗ := R(F0), the minmax error. Define
the estimates of R(f) and R(F) as

R̂(f) := max{R̂0(f), R̂1(f)}, R̂(F) := inf
f∈F

R̂(f).

Now let τk > 0 be a sequence such that τk → 0 as k →∞. Define f̂k to be any classifier

f̂k ∈ {f ∈ Fk : R̂(f) ≤ R̂(Fk) + τk}. (16)

This construction allows us to avoid assuming the existence of an empirical error minimizer.
Let {Fk}∞k=1 denote a family of sets of classifiers. The following universal approximation

property is known to be satisfied for various families of VC classes, such as histograms,
decision trees, neural networks, and polynomial classifiers.

(D) For all distributions Q and measurable functions f̃ : X → {0, 1},

lim
k→∞

inf
f∈Fk

Q(f(X) 6= f̃(X)) = 0.

Theorem 1 gives us control over the estimation error. Condition (D) provides control
of the approximation error.

Lemma 4 Let {Fk}∞k=1 denote a sequence of classifier sets. If assumption (D) holds, then

lim
k→∞

inf
f∈Fk

R(f) = R∗.

We can now state the consistency result. This result is comparable in form to a classical
consistency result in the standard classification setup, see Theorem 18.1 of Devroye et al.
(1996) where a condition similar to (D), or more precisely to Lemma 4, is discussed.

Theorem 2 Let {Fk}∞k=1 be a family of sets of classifiers, with Fk having VC-dimension
Vj <∞. Let k(m,n) take values in N such that k(m,n)→∞ as min(m,n)→∞. If

Vk(m,n) log(min(m,n))
min(m,n)

→ 0,

as min(m,n) → ∞ and assumptions (A), (C), and (D) hold, then R(f̂k(m,n)) → R∗ in
probability as min(m,n)→∞.

12
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If conditions (A) or (C) fail to hold, our discrimination rule is still consistent with respect
to the maximally denoised versions of P̃0 and P̃1, which always exist and are unique. In
this sense, our analysis is distribution free and the consistency is universal.

The proof of Theorem 2 (see appendix for details) proceeds by a decomposition into
estimation and approximation errors (denoting k = k(m,n) for brevity),

R(f̂k)−R∗ = R(f̂k)−R(Fk) +R(Fk)−R∗.

The approximation error goes to zero by Lemma 4. The estimation error is bounded as
follows. For the sake of argument, assume R(Fk) is realized by f∗k ∈ Fk. Then

R(f̂k)−R(Fk) = R(f̂k)−R(f∗k ) ≤ R̂(f̂k)− R̂(f∗k ) + ε ≤ 2ε,

where the first inequality holds for any ε > 0, with probability going to one, by Theorem 1.
The second inequality holds by definition of f̂k, for k sufficiently large.

7. Conclusion

We have argued that consistent classification with label noise is possible if a majority
of the labels are correct on average, and the class-conditional distributions P0 and P1

are mutually irreducible. Under these conditions, we leverage results of Blanchard et al.
(2010) on mixture proportion estimation to design consistent estimators of the false positive
and negative probabilities. These estimators are applied to establish a consistent minmax
classifier, and it seems clear that other performance measures could be analyzed similarly.
Unlike previous theoretical work on this problem, we allow that the supports of P0 and P1

may overlap or even be equal, the noise is asymmetric, and that the performance measure
is not the probability of error. We also argued that requiring mutual irreducibility can be
equivalently seen as aiming at maximum denoising of the contaminated distributions, or
maximum separation of the unknown sources P0, P1 for given contaminated distributions.
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Appendix A. Correction to Statement of Consistency Result of
Blanchard et al.

Blanchard et al. (2010) establish an estimator ν̂ that converges to ν∗(F,H) almost surely
for any F and H, where convergence takes place as min(m,n) → ∞. The statement
of that consistency result requires a slight correction. In particular, it is necessary to
additionally assume that log max(m,n) = o(min(m,n)) for the argument to hold. Although
the focus of that work is almost sure convergence, the proof can be easily modified to
establish convergence in probability, and for that type of convergence, the aforementioned
qualification on the growth of the sample sizes is not necessary. Since the present work
focuses on convergence in probability, our results also require no additional qualification.

Appendix B. Geometry of solutions of (1)-(2)

0 π0

1

π̃∗0 = ν∗(P̃0, P̃1)

π̃∗1 = ν∗(P̃1, P̃0)

R

1

(π∗0 , π
∗
1)

π1

Figure 1: Geometry of the feasible region R for proportions (π0, π1) solutions of the contam-
ination model (1)-(2), when contaminated distributions (P̃0, P̃1) are observed and
the true distributions (P0, P1) are unknown. Each feasible (π0, π1) corresponds
to a single associated solution (P0, P1). The extremal point (π∗0, π

∗
1) is the unique

point corresponding to a mutually irreducible solution (P ∗0 , P
∗
1 ). The dashed line

indicates the maximal level line (π0 + π1) = c intersecting with R.
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Appendix C. Remaining Proofs

C.1. Proof of Proposition 1

Proof First note that under (A), λ is well-defined and nonnegative. Solving for γ we
obtain

γ =
λ(1− π0)− π1

1− π1 − λπ0
.

The denominator in this expression is positive, which can be seen as follows.

λ =
π1 + γ(1− π1)
1− π0 + γπ0

<
1− π0 + γ(1− π1)

1− π0 + γπ0

<
γ(1− π1)
γπ0

=
1− π1

π0
.

The first inequality follows from (A), while the second follows from the fact that the map-
ping t 7→ (a+ t)/(b+ t) is strictly decreasing in t ≥ 0 when a > b. Here a = γ(1− π1) and
b = γπ0.

Therefore,

p1(x)
p0(x)

> γ ⇐⇒ p1(x)
p0(x)

>
λ(1− π0)− π1

1− π1 − λπ0

⇐⇒ [1− π1 − λπ0]p1(x) > [λ(1− π0)− π1]p0(x)
⇐⇒ (1− π1)p1(x) + π1p0(x) > λ[(1− π0)p0(x) + π0p1(x)]

⇐⇒ p̃1(x)
p̃0(x)

> λ.

C.2. Proof of Proposition 3

Proof By Lemmas 1 and 2, feasible quadruples (π0, π1, P0, P1) for decompositions
(1)-(2) under condition (A) are in one-to-one correspondence with feasible quadruples
(π̃0, π̃1, P0, P1) for decompositions (6)-(7) .

Define π̃∗0 := ν∗(P̃1, P̃0). Proposition 2 applied to (6) easily implies that for any value
π̃0 ∈ [0, π̃∗0] , there exists a unique P0 such that (π̃0, P0) satisfies (6); also, the solution
(π̃∗0, P

∗
0 ) corresponding to the maximal feasible value of π̃0 is the unique one satisfying (B).

A similar conclusion is valid concerning solutions of (7).
Therefore, the feasible region R for proportions (π0, π1) in the original model (1)-(2) is

obtained as the image of the rectangle [0, π̃∗0] × [0, π̃∗1] via the above one-to-one correspon-
dence. Using the explicit expression for (π̃1, π̃0) of Lemma 1, the constraints (13) simply
translate the equivalent constraints π̃0 ≤ π̃∗0, π̃1 ≤ π̃∗1.
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Since by Lemma 3 , under the assumption (A) conditions (B) and (C) are equivalent,
then again via the above correspondence, we get existence and unicity of (π∗0, π

∗
1, P

∗
0 , P

∗
1 )

for the original formulation (1)-(2), under condition (C). The explicit expression (12) for
(π∗0, π

∗
1) is obtained via Lemma 2.

The equality π0 + π1 = 1 − (1−π̃1)(1−π̃0)
1−π̃1π̃0

implies that π0 + π1 is a monotone (strictly)
increasing function of π̃1 and π̃0. Therefore, the maximum of π0 + π1 can only be reached
when both (π̃1, π̃0) take their maximum value. Since the latter values are attained for
the unique feasible quadruple (π̃∗0, π̃

∗
1, P

∗
0 , P

∗
1 ) in the decoupled problem, the corresponding

maximum of π0 +π1 for the original formulation is also uniquely attained for the quadruple
(π∗0, π

∗
1, P

∗
0 , P

∗
1 ).

Finally, by subtracting (1) from (2), we obtain the relation

(P1−P0) = (1−π0−π1)−1(P̃1−P̃0) implying ‖P1 − P0‖TV = (1−π0−π1)−1
∥∥∥P̃1 − P̃0

∥∥∥
TV

.

Therefore, the maximum (over Λ) of the total variation distance ‖P1 − P0‖TV is precisely
attained for the maximum value of (π0 +π1), and hence corresponds to the unique mutually
irreducible solution.

C.3. Proof of Theorem 1

The following two lemmas allows us to deduce uniform convergence of R̂i from uniform
convergence of ̂̃R0 and ̂̃R1, and consistency of ̂̃π0, and ̂̃π1. They will be used in the proof
of Theorem 1.

Lemma 5 Let {Fj}∞j=1 denote a sequence of classifier sets, with Fj having finite VC-
dimension Vj. Let k(m,n) take values in N such that

Vk(m,n) log(min(m,n))
min(m,n)

→ 0, (17)

Then

sup
f∈Fk(m,n)

| ̂̃R0(f, Zm0 )− R̃0(f)| → 0,

in probability, and

sup
f∈Fk(m,n)

| ̂̃R1(f, Zn1 )− R̃1(f)| → 0

in probability.

Proof Let k = k(m,n). We must show that for all ε > 0

lim
min(m,n)→∞

P̃m0 ( sup
f∈Fk

| ̂̃R0(f, Zm0 )− R̃0(f)| > ε) = 0
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and

lim
min(m,n)→∞

P̃n1 ( sup
f∈Fk

| ̂̃R1(f, Zn1 )− R̃1(f)| > ε) = 0.

Let ` = min(m,n) and ε > 0. By Theorem 12.5 in Devroye et al. (1996), it suffices to show
that 8s(Fk, `)e−`ε

2/32 → 0, as ` → ∞. Theorem 13.3 in Devroye et al. (1996) provides `Vk

as an upper bound on the shatter coefficient. Therefore, we have

8s(Fk, `)e−`ε
2/32 ≤ 8`Vke−`ε

2/32

= 8e−`ε
2/32+Vk log(`).

This final term clearly goes to zero by (17).

Lemma 6 (Extension of Continuous Mapping Theorem) Let Q0, Q1 be probability dis-
tributions. Let F0 denote the set of all classifiers, and {Fj}∞j=1 denote a family of sets of
classifiers. Let k(m,n) take values in N such that k(m,n)→∞ as min(m,n)→∞. Denote
k = k(m,n). Let

Â : F0 ×Xm ×X n → R
B̂ : F0 ×Xm ×X n → R
A : F0 → R
B : F0 → R.

Assume supf∈Fk
|Â(f, Zm0 , Z

n
1 ) − A(f)| → 0 and supf∈Fk

|B̂(f, Zm0 , Z
n
1 ) − B(f)| → 0, in

probability, where Zm0 and Zn1 are iid random samples governed by the product measures
Qm0 and Qn1 . If g : Ω ⊆ R × R → R is continuous at (A(f), B(f)) for all f ∈ F0,
then as min(m,n) → ∞, supf∈Fk

|g(Â(f, Zm0 , Z
n
1 ), B̂(f, Zm0 , Z

n
1 )) − g(A(f), B(f))| → 0

in probability.

Proof For an arbitrary f and samples of sizes m and n, by the definition of continuity, for
all ε > 0, there exists a δε > 0 such that

||(Â(f, Zm0 , Z
n
1 ), B̂(f, Zm0 , Z

n
1 ))− (A(f), B(f))||2 < 2δε

=⇒ |g(Â(f, Zm0 , Z
n
1 ), B̂(f, Zm0 , Z

n
1 ))− g(A(f), B(f))| < ε.

Since || · ||1 ≥ || · ||2, it follows that

||(Â(f, Zm0 , Z
n
1 ), B̂(f, Zm0 , Z

n
1 ))− (A(f), B(f))||1 < 2δε

=⇒ |g(Â(f, Zm0 , Z
n
1 ), B̂(f, Zm0 , Z

n
1 ))− g(A(f), B(f))| < ε.

From this, we can conclude that

sup
f∈Fk

||(Â(f, Zm0 , Z
n
1 ), B̂(f, Zm0 , Z

n
1 ))− (A(f), B(f))||1 < 2δε

=⇒ sup
f∈Fk

|g(Â(f, Zm0 , Z
n
1 ), B̂(f, Zm0 , Z

n
1 )))− g(A(f), B(f))| ≤ ε.
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for all m, n. Now,

0 ≤ Qm0 ⊗Qn1 ( sup
f∈Fk

||(Â(f, Zm0 , Z
n
1 ), B̂(f, Zm0 , Z

n
1 ))− (A(f), B(f))||1 > 2δε)

= Qm0 ⊗Qn1 ( sup
f∈Fk

|Â(f, Zm0 , Z
n
1 )−A(f)|+ |B̂(f, Zm0 , Z

n
1 )−B(f)| > 2δε)

≤ Qm0 ⊗Qn1 ( sup
f∈Fk

|Â(f, Zm0 , Z
n
1 )−A(f)| > δε)

+Qm0 ⊗Qn1 ( sup
f∈Fk

|B̂(f, Zm0 , Z
n
1 )−B(f)| > δε).

Taking the limit as min(m,n)→∞ takes the last inequality to 0, based on our assumption
of convergence in probability. Therefore, we have

lim
min(m,n)→∞

Qm0 ⊗Qn1 ( sup
f∈Fk

||(Â(f, Zm0 , Z
n
1 ), B̂(f, Zm0 , Z

n
1 ))− (A(f), B(f))||1 < 2δε) = 1.

(18)

It follows from a previous implication that

Qm0 ⊗Qn1 ( sup
f∈Fk

||(Â(f, Zm0 , Z
n
1 ), B̂(f, Zm0 , Z

n
1 ))− (A(f), B(f))||1 < 2δε)

≤ Qm0 ⊗Qn1 ( sup
f∈Fk

|g(Â(f, Zm0 , Z
n
1 ), B̂(f, Zm0 , Z

n
1 ))− g(A(f), B(f))| ≤ ε).

Combining this inequality with equation (18) yields,

lim
min(m,n)→∞

Qm0 ⊗Qn1 ( sup
f∈Fk

|g(Â(f, Zm0 , Z
n
1 ), B̂(f, Zm0 , Z

n
1 )))− g(A(f), B(f))| ≤ ε) = 1,

and the result follows.

We will prove the theorem for i = 0, the other case being similar.
Proof Let k = k(m,n) for brevity. Substituting equations (7) and (9) into the following
subtraction yields

R̂0(f, Zm0 , Z
n
1 )−R0(f) = 1− ̂̃R1(f, Zn1 )− 1− ̂̃R0(f, Zm0 )− ̂̃R1(f, Zn1 )

1− ̂̃π0(Zm0 , Z
n
1 )

−(1− R̃1(f)− 1− R̃0(f)− R̃1(f)
1− π̃0

)

= R̃1(f)− ̂̃R1(f, Zn1 )− 1− ̂̃R0(f, Zm0 )− ̂̃R1(f, Zn1 )

1− ̂̃π0(Zm0 , Z
n
1 )

+
1− R̃0(f)− R̃1(f)

1− π̃0
.

Take ε > 0. By Lemma 5, we have that

L1 := lim
min(m,n)→∞

P̃n1 ( sup
f∈Fk

|R̃1(f)− ̂̃R1(f, Zn1 )| > ε

3
) = 0.
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Now consider the following,

sup
f∈Fk

∣∣∣1− R̃0(f)
1− π̃0

− 1− ̂̃R0(f, Zm0 )

1− ̂̃π0(Zm0 , Z
n
1 )

∣∣∣ = sup
f∈Fk

|h(R̃0(f), π̃0)− h( ̂̃R0(f, Zm0 ), ̂̃π0(Zm0 , Z
n
1 ))|,

where h(x, y) = (1− x)/(1− y). This function is continuous on Ω = R× (R\{0}). By (A)
and Lemma 1, we have that π̃0 < 1 and therefore this function is continuous at (R̃0(f), π̃0).
By (C), π̃0 = ν∗(P̃0, P̃1). Furthermore, Theorem 8 of Blanchard et al. (2010) implies that̂̃π0(Zm0 , Z

n
1 ) converges in probability to π̃0, and by Lemma 5, we have that

sup
f∈Fk

| ̂̃R0(f, Zm0 )− R̃0(f)| → 0,

in probability. Thus, the conditions of Lemma 6 are met with Â(f, Zm0 , Z
n
1 ) = ̂̃R0(f, Zm0 ),

and B̂(f, Zm0 , Z
n
1 ) = ̂̃π0(Zm0 , Z

n
1 ). By applying Lemma 6, we conclude that

lim
min(m,n)→∞

P̃m0 ⊗ P̃n1 ( sup
f∈Fk

|h(R̃0(f), π̃0)− h( ̂̃R0(f, Zm0 ), ̂̃π0(Zm0 , Z
n
1 ))| > ε

3
) = 0.

So we now define

L2 := lim
min(m,n)→∞

P̃m0 ⊗ P̃n1 ( sup
f∈Fk

∣∣∣1− R̃0(f)
1− π̃0

− 1− ̂̃R0(f, Zm0 )

1− ̂̃π0(Zm0 , Z
n
1 )

∣∣∣ > ε

3
) = 0.

A similar argument can be made to show that

L3 := lim
min(m,n)→∞

P̃m0 ⊗ P̃n1 ( sup
f∈Fk

∣∣∣−R̃1(f)
1− π̃0

− − ̂̃R1(f, Zn1 )

1− ̂̃π0(Zm0 , Z
n
1 )

∣∣∣ > ε

3
) = 0.

We conclude the proof by applying the triangle inequality,

lim
min(m,n)→∞

P̃m0 ⊗ P̃n1 ( sup
f∈Fk

|R̂0(f, Zm0 , Z
n
1 )−R0(f)| > ε) ≤ L1 + L2 + L3

= 0.

C.4. Proof of Lemma 4

Proof Let ε > 0 and let f̃ ∈ F0 be a measurable function such that R(f̃) ≤ R∗ + ε
2 . Also

let ∧ and ∨ denote logical “and” and “or”. Take P̃ = 1
2P0 + 1

2P1. By assumption (D),
there exists a k0 ∈ N, such that for every k ≥ k0 there exists a f ∈ Fk such that

P̃ (f(X) 6= f̃(X)) <
ε

4
.

Combining this with the definition of P̃ yields, for such f ,

P0(f(X) 6= f̃(X)) ≤ 2P̃ (f(X) 6= f̃(X))

<
ε

2
.
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Therefore, for all k ≥ k0, there exists a f ∈ Fk such that

ε

2
> P0(f(X) 6= f̃(X))

= P0((f(X) = 1 ∧ f̃(X) = 0) ∨ (f(X) = 0 ∧ f̃(X) = 1))
= P0(f(X) = 1 ∧ f̃(X) = 0) + P0(f(X) = 0 ∧ f̃(X) = 1)
≥ P0(f(X) = 1 ∧ f̃(X) = 0)− P0(f(X) = 0 ∧ f̃(X) = 1)
= P0(f(X) = 1)− P0(f̃(X) = 1)
= R0(f)−R0(f̃).

In the same manner, it can be shown that ε/2 > R1(f)−R1(f∗) for the same f ∈ Fk. This
establishes the existence for all k ≥ k0 of a f ∈ Fk such that

R(f) = max{R0(f), R1(f)} ≤ max{R0(f̃), R1(f̃)}+
ε

2
= R(f̃) +

ε

2
≤ R∗ + ε.

Since ε was arbitrary the result now follows.

C.5. Proof of Theorem 2

Proof Let ε > 0, δ > 0, and k = k(m,n). We need to show that for m, n sufficiently large,

P̃m0 ⊗ P̃n1 (R(f̂k)−R∗ < ε) > 1− δ.

Consider the decomposition

R(f̂k)−R∗ = R(f̂k)−R(Fk) +R(Fk)−R∗.

Lemma 4 implies that for m and n significantly large, R(Fk) − R∗ < ε/2. We will now
bound the R(f̂k)−R(Fk) term. By the definition of R(Fk), there exists f∗k ∈ Fk such that
R(f∗k ) ≤ R(Fk) + ε/8. It follows that

R(f̂k)−R(Fk) ≤ R(f̂k)− (R(f∗k )− ε

8
)

= max{R0(f̂k), R1(f̂k)} −max{R0(f∗k ), R1(f∗k )}+
ε

8
. (19)

It follows by Theorem 1 that for m, n sufficiently large, we have

P̃m0 ⊗ P̃n1 ( sup
f∈Fk

|R0(f)− R̂0(f)| > ε

8
) ≤ δ/2

P̃m0 ⊗ P̃n1 ( sup
f∈Fk

|R1(f)− R̂1(f)| > ε

8
) ≤ δ/2.

20



Classification with Asymmetric Label Noise

Assume that both

|R0(f)− R̂0(f)| < ε

8
for all f ∈ Fk

|R1(f)− R̂1(f)| < ε

8
for all f ∈ Fk,

which by the result just stated, occurs with probability at least 1−δ for m and n sufficiently
large. It follows that

max{R0(f̂k), R1(f̂k)} < max{R̂0(f̂k), R̂1(f̂k)}+
ε

8

and

max{R0(f∗k ), R1(f∗k )} > max{R̂0(f∗k ), R̂1(f∗k )} − ε

8
.

Using these inequalities in Equation (19) yields

R(f̂k)−R(Fk) < max{R̂0(f̂k), R̂1(f̂k)}+
ε

8
− (max{R̂0(f∗k ), R̂1(f∗k )} − ε

8
) +

ε

8
.

From our definition of f̂k in Equation (16), for m and n sufficiently large we have

max{R̂0(f̂k), R̂1(f̂k)} ≤ max{R̂0(f∗k ), R̂1(f∗k )}+
ε

8
.

Therefore, we can conclude that

R(f̂k)−R(Fk) <
ε

2
,

with probability at least 1− δ. Thus, we conclude that

P̃m0 ⊗ P̃n1 (R(f̂k)−R∗ < ε) > 1− δ,

for m and n sufficiently large.
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