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Abstract

A central problem in ranking is to design a measure for evaluation of ranking functions. In
this paper we study, from a theoretical perspective, the Normalized Discounted Cumulative
Gain (NDCG) which is a family of ranking measures widely used in practice. Although
there are extensive empirical studies of the NDCG family, little is known about its the-
oretical properties. We first show that, whatever the ranking function is, the standard
NDCG which adopts a logarithmic discount, converges to 1 as the number of items to rank
goes to infinity. On the first sight, this result seems to imply that the standard NDCG
cannot differentiate good and bad ranking functions on large datasets, contradicting to
its empirical success in many applications. In order to have a deeper understanding of
the general NDCG ranking measures, we propose a notion referred to as consistent distin-
guishability. This notion captures the intuition that a ranking measure should have such a
property: For every pair of substantially different ranking functions, the ranking measure
can decide which one is better in a consistent manner on almost all datasets. We show that
standard NDCG has consistent distinguishability although it converges to the same limit
for all ranking functions. We next characterize the set of all feasible discount functions
for NDCG according to the concept of consistent distinguishability. Specifically we show
that whether an NDCG measure has consistent distinguishability depends on how fast the
discount decays; and r−1 is a critical point. We then turn to the cut-off version of NDCG,
i.e., NDCG@k. We analyze the distinguishability of NDCG@k for various choices of k and
the discount functions. Experimental results on real Web search datasets agree well with
the theory.
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1. Introduction

Ranking has been extensively studied in information retrieval, machine learning and statis-
tics. It plays a central role in various applications such as search engine, recommendation
system, expert finding, to name a few. In many situations one wants to have, by learn-
ing, a good ranking function (Crammer and Singer, 2002; Freund et al., 2003; Joachims,
2002). Thus a fundamental problem is how to design a ranking measure to evaluate the
performance of a ranking function.

Unlike classification and regression for which there are simple and natural performance
measures, evaluating ranking functions has proved to be more difficult. Suppose there
are n objects to rank. A ranking evaluation measure must induce a total order on the
n! possible ranking results. There seem to be many ways to define ranking measures and
several evaluation measures have been proposed (Chapelle et al., 2009; Turpin and Scholer,
2006; Baeza-Yates and Ribeiro-Neto, 1999; Agarwal et al., 2004; Rudin, 2009). In fact, as
pointed out by some authors, there is no single optimal ranking measure that works for any
application (Croft et al., 2010).

The focus of this work is Normalized Discounted Cumulative Gain (NDCG) which is
a family of ranking measures widely used in applications (Järvelin and Kekäläinen, 2000,
2002). NDCG has two advantages compared to many other measures. First, NDCG allows
each retrieved document has graded relevance while most traditional ranking measures only
allow binary relevance. That is, each document is viewed as either relevant or not relevant by
previous ranking measures, while there can be degrees of relevancy for documents in NDCG.
Second, NDCG involves a discount function over the rank while many other measures
uniformly weight all positions. This feature is particularly important for search engines as
users care top ranked documents much more than others.

NDCG is a normalization of the Discounted Cumulative Gain (DCG) measure. (For
formal definition of both DCG and NDCG, please see Section 2.) DCG is a weighted
sum of the degree of relevancy of the ranked items. The weight is a decreasing function
of the rank (position) of the object, and therefore called discount. The original reason for
introducing the discount is that the probability that a user views a document decreases with
respect to its rank. NDCG normalizes DCG by the Ideal DCG (IDCG), which is simply
the DCG measure of the best ranking result. Thus NDCG measure is always a number in
[0, 1]. Strictly speaking, NDCG is a family of ranking measures, since there is flexibility
in choosing the discount function. The logarithmic discount 1

log(1+r) , where r is the rank,
dominated the literature and applications. We will refer to NDCG with logarithmic discount
as the standard NDCG. Another discount function appeared in literature is r−1, which is
called Zipfian in Information Retrieval (Kanoulas and Aslam, 2009). Search engine systems
also use a cut-off top-k version of NDCG. That is, the discount is set to be zero for ranks
larger than k. Such NDCG measure is usually referred to as NDCG@k.

Given the importance and popularity of NDCG, there have been extensive studies
on this measure, mainly in the field of Information Retrieval (Al-Maskari et al., 2007;
Kanoulas and Aslam, 2009; Aslam et al., 2005; Voorhees, 2001; Sakai, 2006). All these
research are conducted from an empirical perspective by doing experiments on benchmark
datasets. There are also works that considered learning discount functions for NDCG
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(Zhou et al.). Although these works gained insights about NDCG, there are still important
issues unaddressed. We list a few questions that naturally arise.

• As pointed out in (Croft et al., 2010), there has not been any theoretically sound
justification for using a logarithmic ( 1

log(1+r)) discount other than the fact that it is a
smooth decay.

• Is it possible to characterize the class of discount functions that are feasible for NDCG?

• For the standard NDCG@k, the discount is a combination of a very slow logarithmic
decay and a hard cut-off. Why don’t simply use a smooth discount that decays fast?

In this paper, we study the NDCG type ranking measures and address the above ques-
tions from a theoretical perspective. The goal of our study is twofold. First, we aim to
provide a better understanding and theoretical justification of NDCG as an evaluation mea-
sure. Second, we hope that our results would shed light and be useful for further research
on learning to rank based on NDCG. Specifically we analyze the behavior of NDCG as the
number of objects to rank getting large. Asymptotics, including convergence and asymptot-
ic normality, of many traditional ranking measures have been studied in depth in statistics,
especially for Linear Rank Statistics and measures that are U-statistics (Hájek et al., 1967;
Kendall, 1938). Clémençon and Vayatis (2009) observed that ranking measures such as
Area under the ROC Curve (AUC), P-Norm Push and DCG can be viewed as Conditional
Linear Rank Statistics. That is, conditioned on the relevance degrees of the items, these
measures are Linear Rank Statistics (Hájek et al., 1967). They show uniform convergence
based on an orthogonal decomposition of the measure. The convergence relies on the fact
that the measure can be represented as a (conditional) average of a fixed score-generating
function. Part of our work consider the convergence of NDCG and are closely related to
(Clémençon and Vayatis, 2009). However, their results do not apply to our problem, be-
cause the score-generating function for NDCG is not fixed, it changes with the number of
objects.

1.1. Our Results

Our study starts from an analysis of the standard NDCG (i.e., the one using logarithmic
discount). The first discovery is that for every ranking function, the NDCG measure con-
verges to 1 as the number of items to rank goes to infinity. This result is surprising. On
the first sight it seems to mean that the widely used standard NDCG cannot differentiate
good and bad ranking systems when the data is of large size. This problem may be serious
because huge dataset is common in applications such as Web search.

To have a deeper understanding of NDCG, we first study what are the desired properties
a good ranking measure should have. In this paper we propose a notion referred to as
consistent distinguishability, which we believe that every ranking measure needs to have.
Before describing the definition of consistent distinguishability, let us see a motivating
example. Suppose we want to select, from two ranking functions f1, f2, a better one on
ranking “sea” images (that is, if an image contains sea, we hope it is ranked near the top).
Since there are billions of sea images on the web, a commonly used method is to randomly
draw, say, a million data and evaluate the two functions on them. A crucial assumption
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underlying this approach is that the evaluation result will be “stable” on large datasets.
That is, if on this randomly drawn dataset f1 is better than f2 according to the ranking
measure, then with high probability over the random draw of another large dataset, f1
should still be better than f2. In other words, f1 is consistently better than f2 according
to the ranking measure.

Our definition of consistent distinguishability captures the above intuition. It requires
that for two substantially different ranking functions, the ranking measure can decide which
one is better consistently on almost all datasets. (See Definition 5 for formal description.)
Consistent distinguishability is a desired property to all ranking measures. However, it is
not a priori clear whether NDCG type ranking measures have consistent distinguishability.

Our next main result shows that although the standard NDCG always converges to
1, it can consistently distinguishes every pair of substantially different ranking functions.
Therefore, if one ignores the numerical scaling problem, standard NDCG is a good ranking
measure.

We then study NDCG with other possible discount. We characterize the class of discount
functions that are feasible for NDCG. It turns out that the Zipfian r−1 is a critical point. If
a discount function decays slower than r−1, the resulting NDCG measure has strong power
of consistent distinguishability. If a discount decays substantially faster than r−1, then it
does not have this desired property. Even more, such ranking measures do not converge as
the number of objects to rank goes to infinity.

Interestingly, this characterization result also provides a better understanding of the
cut-off version NDCG@k. In particular, it gives a theoretical explanation to the previous
question that why popular NDCG@k uses a combination of slow logarithmic decay and a
hard cut-off as its discount rather than a smooth discount which decays fast.

Finally we consider how to choose the cut-off threshold for NDCG@k from the distin-
guishability point of view. We analyze the behavior of the measure for various choices of k
as well as the discount. We suggest that choosing k as certain function of the size of the
dataset may be appropriate.

1.2. Other Related Works

The importance of NDCG as well as other ranking measures in modern search engines
is not limited as evaluation metrics. Currently ranking measures are also used as guid-
ance for design of ranking functions due to works from the learning to rank area. Al-
though early results of learning to rank often reduce ranking problem to classification or
regression (Crammer and Singer, 2002; Freund et al., 2003; Joachims, 2002; Nallapati, 2004;
Balcan et al., 2008), recently there is evidence that learning a ranking function by optimiz-
ing a ranking measure such as NDCG is a promising approach (Valizadegan et al., 2009;
Yue et al., 2007). However, using the ranking measure as objective function to optimize is
computationally intractable. Inspired by approaches in classification, some state of the art
algorithms optimize a surrogate loss instead (Burges et al., 2007; Xia et al., 2008).

In the past a few years, there is rapidly growing interest in studying consistency of learn-
ing to rank algorithms that optimize surrogate losses. Such studies are motivated by the
research of consistency of surrogate losses for classification (Zhang, 2004a; Bartlett et al.,
2006; Zhang, 2004b; Tewari and Bartlett, 2007), which is a well-established theory in ma-
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chine learning. Consistency of ranking is more complicated than classification as there are
more than one possible ranking measures. One needs to study consistency with respect to
a specific ranking measure. That is, whether the minimization of the surrogate leads to
optimal predictions according to the risk defined by the given evaluation measure.

The research of consistency for ranking was initiated in (Cossock and Zhang, 2008;
Duchi et al., 2010). In fact, Duchi et al. (2010) showed that no convex surrogate loss can
be consistent with the Pairwise Disagreement (PD) measure. This result was further gen-
eralized in (Buffoni et al., 2011; Calauzènes et al., 2012), where non-existence of convex
surrogate loss with Average Precision and Expected Reciprocal Rank were proved.

In contrast to the above negative results, Ravikumar et al. (2011) showed that there
do exist NDCG consistent surrogates. Furthermore, by using a slightly stronger notion of
NDCG consistency they showed that any NDCG consistent surrogate must be a Bregman
distance. In a sense, these results mean that NDCG is a good ranking measure from a
learning-to-rank point of view.

1.3. Organization

The rest of this paper is organized as follows. Section 2 provides basic notions and defi-
nitions. Section 3 contains the main theorems and key lemmas for the distinguishability
theorem. Proofs and experimental results are all given in Appendix A-F because of the
space.

2. Preliminaries

Let X be the instance space, and let x1, . . . , xn (xi ∈ X ) be n objects to rank. Let Y be a
finite set of degrees of relevancy. The simplest case is Y = {0, 1}, where 0 corresponds to
“irrelevant” and 1 corresponds to “relevant”. Generally Y may contain more numbers; and
for y ∈ Y, the larger y is, the more relevant it represents. Let f be a ranking function1.
We assume that f is a mapping from X to R. For each object x ∈ X , f gives it a score
f(x). For n objects x1, . . . , xn, f ranks them according to their scores f(x1), . . . , f(xn).

The resulting ranking list, denoted by xf(1), . . . , x
f
(n), satisfies f

(
xf(1)

)
≥ . . . ≥ f

(
xf(n)

)
.

Let y1, . . . , yn (yi ∈ Y) be the degree of relevancy associated with x1, . . . , xn. We will
denote by Sn = {(x1, y1), . . . , (xn, yn)} the set of data to rank. As in existing literature
(Freund et al., 2003; Clemençon et al., 2008), we assume that (x1, y1), . . . , (xn, yn) are i.i.d.

sample drawn from an underlying distribution PXY over X × Y . Also let yf(1), . . . , y
f
(n) be

the corresponding relevancy of xf(1), . . . , x
f
(n).

The following is the formal definition of NDCG. Here we give a slightly simplified version
tailored to our problem.

Definition 1 Let D(r) (r ≥ 1) be a discount function. Let f be a ranking function, and
Sn be a dataset. The Discounted Cumulative Gain (DCG) of f on Sn with discount D is

1. In this paper we assume that the ranking function is a scoring function, i.e., the function first outputs a
score for each object and then ranks them according to their scores. Indeed, a ranking function can be
defined in a more general manner: For a fixed n, it is any permutation on [n]. Scoring functions are used
in most applications. We also point out that Theorem 4 and Theorem 10 hold for any general ranking
functions.
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defined as2

DCGD(f, Sn) =

n∑
r=1

yf(r)D(r). (1)

Let the Ideal DCG defined as IDCGD(Sn) = maxf ′
∑n

r=1 y
f ′

(r)D(r) be the DCG value of the
best ranking function on Sn.

The NDCG of f on Sn with discount D is defined as

NDCGD(f, Sn) =
DCGD(f, Sn)

IDCGD(Sn)
. (2)

We call NDCG standard, if its associated discount function is the inverse logarithm
decay D(r) = 1

log(1+r) . Note that the base of the logarithm does not matter for NDCG,
since constant scaling will cancel out due to normalization. We will assume it is the natural
logarithm throughout this paper.

An important property of eq.(2) is that if a ranking function f ′ preserves the order of the
ranking function f , then NDCGD(f

′, Sn) = NDCGD(f, Sn) for all Sn. Here by preserving
order we mean that for ∀x, x′ ∈ X , f(x) > f(x′) implies f ′(x) > f ′(x′), and vice versa.
Thus the ranking measure NDCG is not just defined on a single function f , but indeed
defined on an equivalent class of ranking functions which preserve order of each other.

Below we will frequently use a special ranking function f̃ that preserves the order of f .

Definition 2 Let f be a ranking function. We call f̃ the canonical version of f , which is
defined as

f̃(x) = Pr
X∼PX

[f(X) ≤ f(x)].

The canonical f̃ has the following properties, which can be easily proved by the defini-
tion.

Lemma 3 For every ranking function f , its canonical version f̃ preserves the order of f .
In addition, f̃(X) has uniform distribution on [0, 1].

Finally, we point out that although originally the discount D(r) is defined on positive
integers r, below we will often treat D(r) as a function of a real variable. That is, we view r
take nonnegative real values. We will also consider derivative and integral of D(r), denoted
by D′(r) and

∫
D(r)dr respectively.

3. Main Results

In this section, we give the main results of the paper. In Section 3.1 we study the standard
NDCG, i.e., NDCG with logarithmic discount. In Section 3.2 we consider feasible discount
other than the standard logarithmic one. We analyze the top-k cut-off version NDCG@k in
Section 3.3. For clarity reasons, some of the results in Section 3.1, 3.2, and 3.3 are given for
the simplest case that the relevance score is binary. Section 3.4 provides complete results
for the general case.

2. Usually DCG is defined as DCGD(f, Sn) =
∑n

r=1 G(yf
(r))D(r), where G is a monotone increasing function

(e.g., G(y) = 2y − 1). Here we omit G for notational simplicity. This does not lose any generality as we
can assume that Y changes to G(Y).
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3.1. Standard NDCG

To study the behavior of the standard NDCG, we first consider the limit of this measure
when the number of objects to rank goes to infinity. As stated in Section 2, we assume the
data are i.i.d. drawn from some fixed underlying distribution. Surprisingly, it is easy to
show that for every ranking function, standard NDCG converges to 1 almost surely.

Theorem 4 Let D(r) = 1
log(1+r) . Then for every ranking function f ,

NDCGD(f, Sn) → 1, a.s.

The proof is given in Appendix E.

At the first glance, the above result is quite negative for standard NDCG. It seems to say
that in the limiting case, standard NDCG cannot differentiate ranking functions. However,
Theorem 4 only considers the limits. To have a better understanding of NDCG, we need to
make a deeper analysis of its power of distinguishability. In particular, Theorem 4 does not
rule out the possibility that the standard NDCG can consistently distinguish substantially
different ranking functions. Below we give the formal definition that two ranking functions
are consistently distinguishable by a ranking measure M.

Definition 5 Let (x1, y1), (x2, y2), . . . be i.i.d. instance-label pairs drawn from the under-
lying distribution PXY over X × Y. Let Sn = {(x1, y1), . . . , (xn, yn)}. A pair of ranking
functions f0, f1 is said to be consistently distinguishable by a ranking measure M, if there
exists a negligible function3 neg(N) and b ∈ {0, 1} such that for every sufficiently large N ,
with probability 1− neg(N),

M(fb, Sn) > M(f1−b, Sn),

holds for all n ≥ N simultaneously.

Consistent distinguishability is appealing. One would like a ranking measure M to
have the property that every two substantially different ranking functions are consistently
distinguishable by M. The next theorem shows that standard NDCG does have such a
desired property. For clarity, here we state the theorem for the simple binary relevance
case, i.e., Y = {0, 1}. It is easy to extend the result to the general case that Y is any finite
set.

Theorem 6 For every pair of ranking functions f0, f1, let y
fi(s) = Pr[Y = 1|f̃i(X) = s],

i = 0, 1. Assume yf0(s) and yf1(s) are Hölder continuous in s. Then, unless yf0(s) = yf1(s)
almost everywhere on [0, 1], f0 and f1 are consistently distinguishable by standard NDCG.

The proof is given in Appendix B.

Theorem 6 provides theoretical justification for using standard NDCG as a ranking
measure, and answers the first question raised in Introduction. Although standard NDCG
converges to the same limit for all ranking functions, it is still a good ranking measure with
strong consistent distinguishability (if we ignore the numerical scaling issue).

3. A negligible function neg(N) means that for ∀c, neg(N) < N−c for sufficiently large N .
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3.2. Characterization of Feasible Discount Functions

In the previous section we demonstrate that standard NDCG can consistently distinguish
good and bad ranking functions. In both literatures and real applications, standard NDCG
is dominant. However, there is no known theoretical evidence that the logarithmic function
is the only feasible discount, or it is the optimal one. In this subsection, we will investigate
other discount functions. We study the asymptotic behavior and distinguishability of the
induced NDCG measures and compare to the standard NDCG. Finally, we will characterize
the class of discount functions which we think are feasible for NDCG. For the sake of clarity,
the results in this subsection are given for the simplest case that Y = {0, 1}. Complete
results will be given in Section 3.4.

Standard NDCG utilizes the logarithmic discount which decays slowly. In the following
we first consider a discount that decays a little faster. Specifically we consider D(r) = r−β

(0 < β < 1). Let us first investigate the limit of the ranking measure as the number of
objects goes to infinity.

Theorem 7 Assume D(r) = r−β where β ∈ (0, 1). Assume also p = Pr[Y = 1] > 0 and
yf (s) = Pr[Y = 1|f̃(X) = s] is a continuous function. Then

NDCGD(f, Sn)
p→

(1− β)
∫ 1
0 yf (s) · (1− s)−βds

p1−β
. (3)

The proof will be given in Appendix E.

For D(r) = r−β (β ∈ (0, 1)), NDCG no longer converges to the same limit for all
ranking functions. The limit is actually a correlation between yf (s) and (1 − s)−β. For a
good ranking function f , yf (s) = Pr[Y = 1|f̃(X) = s] is likely to be an increasing function
of s, and thus has positive correlation with (1 − s)−β. Therefore, the limit of the ranking
measure already differentiate good and bad ranking functions to some extent.

We next study whether NDCG with polynomial discount has power of distinguishability
as strong as the standard NDCG. That is, we will see if Theorem 6 holds for NDCG with
r−β (β ∈ (0, 1)).

Theorem 8 Let D(r) = r−β, β ∈ (0, 1). Assume p = Pr[Y = 1] > 0. For every pair
of ranking functions f0, f1, denote yfi(s) = Pr[Y = 1|f̃i(X) = s], i = 0, 1, and ∆y(s) =
yf0(s)− yf1(s). Suppose at least one of the following two conditions hold: 1)

∫ 1
0 ∆y(s)(1−

s)−βds ̸= 0; 2) yf0(s), yf1(s) are Hölder continuous with Hölder continuity constant α
satisfying α > 3(1 − β), and ∆y(1) ̸= 0. Then f0 and f1 are strictly distinguishable with
high probability by NDCG with discount D(r).

The proof will be given in Appendix F.

Theorem 8 involves two conditions. Satisfying either of them leads to strictly distin-
guishable with high probability. The first condition simply means that NDCGD(f0, Sn) and
NDCGD(f1, Sn) converge to different limits and therefore the two functions are consistent-
ly distinguishable in the strongest sense. The second condition deals with the case that
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NDCGD(f0, Sn) and NDCGD(f1, Sn) converge to the same limit. Comparing the distin-
guishability of NDCG with r(−β) discount with the standard NDCG, in most cases r(−β)

discount has stronger distinguishability than standard NDCG (i.e., when the measures of
two ranking functions converge to different limits). On the other hand, if we consider the
worst case, standard NDCG is better, because it requires less conditions for consistent
distinguishability.

We next study the Zipfian discount D(r) = r−1. The following theorem describes the
limit of the ranking measure.

Theorem 9 Assume D(r) = r−1. Assume also p = Pr[Y = 1] > 0 and yf (s) = Pr[Y =
1|f̃(X) = s] is a continuous function. Then

NDCGD(f, Sn)
p→ Pr[Y = 1|f̃(X) = 1]. (4)

The proof of Theorem 9 will be given in Appendix E.

The limit of NDCG with Zipfian discount depends only on the performance of the
ranking function for the top ranks. The relevancy of lower ranked items does not affect the
limit.

The next logical step would be analyzing the power of distinguishability of NDCG with
Zipfian discount. However we are not able to prove that consistent distinguishability holds
for this ranking measure. The techniques developed for distinguishability theorems given
above does not apply to the Zipfian discount. Although we cannot disprove it distinguisha-
bility, we suspect that Zipfian does not have strong consistent distinguishability power.

Finally, we consider discount functions that decay substantially faster than r−1. We
will show that with these discount, NDCG does not converge as the number of objects
tends to infinity. More importantly, such NDCG does not have the desired consistent
distinguishability property.

Theorem 10 Let X be instance space. For any x ∈ X , let y∗x = argmaxy∈YPr(Y = y|X = x).
Assume that there is an absolute constant δ > 0 such that for every x ∈ X , Pr(Y = y|X =
x) ≥ δ ·Pr(Y = y∗x|X = x) for all y ∈ Y. If

∑∞
r=1D(r) ≤ B for some constant B > 0, then

NDCGD(f, Sn) does not converge in probability for any ranking function f . In particular,
if D(r) ≤ r−(1+ϵ) for some ϵ > 0, NDCGD(f, Sn) does not converge. Moreover, every pair
of ranking functions are not consistently distinguishable by NDCG with such discount.

The proof is given in Appendix E.

Now we are able to characterize the feasible discounts for NDCG according to the results
given so far. The logarithmic 1

log(1+r) and polynomial r−β (β ∈ (0, 1)) are feasible discount
functions for NDCG. For different ranking functions, standard NDCG converges to the same
limit while the r−β (β ∈ (0, 1)) one converges to different limits in most cases. However, if
we ignore the numerical scaling issue, both logarithmic and r−β (β ∈ (0, 1)) discount have
consistent distinguishability. The Zipfian r−1 discount is on the borderline. It is not clear
whether it has strong power of distinguishability. Discount that decays faster than r−(1+ϵ)

for some ϵ > 0 is not appropriate for NDCG when the data size is large.
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3.3. Cut-off Versions of NDCG

In this section we study the top-k version of NDCG, i.e., NDCG@k. For NDCG@k, the
discount function is set as D(r) = 0 for all r > k. The motivation of using NDCG@k is
to pay more attention to the top-ranked results. Logarithmic discount is also dominant for
NDCG@k. We will call this measure standard NDCG@k. As already stated in Introduction,
a natural question of standard NDCG@k is why use a combination of a very low logarithmic
decay and a hard cut-off as the discount function. Why not simply use a smooth discount
with fast decay, which seems more natural. In fact, this question has already been answered
by Theorem 10. NDCG with such discount does not have strong power of distinguishability.

We next address the issue that how to choose the cut-off threshold k. It is obvious that
setting k as a constant independent of n is not appropriate, because the partial sum of the
discount is bounded and according to Theorem 10 the ranking measure does not converge.
So k must grow unboundedly as n goes to infinity. Below we investigate the convergence
and distinguishability of NDCG@k for various choices of k and the discount function. For
clarity reason we assume here Y = {0, 1}, and general results will be given in Section 3.4.
The proofs of all theorems in this section will be given in Appendix E. We fist consider the
case k = o(n).

Theorem 11 Let Y = {0, 1}. Assume D(r) is a discount function and
∑∞

r=1D(r) is
unbounded. Suppose k = o(n) and k → ∞ as n → ∞. Let D̃(r) = D(r) for all r ≤ k and
D̃(r) = 0 for all r > k. Assume also that p = Pr[Y = 1] > 0 and yf (s) = Pr[Y = 1|f̃(X) =
s] is a continuous function. Then

NDCGD̃(f, Sn)
p→ Pr[Y = 1|f̃(X) = 1]. (5)

The limit of NDCG@k where k = o(n) is exactly the same as NDCG with Zipfian
discount. Also like the Zipfian, the distinguishability power of this NDCG@k measure is
not clear.

We next consider the case k = cn for some constant c ∈ (0, 1). We study the standard
logarithmic and the polynomial discount respectively in the following two theorems.

Theorem 12 Assume D(r) = 1
log(1+r) and Y = {0, 1}. Let k = cn for some constant

c ∈ (0, 1). Define the cut-off discount function D̃ as D̃(r) = D(r) if r ≤ k and D̃(r) = 0
otherwise. Assume also p = Pr[Y = 1] > 0 and yf (s) = Pr[Y = 1|f̃(X) = s] is a continuous
function. Then

NDCGD̃(f, Sn)
p→ c

min{c, p}
· Pr[Y = 1|f̃(X) ≥ 1− c]. (6)

Theorem 13 Assume D(r) = r−β and Y = {0, 1}, where β ∈ (0, 1). Let k = cn for some
constant c ∈ (0, 1). Define the cut-off discount function D̃(r) = D(r) if r ≤ k and D̃(r) = 0

10
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otherwise. Assume also p = Pr[Y = 1] > 0 and yf (s) = Pr[Y = 1|r(X) = s] is a continuous
function. Then

NDCGD̃(f, Sn)
p→ 1− β

(min{c, p})1−β
·
∫ 1

1−c
yf (s) · (1− s)−βds. (7)

The consistent distinguishability of the two measures considered in Theorem 12 and
Theorem 13 are similar to their corresponding full NDCG respectively. To be precise, for
NDCG@k (k = cn) with logarithmic discount and NDCG@k with r−β (β ∈ (0, 1)) discount,
consistent distinguishability holds under the condition given in Theorem 6 and Theorem 8
respectively. Hence these two cut-off versions NDCG are feasible ranking measures.

3.4. Results for General Y

Some theorems given so far assume Y = {0, 1}. Here we give complete results for the
general case that |Y| ≥ 2, and Y = {y1, . . . , y|Y|}. We only state the theorems and omit
the proofs, which are straightforward modifications of the special case Y = {0, 1}. The case
D(r) = 1

log(1+r) has already been included in Theorem 4. It always converges to 1 whatever

the ranking function is. We next consider r−β decay.

Theorem 14 Assume D(r) = r−β with β ∈ (0, 1). Suppose that Y = {y1, . . . , y|Y|}, where
y1 > . . . > y|Y|. Assume f(X) ∈ [a, b]; f(X) has a probability density function such that

P(f(X) = s) > 0 for all s ∈ [a, b]; Pr(Y = yj) > 0 and Pr(Y = yj |f̃(X) = s) is a continuous
function of s for all j. Then

NDCGD(f, Sn)
p−→

(1− β)
∫ 1
0 E[Y |f̃(X) = s](1− s)−βds∑|Y|
j=1 yj(R

1−β
j −R1−β

j−1 )

where R0 = 0; Rj = Pr(Y ≥ yj).

The next theorem is for top-k type NDCG measures, where k = o(n).

Theorem 15 Suppose that Y = {y1, . . . , y|Y|}, where y1 > . . . > y|Y|. Assume D(r) and

k grow unboundedly and k/n = o(1). For any n, let D̃(r) = D(r) if r ≤ k and D̃(r) =
0 otherwise. Assume f(X) ∈ [a, b]; f(X) has a probability density function such that
P(f(X) = s) > 0 for all s ∈ [a, b]; Pr(Y = yj) > 0 and Pr(Y = yj |f(X) = s) is a
continuous function of s for all j. Then

NDCGD̃(f, Sn)
p−→ 1

y1
· E[Y |f̃(X) = 1].

The last two theorems are for top-k, where k/n = c. We consider both logarithm
discount and polynomial discount separately.

11
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Theorem 16 Suppose that Y = {y1, . . . , y|Y|}, where y1 > . . . > y|Y|. Let k/n = c for

some constant c > 0. Let D(r) = 1
log(1+r) . For any n, let D̃(r) = D(r) if r ≤ k and

D̃(r) = 0 otherwise. Assume f(X) ∈ [a, b]; f(X) has a probability density function such
that P(f(X) = s) > 0 for all s ∈ [a, b]; Pr(Y = yj) > 0 and Pr(Y = yj |f(X) = s) is a
continuous function of s for all j. Then

NDCGD̃(f, Sn)
p−→ c · E[Y |f̃(X) ≥ 1− c]∑t

j=1 yj(Rj −Rj−1) + yt+1(c−Rt)
.

where R0 = 0; Rj = P(Y ≥ yj); t is defined by Rt < c ≤ Rt+1.

Theorem 17 Let D(r) = r−β with β ∈ (0, 1), and D̃(r) = D(r) if r ≤ k and D̃(r) = 0
otherwise. Using the same notions and under the same conditions as in Theorem 16

NDCGD̃(f, Sn)
p−→

(1− β)
∫ 1
1−c E[Y |f̃(X) = s](1− s)−βds∑t

j=1 yj(R
1−β
j −R1−β

j−1 ) + yt+1(c1−β −R1−β
t )

.
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Appendix A. Experimental Results

All theoretical results in this paper are proved under the assumption that the objects to
rank are i.i.d. data. Often in real applications the data are not strictly i.i.d or even not
random. Here we conduct experiments on a real dataset — Web search data. The aim is
to see to what extent the behavior of the ranking measures on real datasets agree with our
theory obtained under the i.i.d. assumption.

The dataset we use contains click-through log data of a search engine. We collected the
clicked documents for 40 popular queries as test set, which are regarded as 40 independent
ranking tasks. In each task, there are 5000 Web documents with clicks. To avoid heavy
work of human labeling, we simply label each document by its click number according to
the following rule. We assign relevancy y = 2 to documents with more than 1000 clicks, 1
to those with 100 to 1000 clicks, and 0 to the rest. In each task, we extracted 40 features for
each item representing its relevance to the given query. A detail is how to construct Sn. In
our theoretical analysis we assume Sn contains i.i.d. data. Since the goal of the experiments
is to see how our theory works for real applications, we construct Sn as follows. For each
query, there are totally 5000 documents which we denote by x1, . . . , x5000. Assume each
document has a generating time. Without loss of generality we assume x1 was generated
earliest and x5000 latest. We set Sn = {(x1, y1), . . . , (xn, yn)} for each 1 ≤ n ≤ 5000. Such a
construction simulates that in reality there may be increasing number of documents needed

12
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Figure 1: Standard NDCG: Converges to the same limit but distinguishes well the ranking
functions.

to rank by a search engine over time. We use three ranking functions in the experiments:
a trained RankSVM model (Herbrich et al., 1999), a trained ListNet model (Cao et al.,
2007), and a function chosen randomly. To be concrete, the random function is constructed
as follows. For each x ∈ X , we set f(x) by choosing a number uniformly random from
[−1, 1]. For the trained models (i.e., listNet and RankSVM), parameters are learned from
a separate large training set construct in the same manner as the test set. Clearly, ListNet
and RankSVM are relatively good ranking functions and the random function is bad.

We analyze the following typical NDCG type ranking measures by experiments:

• Standard NDCG: D(r) = 1
log(1+r) . See Figure 1, Theorem 4 and Theorem 6.

• NDCG with a feasible discount function: D(r) = r−1/2. See Figure 2, Theorem 7 and
Theorem 8.

• NDCG with too fast decay: D(r) = 2−r. See Figure 3 and Theorem 10.

• NDCG@k: k = n/5; D(r) = 1
log(1+r) . See Figure 4 and Theorem 12.

Figure 1 agrees well with Theorem 4 and Theorem 6. On the one hand, the NDCG
measures of the three ranking functions are very close and seem to converge to the same
limit. On the other hand, one can see from the enlarged part (we enlarge and stretch the
vertical axis) in the figure that in fact the measures distinguish well the ranking functions.

Figure 2 demonstrates the result of NDCG with the feasible discount r−1/2. In this
experiment, it seems that the ranking measures of the three ranking functions converge to
different limits and therefore distinguish them very well. In our experimental setting, it is
not easy to find two ranking functions whose NDCG measures converge to the same limit.

13
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Figure 2: NDCG with feasible discount D(r) = r−1/2: converges to different limits and
distinguishes well the ranking functions.
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Figure 3: NDCG with too fast decay D(r) = 2−r: does not converge; does not have good
distinguishability power either.
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Figure 4: NDCG@k (D(r) = 1
log(1+r) , k = n/5): distinguishes well the ranking functions.

If one can find such a pair of ranking functions, it would be interesting to see how well the
measure distinguish them.

Figure 3 shows the behavior of NDCG with a smooth discount which decays too fast.
The measure cannot distinguish the three ranking functions very well. Even the randomly
chosen function has an NDCG score similar to those of RankSVM and ListNet. From the
figure, it is also likely that the measures do not converge.

Figure 4 depicts the result of NDCG@k, where k is a constant proportion of n. Before
describing the result, let us first comparing Theorem 12 and Theorem 4. Note that although
the discount are both the logarithmic one, NDCG@k for k = cn can converge to different
limits for different ranking functions, while standard NDCG always converges to 1. Figure
4 clearly demonstrate this result.

Appendix B. Proof of Theorem 6: the Key Lemmas

In this section we will prove Theorem 6. In fact we will prove a more complete result. The
proof relies on a few key lemmas. In this section we only state these lemmas. Their proofs
will be given in Appendix C. First we give a weaker definition of distinguishability, which
guarantees that the ranking measure M gives consistent comparison results for two ranking
functions only in expectation.

Definition 18 Fix an underlying distribution PXY . A pair of ranking functions f0, f1 is
said to be distinguishable in expectation by a ranking measure M, if there exist b ∈ {0, 1}
and a positive integer N such that for all n ≥ N ,

E
[
M(fb, Sn)

]
> E

[
M(f1−b, Sn)

]
,

where the expectation is over the random draw of Sn.
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Now we state a theorem which contains Theorem 6.

Theorem 19 Assume that p = Pr(Y = 1) > 0. For every pair of ranking functions
f0, f1, Let yfi(s) = Pr[Y = 1|f̃i(X) = s], i = 0, 1. Unless yf0(s) = yf1(s) almost surely
on [0, 1], f0, f1 are distinguishable in expectation by standard NDCG whose discount is
D(r) = 1

log(1+r) .

Moreover, if yf0(s) and yf1(s) are Hölder continuous in s, then unless yf0(s) = yf1(s)
almost everywhere on [0, 1], f0 and f1 are consistently distinguishable by standard NDCG.

To prove Theorem 19, we need some notations.

Definition 20 Suppose Y = {0, 1}. Let yf (s) = Pr[Y = 1|f̃(X) = s]. Also let F (t) =∫ t
1 D(s)ds. We define the unnormalized pseudo-expectation Ñf

D(n) as

Ñf
D(n) =

∫ n

1
yf (1− s/n)D(s)ds = n

∫ 1

1
n

yf (1− s)D(ns)ds.

Assume that p = Pr(Y = 1) > 0. Define the normalized pseudo-expectation Nf
D(n) as

Nf
D(n) =

Ñf
D(n)

F (np)
.

The proof of the first part of Theorem 19 (i.e., distinguishable in expectation) relies on
the following two key lemmas, whose proofs will be given in Appendix C.

Lemma 21 Let D(r) = 1
log(1+r) . Assume that p = Pr(Y = 1) > 0. Then for every ranking

function f , ∣∣∣E[NDCGD(f, Sn)]−Nf
D(n)

∣∣∣ ≤ Õ
(
n−1/3

)
.

Lemma 22 Let D(r) = 1
log(1+r) . Assume that p = Pr(Y = 1) > 0. let yfi(s) = Pr[Y =

1|f̃i(X) = s], i = 0, 1. Unless yf0(·) = yf1(·) almost everywhere on [0, 1], there must exist a
nonnegative integer K and a constant a ̸= 0, such that∣∣∣∣∣Nf0

D (n)−Nf1
D (n)− a

logK n

∣∣∣∣∣ ≤ O

(
1

logK+1 n

)
.

Lemma 21 says that the difference between the expectation of the NDCG measure of a
ranking function and its pseudo-expectation is relatively small; while Lemma 22 says that
the difference between the pseudo-expectations of two essentially different ranking functions
are much larger.

To prove the “moreover” part of Theorem 19 (i.e., consistently distinguishable), we
need the following key lemma, whose proof will be given in Section C. The lemma states
that with high probability the NDCG measure of a ranking function is very close to its
pseudo-expectation.
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Lemma 23 Let D(r) = 1
log(1+r) . Assume that p = Pr(Y = 1) > 0. Suppose the ranking

function f satisfies that yf (s) = Pr(Y = 1|f̃(X) = s) is Hölder continuous with constants
α > 0 and C > 0. That is, |yf (s)− yf (s′)| ≤ C|s− s′|α for all s, s′ ∈ [0, 1]. Then

Pr

[∣∣∣NDCGD(f, Sn)−Nf
D(n)

∣∣∣ ≥ 5Cp−1n−min(α/3,1)

]
≤ O

(
e−n1/4

)
.

Proof of Theorem 19 That f0 and f1 are strictly distinguishable in expectation by stan-
dard NDCG is straightforward from Lemma 21 and Lemma 22. That f0 and f1 are strictly
distinguishable with high probability follows immediately from Lemma 23, Lemma 22 and

the observation that
∑

n≥N e−n1/4 ≤ O
(
N3/4e−N1/4

)
≤ O

(
e−N1/5

)
.

Appendix C. Proofs of the Key Lemmas in Appendix B

In this section, we give proofs of the three key lemmas in Appendix B (i.e., Lemma 21,
Lemma 22 and Lemma 23) used to prove Theorem 6 and Theorem 19.

To prove the key lemmas, we need a few technical claims, whose proofs will be given in
Appendix D. We first give four claims that will be used in the proof of Lemma 21.

Claim 24 For any s ∈ [0, 1],

n∑
r=1

P
[
f̃(xf(r)) = s

]
= n. (8)

Claim 25 Recall that the DCG ranking measure with respect to discount D(·) was defined
as

DCGD(f, Sn) =

n∑
r=1

yf(r)D(r). (9)

Let D(r) = 1
log(1+r) , and yf (s) = Pr[Y = 1|f̃(X) = s]. Then

E [DCGD(f, Sn)] =
n∑

r=1

1

log(1 + r)

∫ 1

0
P
[
f̃(xf(r)) = 1− s

]
yf (1− s)ds. (10)

Claim 26 For any positive integer n, define En,r = [ rn − n−1/3, r
n + n−1/3] (r ∈ [n]). Then

for any r ∈ [n],

Pr
[
1− f̃(xf(r)) ∈ En,r

]
≥ 1− 2e−n1/3

. (11)

Claim 27 Let Y = {0, 1}. Assume D(r) = 1
log(1+r) . Let F (t) =

∫ t
1 D(s)ds. Assume also

p = Pr[Y = 1] > 0. Then for every sufficiently large n, with probability (1 − 2e−2n1/3
) the

following inequality holds.∣∣∣∣∣NDCGD(f, Sn)−
DCGD(f, Sn)

F (np)

∣∣∣∣∣ ≤ O
(
n−1/3

)
. (12)
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Now we are ready to prove Lemma 21.

Proof of Lemma 21. By the definition of Ñf
D(n) (see Definition 20) and eq.(8), we have

Ñf
D(n) = n

∫ 1

1
n

yf (1− s)ds

log(1 + ns)
=

n∑
r=1

∫ 1

1
n

yf (1− s)P[f̃(xf(r)) = 1− s]

log(1 + ns)
ds. (13)

By eq. (10) in Claim 25 and eq.(13), and note that yf (s) ≤ 1, we obtain∣∣∣E[DCGD(f, Sn)]− Ñf
D(n)

∣∣∣
≤

n∑
r=1

∣∣∣∣∣
∫ 1

1
n

yf (1− s)P
[
f̃(xf(r)) = 1− s

]( 1

log(1 + r)
− 1

log(1 + ns)

)
ds

∣∣∣∣∣+ 1

n

n∑
r=1

1

log(1 + r)

≤
n∑

r=1

∣∣∣∣∣
∫
[ 1
n
,1]\En,r

P
[
f̃(xf(r)) = 1− s

] ∣∣∣∣ 1

log(1 + r)
− 1

log(1 + ns)

∣∣∣∣ ds
+

n∑
r=1

∫
En,r∩[ 1n ,1]

∣∣∣∣∣ 1

log(1 + r)
− 1

log(1 + ns)

∣∣∣∣∣ds+O

(
1

log n

)
. (14)

We next bound the two terms in the RHS of the last inequality of (14) separately. By
Claim 26, the first term can be upper bounded by

2e−n1/3
n∑

r=1

sup
s∈[ 1

n
,1]\En,r

∣∣∣∣∣ 1

log(1 + r)
− 1

log(1 + ns)

∣∣∣∣∣ ≤ 2

log 2
ne−2n1/3

. (15)

For the second term in the RHS of the last inequality of (14), it is easy to check that the
following two inequalities hold:

∀r > n2/3, sup
s∈En,r∩[ 1n ,1]

∣∣∣∣∣ 1

log(1 + r)
− 1

log(1 + ns)

∣∣∣∣∣ ≤ n2/3

(1 + r) log2(1 + r)
+ o

(
n2/3

(1 + r) log2(1 + r)

)
.

(16)

∀r ≤ n2/3, sup
s∈En,r∩[ 1n ,1]

∣∣∣∣∣ 1

log(1 + r)
− 1

log(1 + ns)

∣∣∣∣∣ ≤ 1

log 2
. (17)

Combining (14), (15), (16) and (17), we obtain

∣∣∣E[DCGD(f, Sn)]− Ñf
D(n)

∣∣∣ ≤ 2ne−2ne1/3

log 2
+O

 n2/3

log 2
+

n∑
r=n2/3

n2/3

(1 + r) log2(1 + r)

 ≤ Õ
(
n2/3

)
.

(18)
Finally, observe that F (np) = Li(1+np), where Li is the offset logarithmic integral func-

tion. By Claim 27 and the well-known fact Li(n) ∼ n
logn , we have the following inequality

and this completes the proof.∣∣∣∣∣E[NDCGD(f, Sn)]−
E[DCGD(f, Sn)]

Li(1 + np)

∣∣∣∣∣ ≤ Õ
(
n−1/3

)
+O

(
e−2n1/3

)
. (19)
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We next turn to prove Lemma 22. We need the following three claims.

Claim 28 For sufficiently large n,∫ 2
n

0
logk xdx = O

(
logk n

n

)
. (20)

Claim 29 Fix an integer k ∈ N∗ = {0} ∪ N. For sufficiently large n,

∫ 1

2
n

∣∣∣ logk x∣∣∣dx
(log(nx))k+1

≤ O

(
1

logk+1 n

)
. (21)

Claim 30 span
(
{logk x}k≥0

)
, is dense in L2[0, 1].

Now we are ready to prove Lemma 22.

Proof of Lemma 22. Let ∆y(s) = yf0(s)−yf1(s). By the definition of normalized pseudo
expectation (see definition 20) and the fact that |∆y(s)| ≤ 1, we have

Nf0
D (n)−Nf1

D (n) =
n

Li(1 + np)

∫ 1

1
n

∆y(1− s)ds

log(1 + ns)

=
n

Li(1 + np)

∫ 1

2
n

∆y(1− s)ds

log(1 + ns)
+O

(
1

Li(n)

)
. (22)

Expanding 1
log(1+ns) at the point ns, we obtain∣∣∣∣∣
∫ 1

2
n

∆y(1− s)ds

log(1 + ns)
−
∫ 1

2
n

∆y(1− s)ds

log n+ log s

∣∣∣∣∣ ≤
∫ 1

2
n

ds

ns log2(ns)
≤ O

(
log n

n

)
. (23)

Expanding 1
logn+log s at point log n, we have that for all m ∈ N∗, the following holds:∣∣∣∣∣
∫ 1

2
n

∆y(1− s)ds

log n+ log s
−

m∑
j=1

(−1)j−1

logj n

∫ 1

2
n

∆y(1− s) logj−1 s ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

2
n

∆y(1− s) logm sds

(log n+ ξn,s)m+1

∣∣∣∣∣ ≤
∫ 1

2
n

∣∣∣∆y(1− s) logm s
∣∣∣ds

(log n+ log s)m+1
≤ O

(
1

logm+1 n

)
. (24)

Note in above derivation that ξn,s ∈ (log s, 0)), and the last inequality is due to Claim 29.
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Furthermore, by Claim 30, unless ∆y(s) = 0 a.e., there exist constants k ∈ N∗ and a ̸= 0
such that

(−1)k
∫ 1

0
∆y(1− s) logk s ds = a. (25)

Let K be the smallest integer k that Eq. (25) holds. Combining (22), (23), (24), and (25)
and noting Claim 28, we have the following and this completes the proof.∣∣∣∣∣Nf0

D (n)−Nf1
D (n)− a

logK n

∣∣∣∣∣ ≤ O

(
logK n

n

)
+O

(
1

logK+1 n

)
.

To prove the last key lemma, we need the following claim.

Claim 31 Let D(r) = 1
log(1+r) . Let F (t) =

∫ t
1 D(r)dr. Assume yf (s) is Hölder continuous

with constants α and C. Then∣∣∣ n∑
r=1

yf (1− r/n)Dr − Ñf
D(n)

∣∣∣ ≤ Cn−α/3F (n) +D(1) + |D′(1)|. (26)

Now we prove the last key lemma.

Proof of Lemma 23. Let x1, · · · , xn be instances i.i.d. drawn according to PX . Let
x̃(r) = f̃(xf(r)) and by definition x̃(1) ≥ x̃(2) ≥ · · · ≥ x̃(n). By Chernoff bound, for every r

with probability 2e−2n1/3
we have |x̃(r) − (1 − r/n)| > n−1/3. A union bound over r then

yields

Pr
[
∀r ∈ [n],

∣∣∣x̃(r) − (1− r

n

) ∣∣∣ ≤ n−1/3
]
≥ 1− 2ne−2n1/3

. (27)

Since yf is Hölder continuous with constants α and C, eq. (27) implies

Pr

[∣∣∣ n∑
r=1

yf (x̃(r))D(r)−
n∑

r=1

yf (1− r/n)D(r)
∣∣∣ ≤ Cn−α/3 ·

n∑
r=1

D(r)

]
≥ 1− 2ne−2n1/3

.

(28)
Combining Claim 31 and eq. (28), and note that |D′(1)|+D(1) ≤ 10 we have

Pr

[∣∣∣ n∑
r=1

yf (x̃(r))D(r)− Ñf
D(n)

∣∣∣ ≤ 2Cn−α/3 · F (n) + 10

]
≥ 1− 2ne−2n1/3

. (29)

Fix x1, . . . , xn. Let xf(1), . . . , x
f
(n) be the induced ordered sequence. Also let x̃(r) =

f̃(xf(r)). Recall that y
f (s) = E[Y |f̃(X) = s]. Thus

∑n
r=1 y

f (x̃(r))D(r) is the expectation of

DCGD(f, Sn) =
∑n

r=1 y
f
(r)D(r) conditioned on the fixed values x̃(1), . . . , x̃(n). Also observe

that conditioning on x̃(1), . . . , x̃(n), yf(r) (r = 1, . . . , n) are independent. By Hoeffding’s
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inequality and taking into consideration that x1, . . . , xn are arbitrary and (D(r))2 ≤ D(r)
for all r, we have for every ϵ > 0

Pr

[∣∣∣∣∣DCGD(f, Sn)−
n∑

r=1

yf (x̃(r))D(r)

∣∣∣∣∣ ≥ ϵ

]
≤ 2 exp

(
− 2ϵ2

F (n)

)
. (30)

Set ϵ = F (n)2/3 in eq. (30) and combine eq. (29), we have

Pr
[∣∣∣DCGD(f, Sn)− Ñf

D(n)
∣∣∣ > 2Cn−α/3F (n) + 2F (n)2/3

]
≤ 2ne−2n1/3

+ 2e−2F (n)1/3 .

(31)
Simple calculations yields

Pr

[∣∣∣∣∣DCGD(f, Sn)

F (np)
−Nf

D(n)

∣∣∣∣∣ > 4Cp−1n−min(α/3,1)

]
≤ 2ne−2n1/3

+ 2e−2F (n)1/3 . (32)

Combining eq. (12) and (32) The lemma follows.

Appendix D. Proof of the Technical Claims in Appendix C

Here we give proofs of the technical claims by which we prove the three key lemmas in
Section C.

Proof of Claim 24.
Recall that for each i ∈ [n], f̃(xi) is uniformly distributed on [0, 1]; and xf(1), . . . , x

f
(n)

are just reordering of x1, . . . , xn. Thus

n∑
r=1

P
[
f̃(xf(r)) = s

]
=

n∑
i=1

P
[
f̃(xi) = s

]
= n.

Proof of Claim 25.
We have

E [DCGD(f, Sn)] =
n∑

r=1

D(r)E
[
yf(r)

]
=

n∑
r=1

1

log(1 + r)
E
[
E
[
yf(r)|f̃(x

f
(r))
]]

=
n∑

r=1

1

log(1 + r)

∫ 1

0
P
[
f̃(xf(r)) = s

]
yf (s)ds. (33)
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Proof of Claim 26. Just observe that f̃(xf(r)) is the r-th order statistic (r-th largest) of

n uniformly distributed random variables on [0, 1]. Chernoff bound yields the result.

Proof of Claim 27.
Let l =

∑
(x,y)∈Sn

I[y = 1] be the number of y = 1 in Sn. Since Sn is sampled i.i.d. and
Pr[Y = 1] = p, by Chernoff bound we have

Pr
[∣∣∣l/n− p

∣∣∣ > n−1/3
]
≤ 2e−2n1/3

. (34)

Thus with probability at least 1− 2e−2n1/3

∣∣∣∣∣NDCGD(f, Sn)−
DCGD(f, Sn)

F (np)

∣∣∣∣∣
=

∣∣∣∣∣DCGD(f, Sn)

l
− DCGD(f, Sn)

F (np)

∣∣∣∣∣
≤ DCGD(f, Sn) ·max

(∣∣∣∣ 1

F (n(p− n−1/3))
− 1

F (np)

∣∣∣∣ , ∣∣∣∣ 1

F (n(p+ n−1/3))
− 1

F (np)

∣∣∣∣
)
.

Recall that F (t) =
∫ t
1

1
log(1+r)dr, p > 0; and observe that DCGD(f, Sn) ≤ F (n). Taylor

expansion of 1
F ((p±n−1/3)n)

at np and some simple calculations yields the result.

Proof of Claim 28.
Integration by part we have,∫

logk xdx = k!

k∑
j=0

(−1)k−j x log
j x

j!
+ C. (35)

The claim follows.

Proof of Claim 29.
Changing variable by letting x = n−t we have

∫ 1

2
n

∣∣∣ logk x∣∣∣dx
(log(nx))k+1

=

∫ 1− log 2
logn

0

tk

(1− t)k+1
e−t logndt

=

∫ 1/2

0

tk

(1− t)k+1
e−t logndt+

∫ 1− log 2
logn

1/2

tk

(1− t)k+1
e−t logndt. (36)
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Now we upper bound the two terms in the last line of eq. (36) separately. For the first
term we have ∫ 1/2

0

tk

(1− t)k+1
e−t logndt ≤ 2k+1

∫ 1/2

0
tke−t logndt

≤ 2k+1

(log n)k+1

∫ ∞

0
τke−τdτ ≤ 2k+1Γ(k + 1)

(log n)k+1

= O

(
1

(log n)k+1

)
, (37)

where Γ is the gamma function, and the last inequality is due to that k is a fixed integer.
For the second term we have∫ 1− log 2

logn

1/2

tk

(1− t)k+1
e−t logndt ≤

(
log n

log 2

)k+1 ∫ 1

1/2
e−t logndt

≤ 1

2
· 1√

n
·

(
log n

log 2

)k+1

= Õ

(
1√
n

)
, (38)

where in Õ we hide the polylog(n) terms.
Combining (37) and (38) we complete the proof.

Proof of Claim 30.
We only need to show that for any f ∈ L2[0, 1], if∫ 1

0
f(x) logk xdx = 0, k = 0, 1, . . . (39)

then f = 0 a.e. on [0, 1].
Let t = − log x, then eq.(39) becomes∫ ∞

0
f(e−t)tke−tdt = 0, k = 0, 1, . . .

Note that Laguerre polynomials form a complete basis of L2[0,∞) (cf. (Sansone, 1959),
p.349) , thus {tk}k≥0 is complete in L2[0,∞) with respect to measure e−t. The claim fol-
lows.
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Proof of Claim 31.∣∣∣ n∑
r=1

yf (1− r/n)D(r)− Ñf
D(n)

∣∣∣
=

∣∣∣ n∑
r=1

yf (1− r/n)D(r)−
∫ n

1
yf (1− s/n)D(s)ds

∣∣∣
=

∣∣∣ n−1∑
r=1

∫ r+1

r

(
yf (1− r/n)D(r)− yf (1− s/n)D(s)

)
ds
∣∣∣+ yf (0)D(n)

≤
∣∣∣ n−1∑
r=1

∫ r+1

r
yf (1− s/n)(D(r)−D(s))ds

∣∣∣
+

n−1∑
r=1

∫ r+1

r

∣∣∣yf (1− r/n)− yf (1− s/n)
∣∣∣D(r)ds+ yf (0)D(n)

≤
n−1∑
r=1

∫ r+1

r

∣∣∣D(r)−D(s)
∣∣∣ds+ Cn−α/3

n−1∑
r=1

D(r) +D(n)

≤
n−1∑
r=1

|D′(r)|+ Cn−α/3F (n) +D(n)

≤ Cn−α/3F (n) + |D′(1)|+
n∑

r=2

|D′(r)|+D(n)

≤ Cn−α/3F (n) + |D′(1)|+D(1)−D(n) +D(n)

= Cn−α/3F (n) + |D′(1)|+D(1).

Note that the sixth and the seventh line are both because |D′(r)| is monotone decreasing;
and second line from bottom is because D(r) is monotone decreasing.

Appendix E. Proof of the Convergence Theorems

In this section we give the proof of the theorems considering convergence of NDCG with
various discount and cut-off.

First we give the proof of Theorem 4, i.e., the standard NDCG converges to 1 almost
surely for every ranking function.

Proof of Theorem 4. For notational simplicity we only prove for the case Y = {0, 1}.
Generalization is straightforward. Recall that Sn = {(x1, y1), · · · , (xn, yn)} consists of n
i.i.d. instance-label pairs drawn from an underlying distribution PXY . Let p = Pr(Y = 1).
Also let l =

∑n
i=1 yi. If p = 0, the theorem trivially holds. Suppose p > 0, by Chernoff

bound we have

Pr

(∣∣∣∣ ln − p

∣∣∣∣ > n−1/3

)
≤ 2e−2n1/3

.
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For fixed n, conditioned on the event that
∣∣ l
n − p

∣∣ ≤ n−1/3, by the definition of NDCG, it
is easy to see that

NDCGD(f, Sn) =

∑n
r=1 y

f
(r)

1
log(1+r)∑l

r=1
1

log(1+r)

≥
∑n

r=n−l+1
1

log(1+r)∑l
r=1

1
log(1+r)

≥ Li(n+ 1)− Li(n(1− p+ n−1/3) + 1)

Li(n(p+ n−1/3) + 1)
− o(1)

≥ 1− o(1), (40)

where Li(t) =
∫ t
2

dτ
log τ is the offset logarithmic integral function; and the last step in eq.(40)

is due to the well-known fact that Li(t) ∼ t
log t . Thus for any ϵ > 0, and for any sufficiently

large n, conditioned on the event that
∣∣ 1
n

∑n
i=1 yi − p

∣∣ ≤ n−1/3, we have

NDCGD(f, Sn) ≥ 1− ϵ.

Also recall that NDCGD(f, Sn) ≤ 1. We have, for any ϵ > 0 and every sufficiently large n

Pr (|NDCGD(f, Sn)− 1| ≥ ϵ) ≤ 2e−2n1/3
.

Since
∑

n≥1 2e
−2n1/3

< ∞, by Borel-Cantelli lemma NDCGD(f, Sn) converges to 1 almost
surely.

Next we give details of the other feasible discount functions as well as the cut-off versions.
In particular, we provide proofs of Theorems 7, 9, 11, 12, 13. The proofs of these five
theorems are quite similar. We only prove Theorem 7 to illustrate the ideas. The proof of
the other four theorems require only minor modifications.

The proof of Theorem 7 relies on the following lemma, which is similar to Lemma 23.

Lemma 32 Let D(r) = r−β for some β ∈ (0, 1). Assume that p = Pr(Y = 1) > 0. If the
ranking function f satisfies that yf (s) = Pr(Y = 1|f̃(X) = s) is continuous, then for every
ϵ > 0 the following inequality holds for all sufficiently large n:

Pr
[∣∣∣NDCGD(f, Sn)−Nf

D(n)
∣∣∣ ≥ 5p−1ϵ

]
≤ o(1).

Proof of Theorem 7. The theorem follows from Lemma 32 and simple calculations of
limn→∞Nf

D(n). We omit the details.

Proof of Lemma 32. The proof is simple modification of the proof of Lemma 23. Note
that the difference of Lemma 32 from Lemma 23 is that here we do not assume yf is Hölder
continuous. We only assume it is continuous.

Next observe that Claim 31 holds for D(r) = r−β (0 < β < 1) as well. Because in the
proof of Claim 31, we only use two properties of D(r). That is, D(r) is monotone decreasing
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and |D′(r)| is monotone decreasing. Clearly D(r) = r−β satisfies these properties. But here
yf (s) is merely continuous rather than Hölder continuous. Thus we have a modified version
of Claim 31. That is, for every ϵ > 0, the following holds for all sufficiently large n:∣∣∣ n∑

r=1

yf (1− r/n)D(r)− Ñf
D(n)

∣∣∣ ≤ ϵF (n) +D(1) + |D′(1)|.

The rest of the proof are almost identical to Lemma 23. We omit the details.

Finally, we give the proof of Theorem 10, i.e., if the discount decays substantially faster
than r−1, then the NDCG measure does not converge. Moreover, every pair of ranking
functions are not strictly distinguishable with high probability by the measure.

Proof of Theorem 10. For notational simplicity we give a proof for |Y| = 2 and Y =
{0, 1}. It is straightforward to generalize it to other cases.

In fact, we only need to show that for every ranking function f , there are constants
a, b, c > 0 with a > b, such that for all sufficiently large n,

Pr[NDCGD(f, Sn) ≥ a] ≥ c

and
Pr[NDCGD(f, Sn) ≤ b] ≥ c

both hold. Once we prove this, by definition the ranking measure does not converge (in
probability). Also, it is clear that for every pair of ranking functions, there is at least a
constant probability that the ranking measure of the two functions are “overlap”. Therefore
distinguishability is not possible.

For sufficiently large n, fix any x1, . . . , xn. According to the assumption, the probability
that the top-ranked m data all have label 1 is at least (δ/2)m, where m is the minimal
integer such that

m∑
r=1

D(r) ≥ 2

3

∞∑
r=1

D(r).

Clearly we have

Pr

(
NDCGD(f, Sn) ≥

2

3

∣∣∣∣ x1, . . . , xn
)

≥ (δ/2)m.

On the other hand, the probability that the top-ranked m elements all have label 0 and
there are at least m elements in the list that have label 1 is at least (δ/2)2m. Note that∑n

r=m+1D(r)∑m
r=1D(r)

≤ 1

2
.

Thus we have

Pr[NDCGD(f, Sn) ≤
1

2
| x1, . . . , xn] ≥ (δ/2)2m.

Since x1, . . . , xn are arbitrary, the theorem follows.

26



Short Title

Appendix F. Proof of Distinguishability for NDCG with r−β (β ∈ (0, 1))
Discount

Here we give the proof of Theorem 8, i.e., NDCG with r−β (0 < β < 1) discount has the
power of distinguishability.

Proof of Theorem 8. The proof of distinguishability for polynomial discount is much eas-
ier than that of the logarithmic discount, because in the former case the pseudo-expectation
has very simple form. If f0 and f1 satisfy the first condition

∫ 1
0 ∆y(s)(1− s)−βds ̸= 0, then

the theorem is trivially true since NDCG(f0, Sn) and NDCG(f1, Sn) converge to different
limits. So we only need to prove the theorem assuming that

∫ 1
0 ∆y(s)(1−s)−βds = 0 and the

second condition holds. The proof is similar to Theorem 6 by using the pseudo-expectation.
We have the the next two lemmas for discount D(r) = r−β, β ∈ (0, 1).

Lemma 33 Let D(r) = r−β, β ∈ (0, 1). Suppose that yf0(s) and yf1(s) are continuous.
Also assume that

∫ 1
0 ∆y(s)(1− s)−βds = 0 and ∆y(1) ̸= 0. Then we have∣∣∣Nf0

D (n)−Nf1
D (n)

∣∣∣ ≥ ∣∣∣∆y(1)

2p1−β

∣∣∣ · n−(1−β). (41)

Proof

Nf0
D (n)−Nf1

D (n) =
n

F (np)

∫ 1

1/n
∆y(1− s) · (ns)−βds

=
1− β

p1−β

∫ 1

1/n
∆y(1− s) · s−βds

= −1− β

p1−β

∫ 1/n

0
∆y(1− s) · s−βds.

Since ∆y is continuous, for any δ > 0 there exists ϵ > 0 such that for all x ∈ [1 − ϵ, 1],
|∆y(x)−∆y(1)| ≤ δ. Consequently, for sufficiently large n,∣∣∣ ∫ 1/n

0
∆y(1− s) · s−βds−∆y(1) ·

∫ 1/n

0
s−βds

∣∣∣ ≤ δ ·
∫ 1/n

0
s−βds.

Let δ = ∆y(1)/2, we then have∣∣∣ ∫ 1/n

0
∆y(1− s) · s−βds− ∆y(1)

1− β
· n−(1−β)

∣∣∣ ≤ ∆y(1)

2(1− β)
· n−(1−β).

The lemma follows.

Lemma 34 Let D(r) = r−β, β ∈ (0, 1). Assume that p = Pr(Y = 1) > 0. If the ranking
function f satisfies that yf (s) = Pr(Y = 1|f̃(X) = s) is Hölder continuous with constants
α > 0 and C > 0 That is, |yf (s)− yf (s′)| ≤ C|s− s′|α for all s, s′ ∈ [0, 1]. Then

Pr

[∣∣∣NDCGD(f, Sn)−Nf
D(n)

∣∣∣ ≥ 5Cp−1n−min(α/3,1)

]
≤ O

(
e−n(1−β)/3

)
.
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Proof The proof is almost the same as the proof of Lemma 23

The theorem follows immediately from Lemma 33 and Lemma 34.
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