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Abstract

The kernel density estimator (KDE) based on a radial positive-semidefinite kernel may be
viewed as a sample mean in a reproducing kernel Hilbert space. This mean can be viewed
as the solution of a least squares problem in that space. Replacing the squared loss with a
robust loss yields a robust kernel density estimator (RKDE). Previous work has shown that
RKDEs are weighted kernel density estimators which have desirable robustness properties.
In this paper we establish asymptotic L1 consistency of the RKDE for a class of losses
and show that the RKDE converges with the same rate on bandwidth required for the
traditional KDE. We also present a novel proof of the consistency of the traditional KDE.

Keywords: Kernel Density Estimation, Robust Estimation, Reproducing Kernel Hilbert
Space, Consistency

1. Introduction

Let f : Rd → R be a pdf and X1, . . . , Xn be iid samples from f . Let kσ (x, x′) be a radial
smoothing kernel of the form kσ (x, x′) = σ−dq (‖x− x′‖2 /σ) for some function q ≥ 0 such
that q (‖·‖2) is a pdf on Rd. Then

f̄nσ :=
1

n

n∑
i=1

kσ (·, Xi)

is the well-known kernel density estimator (KDE) (Silverman (1986), Scott (1992), De-
vroye and Lugosi (2001)). We additionally assume that kσ is positive-semidefinite. Thus
kσ (x, x′) = 〈Φσ (x) ,Φσ (x′)〉Hσ , where Hσ is the reproducing kernel Hilbert space (RKHS)
associated with kσ (Aronszajn, 1950), and Φσ (x) := kσ (·, x) is the canonical feature map
(Steinwart and Christmann, 2008). Some kernels satisfying these properties include the
multivariate Gaussian, Laplacian, and Student kernels. Note that for radial kernels we have

‖Φσ (x)‖Hσ =
√
σ−dq (‖x− x‖2 /σ)

=
√
q(0)σ−d/2

which does not depend on x. Because of this, we will abuse notation slightly and let
‖Φσ‖Hσ , ‖Φσ (x)‖Hσ . Note that as σ → 0, ‖Φσ‖Hσ grows without bound, a fact we will
use frequently.
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With this notation, the KDE may be written as

f̄nσ =
1

n

n∑
i=1

Φσ (Xi) ,

the mean of the mapped data. The sample mean is easily shown to be the unique solution
of a least squares problem

f̄nσ = argmin
g∈Hσ

1

n

n∑
i=1

‖g − Φσ (Xi)‖2Hσ .

Replacing the squared loss with a robust loss ρ, yields a robust kernel density estimator:

fnσ = argmin
g∈Hσ

1

n

n∑
i=1

ρ
(
‖g − Φσ (Xi)‖Hσ

)
. (1)

This construction was first introduced by Kim and Scott (2012) where they established
several properties including a representer theorem, a convergent iterative algorithm, and
the influence function. The representer theorem states that

fnσ =

n∑
i=1

αiΦσ (Xi) ,

where αi ≥ 0 and
∑n

1 αi = 1.
In this paper we will establish consistency of the RKDE in the L1 norm. Throughout

the paper σ will implicitly be a function of n, such that σ → 0 as n→∞. We will use fnσ
to denote the RKDE for a general loss ρ and f̄nσ to denote the special case corresponding
to ρ (·) = (·)2, i.e. the classic KDE.

1.1. Related Work

The consistency of kernel density estimators has been established under the L1 norm with
very weak assumptions on distribution and kernel (Devroye and Lugosi, 2001). Necessary
conditions on n and σ for L1 consistency of the KDE are n → ∞ with σ → 0 and rate on
bandwidth nσd →∞. Sup-norm consistency has also been established for a less general class
of kernels and densities requiring more restrictive regularity conditions (Silverman (1978),
Stute (1982), Einmahl and Mason (2000), Deheuvels (2000), Giné and Guillou (2002), Gine
et al. (2004), Wied and Weissbach (2012)).

Consistency proofs tend to proceed by decomposing the error into a stochastic estimation
error and a non-stochastic approximation error, namely∥∥f̄nσ − f∥∥ ≤ ∥∥f̄nσ − f̄σ∥∥+

∥∥f̄σ − f∥∥ ,
where f̄σ =

∫
kσ (·, x) f (x) dx =

∫
Φσ (x) f (x) dx. The right summand is shown to go

to zero analytically and the left summand is shown to go to zero with techniques from
empirical process theory. We will show a simple proof of the consistency of the KDE using
this decomposition and Bennett’s inequality for Hilbert space to control the stochastic term.
However, this decomposition is less fruitful for the RKDE, for which fσ does not have a
closed form expression (see Section 4). Instead, we use a completely different technique by
investigating the convergent iterative algorithm used to compute the RKDE in Kim and
Scott (2012).
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2. Novel KDE Consistency Proof

First we will introduce a construction that will be used frequently throughout the paper:

Dσ =

{∫
Φσ(x)dν(x)

∣∣∣ν is a probability measure

}
.

Note that this and all Hilbert space valued integrals are Bochner integrals; see Steinwart
and Christmann (2008) for a basic introduction to Bochner integrals. For this paper these
integrals can be thought of as the convolution of the kernel with a measure. This in turn
implies that all elements of Dσ are pdfs. In fact all of the density estimators in this paper
will be an element of some Dσ.

We will now present a novel proof of L1 consistency of the kernel density estimator.

Theorem 1 If n→∞ and σ → 0 with nσd →∞ then
∥∥f̄nσ − f∥∥1

p→ 0.

Proof Let f̄σ = EX∼f [Φσ (X)]. By the triangle inequality we have∥∥f − f̄nσ ∥∥1
≤
∥∥f − f̄σ∥∥1

+
∥∥f̄nσ − f̄σ∥∥1

.

The left term in the sum goes to zero by elementary analysis (Devroye and Lugosi, 2001).

We only need to show that
∥∥f̄nσ − f̄σ∥∥1

p→ 0. First we show convergence in the RKHS.

Lemma 2 Let ε > 0. For sufficiently small σ,

P
(∥∥f̄nσ − f̄σ∥∥Hσ ≥ ε) ≤ exp

{
− nε2

4 ‖Φσ‖2Hσ

}
.

Therefore if n→∞ and σ → 0 with nσd →∞, then
∥∥f̄nσ − f̄σ∥∥Hσ p→ 0.

Proof Sketch Observe that

E
[
f̄nσ
]

= E

[
1

n

n∑
1

Φσ (Xi)

]
= EX∼f [Φσ (X)] = f̄σ.

This fact combined with Bennett’s inequality for Hilbert space yields the inequality in
the lemma, after some trivial manipulations. The second part of the lemma is a simple
consequence of the inequality.

The previous lemma follows from Bennett’s inequality for Hilbert space, but Hoeffding’s
or Bernstein’s inequality for Hilbert space would also suffice (Pinelis, 1994). For other
examples of simple proofs using concentration inequalities see Caponnetto and Vito (2007)
and Bauer et al. (2007). The next lemma allows us to bound L1 norms over sets of finite
Lebesgue measure. Let λ denote Lebesgue measure.

Lemma 3 Let S ∈ Rd be a set with finite Lebesgue measure and g ∈ Hσ. Then∫
S
|g(x)| dx ≤ 2

√
λ(S) ‖g‖Hσ .
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Proof Sketch We will present a proof for the situation where g > 0. For the general case
we can split the following integral into two parts corresponding to the subsets of S where g
is positive and g is negative. We have,(∫

S
g (x) dx

)2

=

(∫
S
〈Φσ (x) , g〉Hσ dx

)2

=

(〈∫
S

Φσ (x) dx, g

〉
Hσ

)2

≤
∥∥∥∥∫

S
Φσ (x) dx

∥∥∥∥2

Hσ
‖g‖2Hσ

=

∫
S

∫
S

〈
Φσ (x) ,Φσ

(
x′
)〉
Hσ dxdx

′ ‖g‖2Hσ

=

∫
S

∫
S
kσ
(
x, x′

)
dxdx′ ‖g‖2Hσ

≤
∫
S

1dx ‖g‖2Hσ

= λ (S) ‖g‖2Hσ .

For pdfs embedded in RKHSs, Lemma 3 allows us to show that Hσ convergence implies
L1 convergence.

Lemma 4 Let f : Rd → R be a pdf and gnσ and hnσ be sequences of (possibly random)

densities in a sequence of spaces Dσ (again σ is implicitly a function of n). If ‖gnσ − f‖1
p→ 0

and ‖gnσ − hnσ‖Hσ
p→ 0 then ‖gnσ − hnσ‖1

p→ 0 .

Proof Sketch Define B (y, r) to be the open ball centered at y with radius r and χS to be
the indicator function on the set S. Let ε > 0. Choose r large enough that

∫
B(0,r)C f (x) dx <

ε/3 (this is possible by Lemma 11 in the appendix). Since B (0, r) and B (0, r)C partition
Rd we have

‖gnσ − hnσ‖1 =
∥∥∥(gnσ − hnσ)

(
χB(0,r) + χB(0,r)C

)∥∥∥
1

=
∥∥(gnσ − hnσ)χB(0,r)

∥∥
1

+
∥∥∥(gnσ − hnσ)χB(0,r)C

∥∥∥
1
. (2)

The left summand goes to zero in probability by Lemma 3 so it becomes bounded

by ε/3 with probability going to one. Since
∥∥∥(f − gnσ)χB(0,r)C

∥∥∥
1

p→ 0 we have∥∥∥gnσχB(0,r)C

∥∥∥
1

p→
∥∥∥fχB(0,r)C

∥∥∥
1
< ε/3. Since gnσ and hnσ are densities and both of them

are converging to have the same amount of mass in B (0, r), their mass in B (0, r)C must

also be converging. This means

∣∣∣∣∥∥∥hnσχB(0,r)C

∥∥∥
1
−
∥∥∥gnσχB(0,r)C

∥∥∥
1

∣∣∣∣ p→ 0 so
∥∥∥hnσχB(0,r)C

∥∥∥
1

be-

comes bounded by ε/3 with probability going to one. Thus the right summand of (2)
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becomes bounded by 2ε/3 with high probability. Putting these results together we have
‖gnσ − hnσ‖1 < ε with probability going to one.

The previous lemma is a bit more general than is necessary for the current theorem, but it
will be handy later. In this case gnσ in the last lemma is replaced by f̄σ and hnσ is replaced
with f̄nσ , thus completing our proof of Theorem 1.

It is worth noting that Lemma 2 also implies consistency with respect to L2 and L∞

norms, assuming suitable conditions ensuring that the approximation error goes to zero.
L2 consistency is implied as long as kσ (·, x) ∈ L2

(
Rd
)

for all x ∈ Rd, (in particular, kσ
need not be a reproducing kernel) because Lemma 2 holds for general Hilbert spaces. L∞

consistency follows from the Cauchy-Schwarz inequality,∣∣f̄nσ (x)− f̄σ (x)
∣∣ =
∣∣〈Φσ (x) , f̄nσ − f̄σ

〉
Hσ

∣∣
≤‖Φσ‖Hσ

∥∥f̄nσ − f̄σ∥∥Hσ .
Unfortunately the ‖Φσ‖Hσ term in the last line yields a suboptimal rate on the bandwidth,

nσ2d →∞.

3. RKDE Consistency

We begin by reviewing some results about the RKDE.

3.1. Previous Results

Before we prove consistency of the RKDE, we will introduce some additional technical
background on the RKDE from Kim and Scott (2012). First we will define some properties
ρ may have. Let ρ : [0,∞) → [0,∞), ψ , ρ′, and ϕ (x) , ψ (x) /x. Consider the following
properties:
(B1) ρ is strictly convex
(B2) ρ is strictly increasing, ρ(0) = 0 and ρ(x)/x→ 0 as x→ 0

(B3) ϕ(0) := limx→0
ψ(x)
x exists and is finite

(B4) ψ is bounded
(B5) ρ′′ exists and is nonincreasing on (0,∞)
(B6) ϕ is nonincreasing.

Some examples of losses satisfying all of these properties are ρ (x) =
√
x2 + 1 − 1,

ρ (x) = x arctan (x), and ρ (x) = x − log (1 + x). It is easy to show that property (B1)
guarantees the existence and uniqueness of fnσ (Kim and Scott, 2012). Let f be a pdf and
X1, · · · , Xn be iid samples from f . Let Jnσ (·) be the empirical risk introduced in (1). Taking
the Gateaux derivative of the risk gives us

δJnσ (g;h) = −

〈
1

n

n∑
1

ϕ
(
‖Φσ (Xi)− g‖Hσ

)
(Φσ (Xi)− g) , h

〉
Hσ

.

If (B2) and (B3) are satisfied then a necessary condition for g = fnσ is that the Gateaux
derivative at g is 0 for all directions h, which is equivalent to left term in the inner product
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being 0 (Lemma 1 Kim and Scott (2012)). A straightforward algebraic manipulation of the
last condition gives us ∑n

1 ϕ
(
‖Φσ (Xi)− g‖Hσ

)
Φσ (Xi)∑n

1 ϕ
(
‖Φσ (Xj)− g‖Hσ

) = g.

With this in mind we introduce the following functional,

Rnσ : Hσ → Hσ : g 7→ Rnσ(g) =

∫
ϕ
(
‖Φσ(x)− g‖Hσ

)
Φσ(x)dµn(x)∫

ϕ
(
‖Φσ(y)− g‖Hσ

)
dµn(y)

=
n∑
1

αi (g) kσ (·, Xi)

where

αi (g) =
ϕ
(
‖Φσ(Xi)− g‖Hσ

)
∑n

1 ϕ
(
‖Φσ(Xj)− g‖Hσ

)
and µn is the empirical measure corresponding to the sample. This function is the Iterated
Reweighted Least Squares algorithm (IRWLS) from Kim and Scott (2012), which is used
to compute the RKDE in practice. From Corollary 6 in Kim and Scott (2012) it is easy to
show that if (B1), (B2), (B3), (B5), and (B6) are satisfied (note that (B4) is used later), the
sequence {Rnσ (0) , Rnσ (Rnσ (0)) , . . .} converges in Hσ to fnσ , which is the unique fixed point
of Rnσ.

3.2. Consistency Theorem and Proof

Theorem 5 Let f ∈ L2
(
Rd
)

and let ρ satisfy (B1)-(B6). If nσd → ∞ and σ → 0 as

n→∞ then ‖fnσ − f‖1
p→ 0.

We know that ψ is bounded by (B4). In the proofs that follow it will be assumed, for
simplicity, that supx ψ (x) = 1. Note that any loss with bounded ψ can be adapted such
that supx ψ (x) = 1. This is done by dividing ρ by supx ψ (x) and does not affect the RKDE.
The longer and more technical proof sketches are contained in a subsection after this one.

The following lemma helps us establish the behavior of elements in Dσ with large norms.

Lemma 6 For all g ∈ Dσ, ‖g‖2Hσ ≤ ‖g‖∞.

Proof By the definition of Dσ, let g =
∫

Φσ(x)dν(x), where ν is a probability measure.

‖g‖2Hσ = 〈g, g〉Hσ =

〈∫
Φσ(x)dν(x), g

〉
Hσ

=

∫
〈Φσ(x), g〉Hσ dν(x)

=

∫
g(x)dν(x) ≤

∫
‖g‖∞ dν(x) = ‖g‖∞ .
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This lemma allows us to show that an element in Dσ with large norm will have most of its
mass concentrated around one point. An element of Dσ having most of the mass around
one point causes its general risk to be large. The Vapnik-Chervonenkis inequality allows us
to show that all such elements will, with high probability, have high empirical risk.

Lemma 7 If σ → 0 and n→∞ then P
(
‖fnσ ‖

2
Hσ ≥

9
10 ‖Φσ‖2Hσ

)
→ 0.

The constant 9
10 was chosen simply for convenience, it could be replaced with any positive

value less than one.
The following result will be used to prove Lemma 9 and Theorem 5.

Lemma 8
∥∥f̄σ∥∥Hσ ≤ ‖f‖2.

Proof Using the Cauchy-Schwarz inequality and Young’s inequality (Devroye and Lugosi,
2001) we have∥∥f̄σ∥∥2

Hσ =

〈∫
f(x)Φσ(x)dx,

∫
f(y)Φσ(y)dy

〉
Hσ

=

∫
f(x)

〈
Φσ(x),

∫
f(y)Φσ(y)dy

〉
Hσ

dx

=

∫
f(x) (f ∗ kσ) (x)dx = 〈f, f ∗ kσ〉2 ≤ ‖f‖2 ‖f ∗ kσ‖2 ≤ ‖f‖2 ‖f‖2 ‖kσ‖1 = ‖f‖22 .

Lemma 7 shows that fnσ is, with high probability, in a ball of radius
√

9
10 ‖Φσ‖Hσ .

Lemma 9 shows that, on that ball, Rnσ is a contraction mapping.

Lemma 9 Let n→∞, σ → 0, and nσd →∞. There exists CR such that, with probability

going to one, the restriction of Rnσ to BHσ

(
0,
√

9
10 ‖Φσ‖Hσ

)
is Lipschitz continuous with

Lipschitz constant CR ‖Φσ‖−1
Hσ .

This lemma is the final key to proving Theorem 5.
Proof of Theorem 5 Using the triangle inequality we get

‖f − fnσ ‖1 ≤
∥∥f − f̄nσ ∥∥1

+
∥∥f̄nσ − fnσ ∥∥1

.

We know the left term of the summand goes to zero in probability by Theorem 1, so it is
sufficient to show that the right summand goes to zero in probability. By Lemma 4 it is
sufficient to show that

∥∥fnσ − f̄nσ ∥∥Hσ goes to zero in probability.

Notice that Rnσ(0) = f̄nσ and recall Rnσ (fnσ ) = fnσ . Using Lemma 7 and 9, with probability
going to 1, the following holds∥∥f̄nσ − fnσ ∥∥Hσ = ‖Rnσ(0)−Rnσ (fnσ )‖Hσ

≤ ‖fnσ − 0‖Hσ ‖Φσ‖−1
Hσ CR

<

√
9

10
‖Φσ‖Hσ ‖Φσ‖−1

Hσ CR

=

√
9

10
CR.
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Since
∥∥f̄nσ − f̄σ∥∥Hσ p→ 0 and

∥∥f̄σ∥∥Hσ ≤ ‖f‖2 <∞ (by Lemma 8), for arbitrary s > 0 we

have
∥∥f̄nσ ∥∥Hσ < ‖f‖2 + s with probability going to one. Applying the contraction mapping

steps again we get, with probability going to 1, that∥∥f̄nσ − fnσ ∥∥Hσ = ‖Rnσ(0)−Rnσ (fnσ )‖Hσ
≤ ‖fnσ − 0‖Hσ ‖Φσ‖−1

Hσ CR

≤
(∥∥fnσ − f̄nσ ∥∥Hσ +

∥∥f̄nσ ∥∥Hσ) ‖Φσ‖−1
Hσ CR

≤

(√
9

10
CR + ‖f‖2 + s

)
‖Φσ‖−1

Hσ CR.

The last line goes to zero as σ → 0, completing our proof.

3.3. Proof Sketches

Proof Sketch of Lemma 7 We know that fnσ ∈ Dσ, so to prove this lemma we will
show that as n → ∞ and σ → 0, all vectors in Dσ with Hσ-norm greater than or equal to√

9
10 ‖Φσ‖Hσ will have empirical risk greater than the zero vector. Define Jnσ : Hσ → R as

the empirical risk function

Jnσ (g) =
1

n

n∑
1

ρ
(
‖Φσ (Xi)− g‖Hσ

)
.

Let gnσ be the minimizer of Jnσ when restricted to vectors in Dσ with Hσ-norm greater than

or equal to
√

9
10 ‖Φσ‖Hσ . By Lemma 6 there must exist x∗ such that gnσ (x∗) ≥ 9

10 ‖Φσ‖2Hσ ,

this causes most of of the mass of gnσ to reside near x∗. It is possible to show that, given
any r > 0 and ε > 0, for sufficiently small σ, that supx∈B(x∗,r)C g

n
σ (x) < 3

20 ‖Φσ‖2Hσ + ε. As
n gets large, Jnσ becomes well approximated by Jσ where

Jσ (g) =

∫
ρ
(
‖Φσ (x)− g‖Hσ

)
f (x) dx. (3)

We will substitute Jσ for Jnσ (in the formal proof we work with Jnσ and invoke the VC
inequality to relate it to the population risk). Since ρ is increasing, the following holds for
sufficiently small σ,

Jσ (gnσ) ≥
∫
B(x∗,r)C

ρ
(
‖Φσ (x)− gnσ‖Hσ

)
f (x) dx

≥
∫
B(x∗,r)C

ρ

(√
‖Φσ‖2Hσ − 2 〈gnσ ,Φσ (x)〉Hσ + ‖gnσ‖

2
Hσ

)
f (x) dx

≥
∫
B(x∗,r)C

ρ

(√
‖Φσ‖2Hσ − 2

(
3

20
‖Φσ‖2Hσ + ε

)
+ ‖gnσ‖

2
Hσ

)
f (x) dx.
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Since ε can be set to be arbitrarily small and ‖gnσ‖
2
Hσ ≥

9
10 ‖Φσ‖2Hσ the last term has an

approximate lower bound of

&
∫
B(x∗,r)C

ρ

(√
‖Φσ‖2Hσ −

6

20
‖Φσ‖2Hσ +

9

10
‖Φσ‖2Hσ

)
f (x) dx

≥ ρ

(
‖Φσ‖Hσ

√
32

20

)
inf
y

∫
B(y,r)C

f (x) dx.

Finally r can be chosen to be sufficiently small so that infy
∫
B(y,r)C f (x) dx is arbitrarily

close to one. Thus as n→∞ and σ → 0, with probability going to one

Jnσ (gnσ) & ρ

(
‖Φσ‖Hσ

√
32

20

)
.

Now, notice that

Jnσ (0) =
1

n

n∑
1

ρ
(
‖Φσ (Xi)− 0‖Hσ

)
= ρ

(
‖Φσ‖Hσ

)
.

It then follows that, with probability going to one, Jnσ (gnσ) > Jnσ (0).

Proof Sketch of Lemma 9 Let g, h ∈ BHσ
(

0,
√

9
10 ‖Φσ‖Hσ

)
. We have

‖Rnσ (g)−Rnσ (h)‖Hσ

=

∥∥∥∥∥
∫
ϕ
(
‖Φσ (x)− g‖Hσ

)
Φ (x) dµn (x)∫

ϕ
(
‖Φσ (y)− g‖Hσ

)
dµn (y)

−
∫
ϕ
(
‖Φσ (x′)− h‖Hσ

)
Φ (x) dµn (x′)∫

ϕ
(
‖Φσ (y′)− h‖Hσ

)
dµn (y′)

∥∥∥∥∥
Hσ

. (4)

Note that all integrals are over the same measure. Consider the situation if the integrals
were evaluated at one point,∣∣∣∣∣ϕ

(
‖Φσ (x)− g‖Hσ

)
ϕ
(
‖Φσ (y)− g‖Hσ

) − ϕ
(
‖Φσ (x)− h‖Hσ

)
ϕ
(
‖Φσ (y)− h‖Hσ

) ∣∣∣∣∣ (5)

=

∣∣∣∣∣ϕ
(
‖Φσ (x)− g‖Hσ

)
ϕ
(
‖Φσ (y)− h‖Hσ

)
− ϕ

(
‖Φσ (x)− h‖Hσ

)
ϕ
(
‖Φσ (y)− g‖Hσ

)
ϕ
(
‖Φσ (y)− g‖Hσ

)
ϕ
(
‖Φσ (y)− h‖Hσ

) ∣∣∣∣∣ .
We will now find a lower bound on the denominator. Note that since g and h live in

BHσ

(
0, ‖Φσ‖Hσ

√
9
10

)
, that ‖Φσ (y)− g‖Hσ and ‖Φσ (y)− g‖Hσ grow without bound as

σ → 0. Since ρ is convex ψ must be increasing and since ψ has a supremum of 1, ψ (z) is
well approximated by 1 for large z. Thus we have, for small σ that the denominator is well

9
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approximated as follows

ϕ
(
‖Φσ (y)− g‖Hσ

)
ϕ
(
‖Φσ (y)− h‖Hσ

)
=
ψ
(
‖Φσ (y)− g‖Hσ

)
‖Φσ (y)− g‖Hσ

ψ
(
‖Φσ (y)− h‖Hσ

)
‖Φσ (y)− h‖Hσ

≈ 1

‖Φσ (y)− g‖Hσ ‖Φσ (y)− h‖Hσ
≥ 1

‖Φσ‖2Hσ
(

1 +
√

9/10
)2

=CD ‖Φσ‖−2
Hσ

where CD =
(

1 +
√

9/10
)−2

. We will now find an upper bound on the numerator. By the

triangle inequality∣∣ϕ (‖Φσ (x)− g‖Hσ
)
ϕ
(
‖Φσ (y)− h‖Hσ

)
− ϕ

(
‖Φσ (x)− h‖Hσ

)
ϕ
(
‖Φσ (y)− g‖Hσ

)∣∣
≤
∣∣ϕ (‖Φσ (x)− g‖Hσ

)
ϕ
(
‖Φσ (y)− h‖Hσ

)
− ϕ

(
‖Φσ (x)− g‖Hσ

)
ϕ
(
‖Φσ (y)− g‖Hσ

)∣∣
+
∣∣ϕ (‖Φσ (x)− g‖Hσ

)
ϕ
(
‖Φσ (y)− g‖Hσ

)
− ϕ

(
‖Φσ (x)− h‖Hσ

)
ϕ
(
‖Φσ (y)− g‖Hσ

)∣∣.
Consider the second summand,∣∣ϕ (‖Φσ (x)− g‖Hσ

)
ϕ
(
‖Φσ (y)− g‖Hσ

)
− ϕ

(
‖Φσ (x)− h‖Hσ

)
ϕ
(
‖Φσ (y)− g‖Hσ

)∣∣ (6)

= ϕ
(
‖Φσ (y)− g‖Hσ

) ∣∣ϕ (‖Φσ (x)− g‖Hσ
)
− ϕ

(
‖Φσ (y)− h‖Hσ

)∣∣
≤ 1

‖Φσ (y)− g‖Hσ

∣∣ϕ (‖Φσ (x)− g‖Hσ
)
− ϕ

(
‖Φσ (x)− h‖Hσ

)∣∣
≤ 1

‖Φσ‖Hσ
(

1−
√

9
10

)∣∣ϕ (‖Φσ (x)− g‖Hσ
)
− ϕ

(
‖Φσ (x)− h‖Hσ

)∣∣.
Just as ϕ (z) becomes well approximated by 1

z for large z, ϕ′ (z) becomes well approximated
by −1

z2
. Using this it can be shown that there exists CL > 0 such that, for sufficiently small

σ, ϕ
(
‖Φσ (y)− · ‖Hσ

)
is Lipschitz continuous on BHσ

(
0,
√

9
10 ‖Φσ‖Hσ

)
with Lipschitz con-

stant ‖Φσ‖−2
Hσ CL. Now we have∣∣ϕ (‖Φσ (x)− g‖Hσ

)
− ϕ

(
‖Φσ (x)− h‖Hσ

)∣∣ ≤ ‖g − h‖Hσ ‖Φσ‖−2
Hσ CL.

It now follows that (6) is less than or equal to ‖Φσ‖−3
Hσ CN for some CN > 0. Returning to

(5), we can now show that it has an upper bound of
2‖Φσ‖−3

HσCN

‖Φσ‖−2
HσCD

= ‖Φσ‖−1
Hσ

2CN
CD

. This gen-

erally describes the behavior of the values found in (4). To take care of the
∫

Φσ (x) dµn (x)

terms, note that by Theorem 1
∥∥∫ Φσ (x) dµn (x)− f̄σ

∥∥
Hσ

p→ 0 if nσd → ∞. By Lemma

8,
∥∥f̄σ∥∥Hσ ≤ ‖f‖2 so

∥∥∫ Φσ (x) dµn (x)
∥∥
Hσ becomes bounded with high probability, thus

completing our proof sketch.

10
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4. Discussion

In this work we have shown that the limit of the RKDE, as n → ∞ and σ → 0, is the
distribution f . Therefore the robustness of the RKDE is not manifested in its asymptotic
limit, at least for the class of strictly convex losses we study. Rather, the robustness of the
RKDE is manifested for finite sample sizes as demonstrated by Kim and Scott (2012).

A key feature of our work is our nonstandard analysis. Standard analysis proceeds by
the decomposition, ‖f − fnσ ‖1 ≤ ‖f − fσ‖1 + ‖fσ − fnσ ‖1, where fσ is the minimizer of Jσ
(defined in Eqn. (3)). Using proof techniques from Kim and Scott (2012) it is easy to show
that there exists a pdf, pσ, satisfying

fσ =

∫
pσ (x) Φσ (x) dx

and

pσ (x) =
ϕ
(
‖Φσ (x)− fσ‖Hσ

)
f (x)∫

ϕ
(
‖Φσ (y)− fσ‖Hσ

)
f (y) dy

.

In the case of the classic KDE, ϕ is a constant so pσ = f . For a robust loss however, ϕ is a
non-constant function so pσ does not have a closed form expression. The fact that fσ and
fnσ do not have closed form expressions makes the standard analysis difficult.

The function Rnσ is of some interest of its own. It is mentioned in Kim and Scott
(2012) that the IRWLS algorithm converges to the RKDE after very few iterations. This
phenomenon may be explained by the small contraction constant exhibited by Rnσ in
Lemma 9. It is also worth noting that the density estimator generated by applying
the IRWLS algorithm a fixed number of times is also consistent. More precisely, let
fn,kσ = Rnσ (· · ·Rnσ (Rnσ (0)) · · ·), where Rnσ is applied k times, then, given the same con-

sistency requirements for the RKDE,
∥∥∥fn,kσ − f

∥∥∥
1

p→ 0.

The last line of the proof for Theorem 5 allows us to say something about the RKDE rate
of convergence. From the proof, if nσd →∞, there exists C > 0 such that, with probability

going to one,
∥∥f̄nσ − fnσ ∥∥Hσ ≤ Cσd/2. Letting σd/2 = log(n)√

n
gives us

∥∥f̄nσ − fnσ ∥∥Hσ √
n

log(n) ≤ C,

a rate of convergence of the RKDE to the KDE. We anticipate that this result can be
extended to L1 convergence of the RKDE to f and will be a focus of future work.

We also note that just as fnσ is a robust version of f̄nσ so is fσ a robust version of f̄σ. To
see this consider the expression for pσ. For the traditional KDE ϕ is a constant, yielding
pσ = f . When using a robust loss ϕ is a decreasing function causing pσ (x) to be smaller
for more outlying x. We can consider pσ to be a robust version of f since it suppresses low
density regions of f .

Appendix A. Proofs of Lemmas

For convenience the proofs have been split up into two subsections, one for proofs from the
KDE section and the other for proofs from the RKDE section.

11
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A.1. KDE Consistency Proofs

The following lemma is a Hilbert space version of Bennett’s inequality (Smale and Zhou,
2007) and will be used in the proof of Lemma 2.

Lemma 10 Let H be a Hilbert space and {ξi}mi=1 be m (m < ∞) independent random
variables with values in H. Also, assume that for each i, ‖ξi‖H ≤ B < ∞ almost surely.
Let δ2 =

∑m
i=1E

[
‖ξi‖2H

]
. Then

P

(∥∥∥∥∥ 1

m

m∑
i=1

(ξi − E [ξi])

∥∥∥∥∥
H

≥ ε

)
≤ exp

{
−mε

2B
log

(
1 +

mBε

δ2

)}
,∀ε > 0.

Proof of Lemma 2 We will apply Lemma 10. From the lemma statement let ξi = Φσ(Xi)
and m = n yielding, for all ε > 0

P
(∥∥f̄nσ − f̄σ∥∥Hσ ≥ ε) ≤ exp

{
− nε

2 ‖Φσ‖Hσ
log

(
1 +

n ‖Φσ‖Hσ ε
n ‖Φσ‖2Hσ

)}

= exp

{
− nε

2 ‖Φσ‖Hσ
log

(
1 +

ε

‖Φσ‖Hσ

)}
.

As σ → 0 then 1 + ε
‖Φσ‖Hσ

→ 1 so for sufficiently small σ

log

(
1 +

ε

‖Φσ‖Hσ

)
≥ ε

2 ‖Φσ‖Hσ

and

P
(∥∥f̄nσ − f̄σ∥∥Hσ ≥ ε) ≤ exp

{
− nε2

4 ‖Φσ‖2Hσ

}

which goes to zero as n
‖Φσ‖2Hσ

→∞, or equivalently nσd →∞. So
∥∥f̄nσ − f̄σ∥∥Hσ p→ 0.

Proof of Lemma 3 Let S+ = {s|s ∈ S, g(s) ≥ 0} and S− = S \ S+. We have∫
S
|g(x)| dx =

∫
S+

g(x)dx+

∫
S−
−g(x′)dx′

=

∫
S+

〈g,Φσ(x)〉Hσ dx+

∫
S−

〈
−g,Φσ(x′)

〉
Hσ dx

′

=

〈
g,

∫
S+

Φσ(x)dx

〉
Hσ

+

〈
−g,

∫
S−

Φσ(x′)dx′
〉
Hσ

≤ ‖g‖Hσ

(∥∥∥∥∫
S+

Φσ(x)dx

∥∥∥∥
Hσ

+

∥∥∥∥∫
S−

Φσ(x′)dx′
∥∥∥∥
Hσ

)
. (7)

12
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Now consider ∥∥∥∥∫
S+

Φσ(x)dx

∥∥∥∥2

Hσ
=

〈∫
S+

Φσ(x)dx,

∫
S+

Φσ(x′)dx′
〉
Hσ

=

∫
S+

∫
S+

〈
Φσ(x),Φσ(x′)

〉
Hσ dxdx

′

=

∫
S+

∫
S+

kσ
(
x, x′

)
dxdx′

≤
∫
S+

1dx′

= λ(S+)

and a similar result can be shown for S−. Plugging back into (7) we get∫
S
|g(x)| dx ≤ ‖g‖Hσ

(√
λ (S+) +

√
λ (S−)

)
≤ ‖g‖Hσ 2

√
λ (S).

Lemma 11 Let f be a pdf, ε > 0, and y ∈ Rd. There exists r > 0 such that∫
B(y,r)

f(x)dx ≥ 1− ε.

or equivalently ∫
B(y,r)C

f(x)dx < ε.

Proof We will prove the second statement. Consider the following, where i ∈ N,∫
B(y,i)C

f (x) dx =

∫
χB(y,i)C (x) f (x) dx.

Clearly as i → ∞, χB(y,i)Cf → 0 pointwise. Since χB(y,i)Cf is dominated by f ,∫
χB(y,i)C (x) f (x) dx →

∫
0dx = 0 by the dominated convergence theorem. Thus there

exists n ∈ N where
∫
B(y,n)C f (x) dx < ε.

Proof of Lemma 4 Let ε > 0; by Lemma 11 let r > 0 such that
∥∥∥fχB(0,r)C

∥∥∥
1
< ε/3.

From Lemma 3 we have ∥∥(gnσ − hnσ)χB(0,r)

∥∥
1

p→ 0.

13
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Since ‖gnσ − f‖1
p→ 0, we have

∥∥gnσχB(0,r)

∥∥
1

p→
∥∥fχB(0,r)

∥∥
1
, and therefore∣∣∣∣∥∥∥hnσχB(0,r)C

∥∥∥
1
−
∥∥∥fχB(0,r)C

∥∥∥
1

∣∣∣∣ =

∣∣∣∣(1−
∥∥hnσχB(0,r)

∥∥
1

)
−
(

1−
∥∥fχB(0,r)

∥∥
1

)∣∣∣∣
=

∣∣∣∣∥∥hnσχB(0,r)

∥∥
1
−
∥∥fχB(0,r)

∥∥
1

∣∣∣∣
≤
∥∥(hnσ − f)χB(0,r)

∥∥
1

≤
∥∥(hnσ − gnσ)χB(0,r)

∥∥
1

+
∥∥(gnσ − f)χB(0,r)

∥∥
1

p→ 0.

Thus,
∥∥∥hnσχB(0,r)C

∥∥∥
1

p→
∥∥∥fχB(0,r)C

∥∥∥
1
. Since

∥∥∥fχB(0,r)C

∥∥∥
1
< ε/3, we have

P
(∥∥∥hnσχB(0,r)C

∥∥∥
1
≥ ε5/12

)
→ 0. (8)

Now to finish the proof,

P (‖hnσ − gnσ‖1 > ε) =P
(∥∥(hnσ − gnσ)χB(0,r)

∥∥
1

+
∥∥∥(hnσ − gnσ)χB(0,r)C

∥∥∥
1
> ε
)

≤P
(∥∥(hnσ − gnσ)χB(0,r)

∥∥
1
≥ ε/4

)
+ P

(∥∥∥(hnσ − gnσ)χB(0,r)C

∥∥∥
1
> 3ε/4

)
We’ve already shown the left summand goes to zero, now we take care of the right term

P
(∥∥∥(hnσ − gnσ)χB(0,r)C

∥∥∥
1
> 3ε/4

)
≤ P

(∥∥∥hnσχB(0,r)C

∥∥∥
1

+
∥∥∥gnσχB(0,r)C

∥∥∥
1
> 3ε/4

)
≤ P

(∥∥∥hnσχB(0,r)C

∥∥∥
1
≥ 5ε/12

)
+ P

(∥∥∥gnσχB(0,r)C

∥∥∥
1
> ε/3

)
The left summand goes to zero by (8). Since

∥∥∥gnσχB(0,r)C − fχB(0,r)C

∥∥∥
1
→ 0 and∥∥∥fχB(0,r)C

∥∥∥
1
< ε

3 , with probability going to one, we have
∥∥∥gnσχB(0,r)C

∥∥∥
1
≤ ε/3 and the

right summand goes to zero. This completes our proof.

A.2. RKDE Consistency Proofs

Lemma 12 Let f : Rd → R be a pdf. For all ε > 0, there exists s > 0 such that∫
B(z,s) f (x) dx ≤ ε for all z ∈ Rd.

Proof We will proceed by contradiction. Let {xi}∞1 be a sequence in Rd such that∫
B(xi,1/i)

f (x) dx > ε. Clearly the sequence must be bounded or else f would not be a

pdf. Let xij be a convergent subsequence and let x′ be its limit. Let {rj}∞1 be a sequence
in R+ converging to zero with B

(
xij , 1/ij

)
⊂ B (x′, rj). So we have

∫
B(x′,rj)

f (x) dx > ε,

for all j. We know ∫
B(x′,rj)

f (x) dx =

∫
χB(x′,rj) (x) f (x) dx

14



Consistency of Robust Kernel Density Estimators

and fχB(x′,rj) → 0 pointwise. Since fχB(x′,rj) is dominated by f , the dominated convergence
theorem yields

lim
j→∞

∫
B(x′,rj)

f (x) dx = lim
j→∞

∫
f (x)χB(x′,rj) (x) dx

=

∫
lim
j→∞

f (x)χB(x′,rj) (x) dx

=

∫
0dx

= 0

but
∫
B(x′,rj)

f (x) dx > ε, a contradiction.

Corollary 13 Let f : Rd → R be a pdf with associated measure µ, ε > 0 and r > 0. There
exists s > 0 such that for all x ∈ Rd, µ (B (x, r + s) \B (x, r)) < ε.

Proof We will omit a full proof; the general strategy is the same as the previous proof.
Find a series of annuli with width decreasing to zero that have probability greater than ε.
Next find a convergent subsequence of annuli centers, let its limit be x′. Finally construct
a series of annuli centered at x′ with probability measure greater than ε and width going
to zero and arrive at the same contradiction.

Lemma 14 Let s > 0. If σ → 0 then σ−dq (s/σ)→ 0.

Proof We will proceed by contradiction. Suppose σ−dq (s/σ) does not converge to zero,
then there exists C > 0 such that we can find arbitrarily small σ satisfying

σ−dq (s/σ) > C. (9)

It is well known that there exists Cd such that the Lebesgue measure of a ball in Rd of
radius r is Cdr

d. Since q is nonincreasing (Scovel et al., 2010) this along with (9) implies
that there exists arbitrarily small σ satisfying∫

B(0,s)
σ−dq (‖x‖2 /σ) dx ≥

∫
B(0,s)

σ−dq (s/σ) dx

>Cds
dC

where the last term must be less than or equal to 1. Now, by Lemma 11, there exists r > 0
such that ∫

B(0,r)
q (‖x‖2) dx =

∫
B(0,rσ)

σ−dq (‖x‖2 /σ) dx ≥ 1− Cds
dC

2
.
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For sufficiently small σ we have

1 ≥
∫
B(0,rσ)

σ−dq (‖x‖2 /σ) dx

≥
∫
B(0,rσ)

σ−dq
(∥∥x′∥∥

2
/σ
)
dx′ +

∫
B(0,s)\B(0,rσ)

σ−dq (‖x‖2 /σ) dx

≥1− Cds
dC

2
+

∫
B(0,s)\B(0,rσ)

σ−dq (‖x‖2 /σ) dx.

Because q is nonincreasing this is greater than or equal to

1− Cds
dC

2
+ Cd

(
sd − (rσ)d

)
σ−dq (s/σ) .

As σ → 0 , Cd

(
sd − (rσ)d

)
→ Cds

d, so by (9) we can find some σ where the last term is

greater than or equal to

1− Cds
dC

2
+ Cds

dC
2

3
.

The last line is greater than 1, a contradiction.

Proof of Lemma 7 Let conv be the convex hull operator. Define

Qnσ = conv (Φσ(X1), . . . ,Φσ(Xn))
⋂
BHσ

(
0,

√
9

10
‖Φσ‖Hσ

)C
.

Clearly Qnσ ⊂ Dσ since Φσ (Xi) is a density for all i. By the representer theorem in Kim and
Scott (2012), fnσ ∈ conv (Φσ (X1) , . . . ,Φσ (Xn)). We also know that fnσ is the minimizer of
Jnσ , where Jnσ : Hσ → R is the empirical risk function

Jnσ (g) =
1

n

n∑
i=1

ρ
(
‖Φσ (Xi)− g‖Hσ

)
.

From these facts if we can show

P (Jnσ (0) < Jnσ (g), ∀g ∈ Qnσ)→ 0

then we have proven the lemma.
Since Qnσ is compact and Jnσ is continuous (Kim and Scott, 2012), arg ming∈Qnσ J

n
σ (g)

contains at least one element. Let gnσ be an arbitrary minimizer of Jnσ restricted to Qnσ.
Let µ be the measure associated with f . From Lemma 12 we can choose r > 0 such

that µ (B (x, r)) ≤ 1
10 , for all x ∈ Rd. Choose s > 0 such that µ

(
B (x, r + s)C

)
≥ 4

5 ,

for all x ∈ Rd. The previous statement is satisfied by finding s such that, for all x,
µ (B (x, r + s) \B (x, r)) < 1

10 , which is possible by Corollary 13 . By Lemma 6 we know
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there exists x∗ such that gnσ(x∗) ≥ 9
10 ‖Φσ‖2Hσ (x∗ is implicitly a function of n). By the defi-

nition of Qnσ, let gnσ =
∑n

i=1 βiΦσ(Xi) with βi ≥ 0 and
∑n

1 βi = 1. Since gnσ(x∗) ≥ 9
10 ‖Φσ‖2Hσ

and q is nonincreasing we have

9

10
‖Φσ‖2Hσ ≤

n∑
i=1

βikσ(Xi, x
∗)

=
∑

i:Xi∈B(x∗,r)

βikσ(Xi, x
∗) +

∑
j:Xj∈B(x∗,r)C

βjkσ(Xj , x
∗)

=
∑

i:Xi∈B(x∗,r)

βikσ(Xi, x
∗) +

∑
j:Xj∈B(x∗,r)C

βjσ
−dq

(
‖Xj − x∗‖2 /σ

)
≤

∑
i:Xi∈B(x∗,r)

βi ‖Φσ‖2Hσ + σ−dq (r/σ)

The last line is due to the fact q must be nonincreasing (Scovel et al., 2010). From Lemma
14 we know that σ−dq(r/σ)→ 0 as σ → 0 , so for sufficiently small σ we have

17

20
‖Φσ‖2Hσ <

∑
i:Xi∈B(x∗,r)

βi ‖Φσ‖2Hσ

and thus

17

20
<

∑
i:Xi∈B(x∗,r)

βi. (10)

Again, since q nonincreasing, for sufficiently small σ

sup
y∈B(x∗,r+s)C

gnσ(y) = sup
y∈B(x∗,r+s)C

n∑
i=1

βikσ (Xi, y)

= sup
y∈B(x∗,r+s)C

∑
i:Xi∈B(x∗,r)

βikσ (Xi, y)

+
∑

j:Xj∈B(x∗,r)C

βj 〈Φσ (y) ,Φσ (Xj)〉Hσ

≤ σ−dq (s/σ) +
∑

j:Xj∈B(x∗,r)C

βj ‖Φσ‖2Hσ .

From this, (10) and because σ−dq(s/σ) → 0 as σ → 0, for arbitrary ε > 0 we have, for
sufficiently small σ,

sup
y∈B(x∗,r+s)C

gnσ(y) < ε+
3

20
‖Φσ‖2Hσ .

17



Vandermeulen Scott

Recall that we assumed that supx ψ(x) = supx ρ
′ (x) = 1 and ρ (0) = 0. Because ρ is strictly

increasing, for sufficiently small σ,

Jnσ (gnσ) =
1

n

n∑
i=1

ρ
(
‖Φσ(Xi)− gnσ‖Hσ

)
=

1

n

∑
i:Xi∈B(x∗,r+s)

ρ
(
‖Φσ(Xi)− gnσ‖Hσ

)
+

1

n

∑
j:Xj∈B(x∗,r+s)C

ρ
(
‖Φσ(Xj)− gnσ‖Hσ

)
≥ 1

n

∑
j:Xj∈B(x∗,r+s)C

ρ
(
‖Φσ(Xj)− gnσ‖Hσ

)
=

1

n

∑
j:Xj∈B(x∗,r+s)C

ρ

(√
‖Φσ‖2Hσ − 2gnσ(Xj) + ‖gnσ‖

2
Hσ

)

≥ 1

n

∑
j:Xj∈B(x∗,r+s)C

ρ

(√
‖Φσ‖2Hσ − 2

(
3

20
‖Φσ‖2Hσ + ε

)
+

9

10
‖Φσ‖2Hσ

)

= µn
(
B(x∗, r + s)C

)
ρ

(√
‖Φσ‖2Hσ

32

20
− 2ε

)

≥ inf
x
µn

(
B (x, r + s)C

)
ρ

(√
‖Φσ‖2Hσ

32

20
− 2ε

)
.

Since ρ is strictly convex we know that ψ is strictly increasing. Because ψ has a supremum
of 1 and is strictly increasing we know that for any 1 > εψ > 0 there exists bψ such that for
all x > bψ, ψ(x) > 1− εψ. Then, for sufficiently small σ,

ρ

(√
‖Φσ‖2Hσ

32

20
− 2ε

)
=

∫ √
‖Φσ‖2Hσ

32
20
−2ε

0
ψ (x) dx

≥
∫ √

‖Φσ‖2Hσ
32
20
−2ε

bψ

ψ (x) dx

≥ (1− εψ)

(√
‖Φσ‖2Hσ

32

20
− 2ε− bψ

)
(11)

For sufficiently small σ we have√
‖Φσ‖2Hσ

32

20
− 2ε ≥ ‖Φσ‖Hσ

√
32

20
− 2ε.

Since the complements of all open balls, in this case, all balls with radius r+s, have a finite
shattering dimension (Devroye and Lugosi, 2001), and by our choice of r and s we know,

with probability going to one, that infx µn

(
B (x, r + s)C

)
→ infx µ

(
B (x, r + s)C

)
≥

0.8. Because of this for any εB > 0 we have, with probability going to one, that
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infx µn

(
B (x, r + s)C

)
≥ 0.8 − εB. Since 4

5

√
32
20 > 1, we can choose εψ and εB such that(

4
5 − εB

)
(1− εψ)

√
32
20 > 1. Using these facts with (11) we have, for sufficiently small σ,

with probability going to one

Jnσ (gnσ) ≥ inf
x
µn

(
B (x, r + s)C

)
(1− εψ)

(√
‖Φσ‖2Hσ

32

20
− 2ε− bψ

)

≥
(

4

5
− εB

)
(1− εψ)

(
‖Φσ‖Hσ

√
32

20
− 2ε− bψ

)
> ‖Φσ‖Hσ .

Now consider

Jnσ (0) =
1

n

n∑
i=1

ρ
(
‖Φσ (Xi)− 0‖Hσ

)
= ρ

(
‖Φσ‖Hσ

)
=

∫ ‖Φσ‖Hσ
0

ψ (x) dx+ ρ (0)

≤
∫ ‖Φσ‖Hσ

0
1dx

= ‖Φσ‖Hσ .

So as n→∞ and σ → 0 we have

P (Jnσ (gnσ) ≤ Jnσ (0))→ 0,

thus finishing the proof.

Proof of Lemma 9 Let g, h ∈ Hσ such that ‖g‖2Hσ ≤
9
10 ‖Φσ‖2Hσ and ‖h‖2Hσ ≤

9
10 ‖Φσ‖2Hσ .

Cross multiplication gives us

‖Rnσ (g)−Rnσ (h)‖Hσ

=

∥∥∥∥∥
∫
ϕ
(
‖Φσ(x)− g‖Hσ

)
Φσ(x)dµn(x)∫

ϕ
(
‖Φσ(y)− g‖Hσ

)
dµn(y)

−
∫
ϕ
(
‖Φσ(x′)− h‖Hσ

)
Φσ(x′)dµn(x′)∫

ϕ
(
‖Φσ(y′)− h‖Hσ

)
dµn(y′)

∥∥∥∥∥
Hσ

=

∥∥∥∥AB
∥∥∥∥
Hσ

where

A =

[∫
ϕ
(
‖Φσ (x)− g‖Hσ

)
Φσ (x) dµn (x)

] [∫
ϕ
(∥∥Φσ

(
y′
)
− h
∥∥
Hσ

)
dµn (y)

]
−
[∫

ϕ
(∥∥Φσ

(
x′
)
− h
∥∥
Hσ

)
Φσ

(
x′
)
dµn

(
x′
)] [∫

ϕ
(
‖Φσ (y)− g‖Hσ

)
dµn (y)

]
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and

B =

[∫
ϕ
(∥∥Φσ(y′)− h

∥∥
Hσ

)
dµn(y′)

] [∫
ϕ
(
‖Φσ(y)− g‖Hσ

)
dµn(y)

]
.

Note that A ∈ Hσ and B ∈ R+. We will now find a lower bound on B. As shown in the
proof for Lemma 7 there exists b > 0 such that ψ (x) > 1/2 for all x ≥ b. By the reverse
triangle inequality ∥∥Φσ(y′)− h

∥∥
Hσ ≥

∣∣‖Φσ‖Hσ − ‖h‖Hσ
∣∣

≥ ‖Φσ‖Hσ

(
1−

√
9

10

)

which grows without bound as σ → 0. So for sufficiently small σ

ϕ
(∥∥Φσ(y′)− h

∥∥
Hσ

)
=
ψ
(
‖Φσ(y′)− h‖Hσ

)
‖Φσ(y′)− h‖Hσ

≥ 1

2 ‖Φσ(y′)− h‖Hσ
≥ 1

2
(
‖Φσ‖Hσ + ‖h‖Hσ

)
≥ 1

‖Φσ‖Hσ 2
(

1 +
√

9
10

) .
A similar result can be shown for ϕ

(
‖Φσ(y)− g‖Hσ

)
, so there exists CB > 0 such that, for

sufficiently small σ,

B ≥ ‖Φσ‖−2
Hσ CB.

Now we will focus on A. To make the following manipulations simpler we will let

ϕ
(
‖Φσ (z)− k‖Hσ

)
= Tσ (z, k) .

A is equal to[∫
Tσ (x, g) Φσ(x)dµn(x)

] [∫
Tσ
(
y′, h

)
dµn(y′)

]
−
[∫

Tσ
(
x′, h

)
Φσ(x′)dµn(x′)

] [∫
Tσ (y, g) dµn(y)

]
=

∫ {
Tσ (x, g) Φσ(x)

[∫
Tσ
(
y′, h

)
dµn(y′)

]
− Tσ (x, h) Φσ(x)

[∫
Tσ (y, g) dµn(y)

]}
dµn(x)

=

∫
Φσ(x)

[
Tσ (x, g)

[∫
Tσ
(
y′, h

)
dµn(y)

]
− Tσ (x, h)

[∫
Tσ (y, g) dµn(y)

]]
dµn(x)

=

∫ ∫
Φσ(x)

[
Tσ (x, g)Tσ (y, h)− Tσ (x, h)Tσ (y, g)

]
dµn(y)dµn(x).
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We will now bound the inner term. Using the triangle inequality we have∣∣Tσ (x, g)Tσ (y, h)− Tσ (x, h)Tσ (y, g)
∣∣ (12)

<
∣∣Tσ (x, g)Tσ (y, h)− Tσ (x, g)Tσ (y, g)

∣∣+
∣∣Tσ (x, g)Tσ (y, g)− Tσ (x, h)Tσ (y, g)

∣∣
= Tσ (x, g)

∣∣Tσ (y, h)− Tσ (y, g)
∣∣+ Tσ (y, g)

∣∣Tσ (x, g)− Tσ (x, h)
∣∣.

We will bound the second summand in the last equality; a similar technique can bound the
first summand.

ϕ
(
‖Φσ(y)− g‖Hσ

)
=
ψ
(
‖Φσ(y)− g‖Hσ

)
‖Φσ(y)− g‖Hσ

≤ 1

‖Φσ(y)− g‖Hσ
≤ 1∣∣‖Φσ‖Hσ − ‖g‖Hσ

∣∣
≤ 1

‖Φσ‖Hσ
(

1−
√

9
10

) . (13)

A similar result can be shown for ϕ
(
‖Φσ(x)− g‖Hσ

)
.

Consider z ≥ ‖Φσ‖Hσ
(

1−
√

9
10

)
, then

∣∣ϕ′ (z)∣∣ =

∣∣∣∣(ψ (z)

z

)′∣∣∣∣
=

∣∣∣∣zψ′ (z)− ψ (z)

z2

∣∣∣∣
≤ |zψ

′ (z)|+ |ψ (z)|
z2

.

We will now analyze the behaviour of ψ′, specifically, there exists sufficiently large r such
that ψ′ (x) ≤ 1

x for all x ≥ r. We will proceed by contradiction. Suppose this is not the
case. Then there exist positive numbers t1, t2 and t3 such that ψ′ (ti) >

1
ti

and ti
ti+1

< 1
3 .

We know ψ′ is nonincreasing by (B5) and nonnegative; we also know ψ is bounded above
by 1 so

1 ≥
∫ ∞

0
ψ′ (x) dx

≥
∫ t2

t1

ψ′ (x) dx+

∫ t3

t2

ψ′ (y) dy

≥ t2 − t1
t2

+
t3 − t2
t3

≥ 2− 2

3
,
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a contradiction. From this we have that for sufficiently large z,

|zψ′ (z)|+ |ψ (z)|
z2

≤
z 1
z + 1

z2

=
2

z2
.

Thus, for sufficiently small σ, on the space
[(

1−
√

9
10

)
‖Φσ‖Hσ ,∞

)
, ϕ is Lipschitz contin-

uous with Lipschitz constant 2
(

1−
√

9
10

)−2

‖Φσ‖−2
Hσ . Therefore we have

|ϕ (‖Φσ(x)− g‖)− ϕ (‖Φσ(x)− h‖)| ≤
∣∣‖Φσ (x)− g‖Hσ − ‖Φσ (x)− h‖Hσ

∣∣2(1−
√

9

10

)−2

‖Φσ‖−2
Hσ

≤‖g − h‖Hσ 2

(
1−

√
9

10

)−2

‖Φσ‖−2
Hσ .

Combining the last inequality with (13) we have that for sufficiently small σ, (12) is less
than or equal to

4 ‖g − h‖Hσ

(
1−

√
9

10

)−3

‖Φσ‖−3
Hσ .

Using this bound we can do the following. Let τ ,
[
Tσ (x, g)Tσ (y, h)− Tσ (x, h)Tσ (y, g)

]
,

τ ′ ,
[
Tσ (x′, g)Tσ (y′, h)− Tσ (x′, h)Tσ (y′, g)

]
, and κ , 4 ‖g − h‖Hσ

(
1−

√
9
10

)−3

‖Φσ‖−3
Hσ ,

we have

‖A‖2Hσ =

∥∥∥∥∫ ∫ Φσ(x)τdµn(x)dµn(y)

∥∥∥∥2

Hσ

=

〈∫ ∫
Φσ(x)τdµn(x)dµn(y),

∫ ∫
Φσ(x′)τ ′dµn(x′)dµn(y′)

〉
Hσ

=

∫ ∫ ∫ ∫
ττ ′
〈
Φσ(x),Φσ(x′)

〉
Hσ dµn(y)dµn(y′)dµn(x)dµn(x′).

Since 〈Φσ(x),Φσ(x′)〉Hσ ≥ 0 for all x, x′, for sufficiently small σ, the last line is less than or
equal to ∫ ∫ ∫ ∫

κ2
〈
Φσ(x),Φσ(x′)

〉
Hσ dµn(y)dµn(y′)dµn(x)dµn(x′)

=

∫ ∫
κ2
〈
Φσ(x),Φσ(x′)

〉
Hσ dµn(x)dµn(x′)

= κ2

∥∥∥∥∫ Φσ (x) dµn (x)

∥∥∥∥2

Hσ
.
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Returning to the original notation, this means, for sufficiently small σ

‖A‖Hσ ≤
∥∥∥∥∫ Φσ (x) dµn (x)

∥∥∥∥
Hσ

4 ‖g − h‖Hσ

(
1−

√
9

10

)−3

‖Φσ‖−3
Hσ .

From our proof of the consistency of the KDE we know that
∥∥∫ Φσ(x)dµn(x)− f̄σ

∥∥
Hσ

p→ 0

and from Lemma 8
∥∥f̄σ∥∥Hσ ≤ ‖f‖2 so

∥∥∫ Φσ(x)dµn(x)
∥∥
Hσ is bounded by some constant

with probability going to one. Note that this is the only probabilistic step, which does not
depend on g or h, so the result holds over the whole ball in Hσ. So there exists CA > 0
such that

‖A‖Hσ ≤ ‖g − h‖Hσ ‖Φσ‖−3
Hσ CA

with probability going to one (we can omit “for sufficiently small σ” since σ → 0 as n→∞).
Finally we get with probability going to one as nσd →∞∥∥∥∥AB

∥∥∥∥
Hσ

=
‖A‖Hσ
B

≤ ‖g − h‖Hσ
CA ‖Φσ‖−3

Hσ
CB ‖Φσ‖−2

Hσ

= ‖g − h‖Hσ CR ‖Φσ‖−1
Hσ .

References

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical
Society, 68, 1950.

Frank Bauer, Sergei Pereverzev, and Lorenzo Rosasco. On regularization algorithms in
learning theory. J. Complex., 23(1):52–72, February 2007. ISSN 0885-064X. doi: 10.
1016/j.jco.2006.07.001. URL http://dx.doi.org/10.1016/j.jco.2006.07.001.

Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares
algorithm. Foundations of Computational Mathematics, 7(3):331–368, 2007.

P. Deheuvels. Uniform limit laws for kernel density estimators on possibly unbounded
interval. In Recent Advances in Reliability Theory, pages 477–492. Birkhäuser, 2000.
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