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Abstract

We study a decomposition-based scalable approach to performing kernel ridge regression.
The method is simple to describe: it randomly partitions a dataset of size N into m subsets
of equal size, computes an independent kernel ridge regression estimator for each subset,
then averages the local solutions into a global predictor. This partitioning leads to a sub-
stantial reduction in computation time versus the standard approach of performing kernel
ridge regression on all N samples. Our main theorem establishes that despite the computa-
tional speed-up, statistical optimality is retained: if m is not too large, the partition-based
estimate achieves optimal rates of convergence for the full sample size N . As concrete ex-
amples, our theory guarantees that m may grow polynomially in N for Sobolev spaces, and
nearly linearly for finite-rank kernels and Gaussian kernels. We conclude with simulation-
s complementing our theoretical results and exhibiting the computational and statistical
benefits of our approach.

1. Introduction

In non-parametric regression, the statistician receives N samples of the form {(xi, yi)}Ni=1,
where each xi ∈ X is a covariate and yi ∈ R is a real-valued response, and the sam-
ples are drawn i.i.d. from some unknown joint distribution P over X × R. The goal is
to estimate a function f̂ : X → R that can be used to predict future responses based
on observing only the covariates. Frequently, the quality of an estimate f̂ is measured in
terms of the mean-squared prediction error E[(f̂(X) − Y )2], in which case the conditional
expectation f∗(x) = E[Y | X = x] is optimal. The problem of non-parametric regression
is a classical one, and researchers have studied a wide range of estimators (see, e.g., the
books by Gyorfi et al. (2002),Wasserman (2006), and van de Geer (2000)). One class of
methods, known as regularized M -estimators (van de Geer, 2000), are based on minimiz-
ing the sum of a data-dependent loss function with a regularization term. The focus of
this paper is a popular M -estimator that combines the least-squares loss with a squared
Hilbert norm penalty for regularization. When working in a reproducing kernel Hilbert
space (RKHS), the resulting method is known as kernel ridge regression, and is widely used
in practice (Hastie et al., 2001; Shawe-Taylor and Cristianini, 2004). Past work has estab-
lished bounds on the estimation error for RKHS-based methods (e.g., Koltchinskii, 2006;
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Mendelson, 2002; van de Geer, 2000; Zhang, 2005), which have been refined and extended
in more recent work (e.g., Steinwart et al., 2009).

Although the statistical aspects of kernel ridge regression (KRR) are well-understood,
the computation of the KRR estimate can be challenging for large datasets. In a standard
implementation (Saunders et al., 1998), the kernel matrix must be inverted, which requires
costs O(N3) and O(N2) in time and memory respectively. Such scalings are prohibitive
when the sample size N is large. As a consequence, approximations have been designed to
avoid the expense of finding an exact minimizer. One family of approaches is based on low-
rank approximation of the kernel matrix; examples include kernel PCA (Schölkopf et al.,
1998), the incomplete Cholesky decomposition (Fine and Scheinberg, 2002), or Nyström
sampling (Williams and Seeger, 2001). These methods reduce the time complexity to
O(dN2) or O(d2N), where d ≪ N is the preserved rank. To our knowledge, however,
there are no results showing that such low-rank versions of KRR still achieve minimax-
optimal rates in estimation error. A second line of research has considered early-stopping
of iterative optimization algorithms for KRR, including gradient descent (Yao et al., 2007;
Raskutti et al., 2011) and conjugate gradient methods (Blanchard and Krämer, 2010), where
early-stopping provides regularization against over-fitting and improves run-time. If the al-
gorithm stops after t iterations, the aggregate time complexity is O(tN2).

In this work, we study a different decomposition-based approach. The algorithm is ap-
pealing in its simplicity: we partition the dataset of size N randomly into m equal sized
subsets, and we compute the kernel ridge regression estimate f̂i for each of the i = 1, . . . ,m
subsets independently, with a careful choice of the regularization parameter. The estimates
are then averaged via f̄ = (1/m)

∑m
i=1 f̂i. Our main theoretical result gives conditions

under which the average f̄ achieves the minimax rate of convergence over the underlying
Hilbert space. Even using naive implementations of KRR, this decomposition gives time
and memory complexity scaling as O(N3/m2) and O(N2/m2), respectively. Moreover, our
approach dovetails naturally with parallel and distributed computation: we are guaran-
teed superlinear speedup with m parallel processors (though we must still communicate the
function estimates from each processor). Divide-and-conquer approaches have been stud-
ied by several authors, including McDonald et al. (2010) for perceptron-based algorithms,
Kleiner et al. (2012) in distributed versions of the bootstrap, and Zhang et al. (2012) for
parametric smooth convex optimization objectives arising out of statistical estimation prob-
lems. This paper demonstrates the potential benefits of divide-and-conquer approaches for
nonparametric and infinite-dimensional regression problems.

One difficulty in solving each of the sub-problems independently is how to choose the
regularization parameter. Due to the infinite-dimensional nature of non-parametric prob-
lems, the choice of regularization parameter must be made with care (e.g., Hastie et al.,
2001). An interesting consequence of our theoretical analysis is in demonstrating that, even
though each partitioned sub-problem is based only on the fraction N/m of samples, it is
nonetheless essential to regularize the partitioned sub-problems as though they had all N
samples. Consequently, from a local point of view, each sub-problem is under-regularized.
This “under-regularization” allows the bias of each local estimate to be very small, but it
causes a detrimental blow-up in the variance. However, as we prove, the m-fold averaging
underlying the method reduces variance enough that the resulting estimator f̄ still attains
optimal convergence rate.
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The remainder of this paper is organized as follows. We begin in Section 2 by providing
background on the kernel ridge regression estimate. In Section 3, we present our main theo-
rems on the mean-squared error between the averaged estimate f̄ and the optimal regression
function f∗. We then provide several corollaries that exhibit concrete consequences of the
results, including convergence rates of r/N for kernels with finite rank r, and convergence
rates of N−2ν/(2ν+1) for estimation of functionals in a Sobolev space with ν degrees of s-
moothness. As we discuss, both of these estimation rates are minimax-optimal and hence
unimprovable. We devote Section 4 to the proofs of our results, deferring more technical
aspects of the analysis to appendices. Lastly, we present simulation results in Section 5 to
further explore our theoretical results.

2. Background and problem formulation

We begin with the background and notation required for a precise statement of our problem.

2.1. Reproducing kernels

The method of kernel ridge regression is based on the idea of a reproducing kernel Hilbert
space. We provide only a very brief coverage of the basics here; see the many books on
the topic (Wahba, 1990; Shawe-Taylor and Cristianini, 2004; Berlinet and Thomas-Agnan,
2004; Gu, 2002) for further details. Any symmetric and positive semidefinite kernel function
K : X × X → R defines a reproducing kernel Hilbert space (RKHS for short). For a given
distribution P on X , the Hilbert space is strictly contained within L2(P). For each x ∈ X ,
the function z 7→ K(z, x) is contained in the Hilbert space H; moreover, the Hilbert space is
endowed with an inner product 〈·, ·〉H such that K(·, x) acts as the representer of evaluation,
meaning

〈f,K(x, ·)〉H = f(x) for f ∈ H. (1)

We let ‖g‖H :=
√

〈g, g〉H denote the norm in H, and similarly ‖g‖2 := (
∫
X
g(x)2dP(x))1/2

denotes the norm in L2(P). Under suitable regularity conditions, Mercer’s theorem guar-
antees that the kernel has an eigen-expansion of the form

K(x, x′) =
∞∑

j=1

µjφj(x)φj(x
′),

where µ1 ≥ µ2 ≥ · · · ≥ 0 are a non-negative sequence of eigenvalues, and {φj}∞j=1 is an

orthonormal basis for L2(P).
From the reproducing relation (1), we have 〈φj , φj〉H = 1/µj for any j and 〈φj , φj′〉H = 0

for any j 6= j′. For any f ∈ H, by defining the basis coefficients θj = 〈f, φj〉L2(P) for

j = 1, 2, . . ., we can expand the function in terms of these coefficients as f =
∑∞

j=1 θjφj ,
and simple calculations show that

‖f‖22 =
∫

X

f2(x)dP(x) =

∞∑

j=1

θ2j , and ‖f‖2H = 〈f, f〉 =
∞∑

j=1

θ2j
µj

.

Consequently, we see that the RKHS can be viewed as an elliptical subset of the sequence
space ℓ2(N) defined by the non-negative eigenvalues {µj}∞j=1.
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2.2. Kernel ridge regression

Suppose that we are given a data set {(xi, yi)}Ni=1 consisting of N i.i.d. samples drawn
from an unknown distribution P over X × R, and our goal is to estimate the function
that minimizes the mean-squared error E[(f(X) − Y )2], where the expectation is taken
jointly over (X,Y ) pairs. It is well-known that the optimal function is the conditional mean
f∗(x) := E[Y | X = x]. In order to estimate the unknown function f∗, we consider an
M -estimator that is based on minimizing a combination of the least-squares loss defined
over the dataset with a weighted penalty based on the squared Hilbert norm,

f̂ := argmin
f∈H

{
1

N

N∑

i=1

(f(xi)− yi)
2 + λ ‖f‖2H

}
, (2)

where λ > 0 is a regularization parameter. When H is a reproducing kernel Hilbert space,
the estimator (2) is known as the kernel ridge regression estimate, or KRR for short. It is a
natural generalization of the ordinary ridge regression estimate (Hoerl and Kennard, 1970)
to the non-parametric setting.

3. Main results and their consequences

We now turn to the description of our algorithm, which we follow with our main result
(Theorem 1), which provides a general upper bound on the resulting prediction error for
any trace class kernel. We illustrate the application of this general result to three different
classes of kernels, showing that it leads to minimax-optimal rates in all three cases.

3.1. Algorithm and assumptions

The divide-and-conquer algorithm Fast-KRR is easy to describe. We are given N samples
drawn i.i.d. according to the distribution P. Rather than solving the kernel ridge regression
problem (2) on all N samples, the Fast-KRR method executes the following three steps:

1. Divide the set of samples {(x1, y1), . . . , (xN , yN )} evenly and uniformly at randomly
into the m disjoint subsets S1, . . . , Sm ⊂ X × R.

2. For each i = 1, 2, . . . ,m, compute the local KRR estimate

f̂i := argmin
f∈H

{
1

|Si|
∑

(x,y)∈Si

(f(x)− y)2 + λ ‖f‖2H
}
. (3)

3. Average together the local estimates and output f̄ = 1
m

∑m
i=1 f̂i.

This description actually provides a family of estimators, one for each choice of the regular-
ization parameter λ > 0. Our main result applies to any choice of λ, while our corollaries
for specific kernel classes optimize λ as a function of the kernel.

We now describe our main assumptions. Our first assumption, for which we have two
variants, deals with the tail behavior of the basis functions {φj}∞j=1.
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Assumption A For some k ≥ 2, there is a constant ρ < ∞ such that E[φj(X)2k ] ≤ ρ2k

for all j = 1, 2, . . ..

In certain cases, we show that sharper error guarantees can be obtained by enforcing a
stronger condition of uniform boundedness:

Assumption A′ There is a constant ρ < ∞ such that supx∈X |φj(x)| ≤ ρ for all j =
1, 2, . . ..

Recalling that f∗(x) := E[Y | X = x], our second assumption involves the regression
function f∗ and the deviations of the zero-mean noise variables Y − f∗(x):1

Assumption B The function f∗ ∈ H, and for x ∈ X , we have E[(Y − f∗(x))2 | x] ≤ σ2.

3.2. Statement of main results

With these assumptions in place, we are now ready for the statement of our main result.
Our result gives bound on the mean-squared estimation error E[‖f̄ − f∗‖22] associated with
the averaged estimate f̄ based on an assigning n = N/m samples to each of m machines.
The theorem statement involves the following three kernel-related quantities:

tr(K) :=

∞∑

j=1

µj, γ(λ) :=

∞∑

j=1

1

1 + λ/µj
, and βd =

∞∑

j=d+1

µj. (4)

The first quantity is the kernel trace, which serves a crude estimate of the “size” of the kernel
operator, and assumed to be finite. The second quantity γ(λ), familiar from previous work
on kernel regression (Zhang, 2005), is known as the “effective dimensionality” of the kernel
K with respect to L2(P). Finally, the quantity βd is parameterized by a positive integer d
that we may choose in applying the bounds, and it describes the tail decay of the eigenvalues
of K. For d = 0, note that β0 reduces to the ordinary trace. Finally, Theorem 1 involves
one further quantity that depends on the number of moments k in Assumption A, namely

b(n, d, k) := max

{√
max{k, log(2d)}, max{k, log(2d)}

n1/2−1/k

}
. (5)

Here the parameter d ∈ N is a quantity that may be optimized to obtain the sharpest
possible upper bound. (The algorithm’s execution is independent of d.)

Theorem 1 With f∗ ∈ H and under Assumptions A and B, the mean-squared error of the
averaged estimate f̄ is upper bounded as

E

[∥∥f̄ − f∗
∥∥2
2

]
≤
(
4 +

6

m

)
λ ‖f∗‖2H +

12σ2γ(λ)

N
+ inf

d∈N

{
T1(d) + T2(d) + T3(d)

}
, (6)

1. We can extend our results to the more general setting in which f∗ 6∈ H. In this paper, we limit ourselves
to the case f∗ ∈ H to facilitate comparisons with minimax rates and for conciseness in presentation.
The assumption f∗ ∈ H is, in any case, fairly standard (Gyorfi et al., 2002; Wasserman, 2006).
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where

T1(d) =
2ρ4 ‖f∗‖2H tr(K)βd

λ
, T2(d) =

4 ‖f∗‖2H + 2σ2/λ

m

(
µd+1 +

3ρ4 tr(K)βd
λ

)
, and

T3(d) =

(
Cb(n, d, k)

ρ2γ(λ) + 1√
n

)k

‖f∗‖22

(
1 +

2σ2

mλ
+

4 ‖f∗‖2H
m

)
,

and C denotes a universal (numerical) constant.

Theorem 1 is a general result that applies to any trace-class kernel. Although the
statement appears somewhat complicated at first sight, it yields concrete and interpretable
guarantees on the error when specialized to particular kernels, as we illustrate in Section 3.3.

Before doing so, let us provide a few heuristic arguments for intuition. In typical settings,
the term T3(d) goes to zero quickly: if the number of moments k is large and number of
partitions m is small—say enough to guarantee that (γ(λ)2N/m)−k/2 = O(1/N)—it will
be of lower order. As for the remaining terms, at a high level, we show that an appropriate
choice of the free parameter d leaves the first two terms in the upper bound (6) dominant.
Note that the terms µd+1 and βd are decreasing in d while the term b(n, d, k) increases with
d. However, the increasing term b(n, d, k) grows only logarithmically in d, which allows us
to choose a fairly large value without a significant penalty. As we show in our corollaries,
for many kernels of interest, as long as the number of machines m is not “too large,” this
tradeoff is such that T1(d) and T2(d) are also of lower order compared to the two first terms
in the bound (6). In such settings, Theorem 1 guarantees an upper bound of the form

E

[∥∥f̄ − f∗
∥∥2
2

]
= O

(
λ ‖f∗‖2H︸ ︷︷ ︸

Squared bias

+
σ2γ(λ)

N︸ ︷︷ ︸
Variance

)
. (7)

This inequality reveals the usual bias-variance trade-off in non-parametric regression; choos-
ing a smaller value of λ > 0 reduces the first squared bias term, but increases the second
variance term. Consequently, the setting of λ that minimizes the sum of these two terms is
defined by the relationship

λ ‖f∗‖2H ≃ σ2γ(λ)

N
. (8)

This type of fixed point equation is familiar from work on oracle inequalities and local
complexity measures in empirical process theory (Bartlett et al., 2005; Koltchinskii, 2006;
van de Geer, 2000; Zhang, 2005), and when λ is chosen so that the fixed point equa-
tion (8) holds this (typically) yields minimax optimal convergence rates (Bartlett et al.,
2005; Koltchinskii, 2006; Zhang, 2005; Caponnetto and De Vito, 2007). In Section 3.3, we
provide detailed examples in which the choice λ∗ specified by equation (8), followed by appli-
cation of Theorem 1, yields minimax-optimal prediction error (for the Fast-KRR algorithm)
for many kernel classes.

3.3. Some consequences

We now turn to deriving some explicit consequences of our main theorems for specific classes
of reproducing kernel Hilbert spaces. In each case, our derivation follows the broad outline
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given the the remarks following Theorem 1: we first choose the regularization parameter λ
to balance the bias and variance terms, and then show, by comparison to known minimax
lower bounds, that the resulting upper bound is optimal. Finally, we derive an upper bound
on the number of subsampled data sets m for which the minimax optimal convergence rate
can still be achieved.

Our first corollary applies to problems for which the kernel has finite rank r, meaning
that its eigenvalues satisfy µj = 0 for all j > r. Examples of such finite rank kernels
include the linear kernel K(x, x′) = 〈x, x′〉

Rd , which has rank at most r = d; and the
kernel K(x, x′) = (1 + xx′)m generating polynomials of degree m, which has rank at most
r = m+ 1.

Corollary 2 For a kernel with rank r, consider the output of the Fast-KRR algorithm with
λ = r/N . Suppose that Assumption B and Assumption A (or A′) hold, and that the number
of processors m satisfy the bound

m ≤ c
N

k−4
k−2

r2ρ
4k
k−2 log

k
k−2 r

(Assumption A) or m ≤ c
N

r2ρ4 logN
(Assumption A′),

where c is a universal (numerical) constant. Then the mean-squared error is bounded as

E

[∥∥f̄ − f∗
∥∥2
2

]
= O

(
σ2r

N

)
. (9)

For finite-rank kernels, the rate (9) is minimax-optimal: if BH(1) denotes the 1-norm
ball in H, there is a universal constant c′ > 0 such that inff supf∗∈BH(1) E[‖f−f∗‖22] ≥ c′ r

N .
This lower bound follows from Theorem 2(a) of Raskutti et al. (2012) with s = d = 1.

Our next corollary applies to kernel operators with eigenvalues that obey a bound of
the form

µj ≤ C j−2ν for all j = 1, 2, . . ., (10)

where C is a universal constant, and ν > 1/2 parameterizes the decay rate. Kernels with
polynomially-decaying eigenvalues include those that underlie for the Sobolev spaces with
different smoothness orders (e.g. Birman and Solomjak, 1967; Gu, 2002). As a concrete
example, the first-order Sobolev kernel K(x, x′) = 1 + min{x, x′} generates an RKHS of
Lipschitz functions with smoothness ν = 1. Other higher-order Sobolev kernels also exhibit
polynomial eigen-decay with larger values of the parameter ν.

Corollary 3 For any kernel with ν-polynomial eigen-decay (10), consider the output of the

Fast-KRR algorithm with λ = (1/N)
2ν

2ν+1 . Suppose that Assumption B and Assumption A
(or A′) hold, and that the number of processors satisfy the bound

m ≤ c

(
N

2(k−4)ν−k

(2ν+1)

ρ4k logk N

) 1
k−2

(Assumption A) or m ≤ c
N

2ν−1
2ν+1

ρ4 logN
(Assumption A′),

where c is a constant only depending on ν. Then the mean-squared error is bounded as

E

[∥∥f̄ − f∗
∥∥2
2

]
= O

((σ2

N

) 2ν
2ν+1

)
. (11)
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The upper bound (11) is unimprovable up to constant factors, as shown by known
minimax bounds on estimation error in Sobolev spaces (Stone, 1982; Tsybakov, 2009); see
also Theorem 2(b) of Raskutti et al. (2012).

Our final corollary applies to kernel operators with eigenvalues that obey a bound of
the form

µj ≤ c1 exp(−c2j
2) for all j = 1, 2, . . ., (12)

for strictly positive constants (c1, c2). Such classes include the RKHS generated by the
Gaussian kernel K(x, x′) = exp(−‖x− x′‖22).
Corollary 4 For a kernel with exponential eigen-decay (12), consider the output of the
Fast-KRR algorithm with λ = 1/N . Suppose that Assumption B and Assumption A (or A′)
hold, and that the number of processors satisfy the bound

m ≤ c
N

k−4
k−2

ρ
4k
k−2 log

2k−1
k−2 N

(Assumption A) or m ≤ c
N

ρ4 log2N
(Assumption A′),

where c is a constant only depending on c2. Then the mean-squared error is bounded as

E

[∥∥f̄ − f∗
∥∥2
2

]
= O

(
σ2

√
logN

N

)
. (13)

The upper bound (13) is also minimax optimal for the exponential kernel classes, which
behave like a finite-rank kernel with effective rank

√
logN .

Summary: Each corollary gives a critical threshold for the number m of data partitions:
as long as m is below this threshold, we see that the decomposition-based Fast-KRR algo-
rithm gives the optimal rate of convergence. It is interesting to note that the number of splits
may be quite large: each grows asymptotically with N whenever the basis functions have
more sufficiently many moments (viz. Assumption A). Moreover, the Fast-KRR method
can attain these optimal convergence rates while using substantially less computation than
standard kernel ridge regression methods.

4. Proofs of Theorem 1 and related results

We now turn to the proof of Theorem 1 and Corollaries 2 through 4. This section con-
tains only a high-level view of proof of Theorem 1; we defer more technical aspects to the
appendices.

4.1. Proof of Theorem 1

Using the definition of the averaged estimate f̄ = 1
m

∑m
i=1 f̂i, a bit of algebra yields

E[
∥∥f̄ − f∗

∥∥2
2
] = E[

∥∥(f̄ − E[f̄ ]) + (E[f̄ ]− f∗)
∥∥2
2
]

= E[
∥∥f̄ − E[f̄ ]

∥∥2
2
] +
∥∥E[f̄ ]− f∗

∥∥2
2
+ 2E[〈f̄ − E[f̄ ],E[f̄ ]− f∗〉L2(P)]

= E

[∥∥∥∥
1

m

m∑

i=1

(f̂i − E[f̂i])

∥∥∥∥
2

2

]
+
∥∥E[f̄ ]− f∗

∥∥2
2
,
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where we used the fact that E[f̂i] = E[f̄ ] for each i ∈ [m]. Using this unbiasedness once
more, we bound the variance of the terms f̂i − E[f̄ ] to see that

E

[∥∥f̄ − f∗
∥∥2
2

]
≤ 1

m
E

[
‖f̂1 − E[f̂1]‖22

]
+ ‖E[f̂1]− f∗‖22

≤ 1

m
E

[
‖f̂1 − f∗‖22

]
+ ‖E[f̂1]− f∗‖22, (14)

where we have used the fact that E[f̂i] minimizes E[‖f̂i − f‖22] over f ∈ H.

The error bound (14) suggests our strategy: we bound E[‖f̂1 − f∗‖22] and ‖E[f̂1]− f∗‖22
respectively. Based on equation (3), the estimate f̂1 is obtained from a standard kernel ridge
regression with sample size n = N/m and ridge parameter λ. Accordingly, the following
two auxiliary results provide bounds on these two terms, where the reader should recall the
definitions of b(n, d, k) and βd from equation (4). In each lemma, C represents a universal
(numerical) constant.

Lemma 5 (Bias bound) Under Assumptions A and B, for d = 1, 2, . . ., we have

‖E[f̂ ]− f∗‖22 ≤ 4λ ‖f∗‖2H +
2ρ4 ‖f∗‖2H tr(K)βd

λ
+

(
Cb(n, d, k)

ρ2γ(λ) + 1√
n

)k

‖f∗‖22 . (15)

Lemma 6 (Variance bound) Under Assumptions A and B, for d = 1, 2, . . ., we have

E[‖f̂ − f∗‖22] ≤ 6λ ‖f∗‖2H +
12σ2γ(λ)

n

+

(
2σ2

λ
+ 4 ‖f∗‖2H

)(
µd+1 +

3ρ4 tr(K)βd
λ

+

(
Cb(n, d, k)

ρ2γ(λ) + 1√
n

)k

‖f∗‖22

)
. (16)

The proofs of these lemmas, contained in Appendices A and B respectively, constitute one
main technical contribution of this paper.

Given these two lemmas, the remainder of the theorem proof is straightforward. Com-
bining the inequality (14) with Lemmas 5 and 6 yields the claim of Theorem 1.

4.2. Proof of Corollary 2

We first present a general inequality bounding the size of m for which optimal convergence
rates are possible. We assume that d is chosen large enough that for some constant c, we
have c log(2d) ≥ k in Theorem 1, and that the regularization λ has been chosen. In this
case, inspection of Theorem 1 shows that if m is small enough that

(√
log d

N/m
ρ2(γ(λ) + 1)

)k
1

mλ
≤ γ(λ) + 1

N
,

then the term T3(d) provides a convergence rate given by (γ(λ) + 1)/N . Thus, solving the
expression above for m, we find

m log d

N
ρ4(γ(λ) + 1)2 =

λ2/km2/k(γ(λ) + 1)2/k

N2/k
or m

k−2
k =

λ
2
kN

k−2
k

(γ(λ) + 1)2
k−1
k ρ4 log d

.

9
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Taking (k − 2)/k-th roots of both sides, we obtain that if

m ≤ λ
2

k−2N

(γ(λ) + 1)2
k−1
k−2 ρ

4k
k−2 log

k
k−2 d

, (17)

then the term T3(d) of the bound (6) is O(γ(λ)/N + 1/N).
Now we apply the bound (17) in the case in the corollary. Let us take d = r; then

βd = µd+1 = 0. We find that γ(λ) ≤ r since each of its terms is bounded by 1, and we take
λ = r/N . Evaluating the expression (17) with this value, we arrive at

m ≤ N
k−4
k−2

4r2ρ
4k
k−2 log

k
k−2 r

⇒ m ≤ N
k−4
k−2

(r + 1)2ρ
4k
k−2 log

k
k−2 r

.

If we have sufficiently many moments that k ≥ logN , and N ≥ r (for example, if the basis
functions φj have a uniform bound ρ), then we may take k = logN , which implies that

N
k−4
k−2 = Ω(N), and we replace log d = log r with logN (we assume N ≥ r), by recalling

Theorem 1. Then so long as

m ≤ c
N

r2ρ4 logN

for some constant c > 0, we obtain an identical result.

4.3. Proof of Corollary 3

We follow the program outlined in our remarks following Theorem 1. We must first choose

λ so that λ = γ(λ)/N . To that end, we note that setting λ = N− 2ν
2ν+1 gives

γ(λ) =
∞∑

j=1

1

1 + j2νN− 2ν
2ν+1

≤ N
1

2ν+1 +
∑

j>N
1

2ν+1

1

1 + j2νN− 2ν
2ν+1

≤ N
1

2ν+1 +N
2ν

2ν+1

∫

N
1

2ν+1

1

u2ν
du = N

1
2ν+1 +

1

2ν − 1
N

1
2ν+1 .

Dividing by N , we find that λ ≈ γ(λ)/N , as desired. Now we choose the truncation
parameter d. By choosing d = N t for some t ∈ R+, then we find that µd+1 . N−2νt and
an integration yields βd . N−(2ν−1)t. Setting t = 3/(2ν − 1) guarantees that µd+1 . N−3

and βd . N−3; the corresponding terms in the bound (6) are thus negligible. Moreover, we
have for any finite k that log d & k.

Applying the general bound (17) on m, we arrive at the inequality

m ≤ c
N

− 4ν
(2ν+1)(k−2)N

N
2(k−1)

(2ν+1)(k−2) ρ
4k
k−2 log

k
k−2 N

= c
N

2(k−4)ν−k

(2ν+1)(k−2)

ρ
4k
k−2 log

k
k−2 N

.

Whenever this holds, we have convergence rate λ = N− 2ν
2ν+1 . Now, let Assumption A′ hold,

and take k = logN . Then the above bound becomes (to a multiplicative constant factor)

N
2ν−1
2ν+1 /ρ4 logN , as claimed.
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(a) With under-regularization (b) Without under-regularization

Figure 1. The squared L2(P)-norm between between the averaged estimate f̄ and the
optimal solution f∗. (a) These plots correspond to the output of the Fast-KRR algorithm:
each sub-problem is under-regularized by using λ ∼ N−2/3. (b) Analogous plots when each
sub-problem is not under-regularized—that is, with λ ∼ n−2/3 is chosen as usual.

4.4. Proof of Corollary 4

First, we set λ = 1/N . Considering the sum γ(λ) =
∑∞

j=1 µj/(µj + λ), we see that for

j ≤
√
(logN)/c2, the elements of the sum are bounded by 1. For j >

√
(logN)/c2, we

make the approximation

∑

j≥
√

(logN)/c2

µj

µj + λ
≤ 1

λ

∑

j≥
√

(logN)/c2

µj . N

∫ ∞

√
(logN)/c2

exp(−c2t
2)dt = O(1).

Thus we find that γ(λ) + 1 ≤ c
√
logN for some constant c. By choosing d = N2, we

have that the tail sum and (d + 1)-th eigenvalue both satisfy µd+1 ≤ βd . c−1
2 N−4. As a

consequence, all the terms involving βd or µd+1 in the bound (6) are negligible.
Recalling our inequality (17), we thus find that (under Assumption A), as long as the

number of partitions m satisfies

m ≤ c
N

k−4
k−2

ρ
4k
k−2 log

2k−1
k−2 N

,

the convergence rate of f̄ to f∗ is given by γ(λ)/N ≃
√
logN/N . Under the boundedness

assumption A′, as we did in the proof of Corollary 2, we take k = logN in Theorem 1. By
inspection, this yields the second statement of the corollary.

5. Simulation studies

In this section, we explore the empirical performance of our subsample-and-average methods
for a non-parametric regression problem on simulated datasets. For all experiments in
this section, we simulate data from the regression model y = f∗(x) + ε for x ∈ [0, 1],
where f∗(x) := min{x, 1 − x} is 1-Lipschitz, the noise variables ε ∼ N(0, σ2) are normally
distributed with variance σ2 = 1/5, and the samples xi ∼ Uni[0, 1]. The Sobolev space

11
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Figure 2. The mean-square er-
ror curves for fixed sample size
but varied number of partitions.
We are interested in the thresh-
old of partitioning number m un-
der which the optimal rate of con-
vergence is achieved.

of Lipschitz functions on [0, 1] has reproducing kernel K(x, x′) = 1 + min{x, x′} and norm
‖f‖2H = f2(0) +

∫ 1
0 (f

′(z))2dz. By construction, the function f∗(x) = min{x, 1−x} satisfies

‖f∗‖H = 1. The kernel ridge regression estimator f̂ takes the form

f̂ =

N∑

i=1

αiK(xi, ·), where α = (K + λNI)−1 y, (18)

and K is the N × N Gram matrix and I is the N × N identity matrix. Since the first-
order Sobolev kernel has eigenvalues (Gu, 2002) that scale as µj ≃ (1/j)2, the minimax
convergence rate in terms of squared L2(P)-error is N−2/3 (e.g. Tsybakov, 2009; Stone,
1982; Caponnetto and De Vito, 2007).

By Corollary 3 with ν = 1, this optimal rate of convergence can be achieved by Fast-KRR
with regularization parameter λ ≈ N−2/3 as long as the number of partitions m satisfies
m . N1/3. In each of our experiments, we begin with a dataset of size N = mn, which we
partition uniformly at random into m disjoint subsets. We compute the local estimator f̂i
for each of the m subsets using n samples via (18), where the Gram matrix is constructed
using the ith batch of samples (and n replaces N). We then compute f̄ = (1/m)

∑m
i=1 f̂i.

Our experiments compare the error of f̄ as a function of sample size N , the number of
partitions m, and the regularization λ.

In Figure 5(a), we plot the error ‖f̄ − f∗‖22 versus the total number of samples N , where
N ∈ {28, 29, . . . , 213}, using four different data partitionsm ∈ {1, 4, 16, 64}. We execute each
simulation 20 times to obtain standard errors for the plot. The black circled curve (m = 1)
gives the baseline KRR error; if the number of partitions m ≤ 16, Fast-KRR has accuracy
comparable to the baseline algorithm. Even with m = 64, Fast-KRR’s performance closely
matches the full estimator for larger sample sizes (N ≥ 211). In the right plot Figure 5(b),
we perform an identical experiment, but we over-regularize by choosing λ = n−2/3 rather
than λ = N−2/3 in each of the m sub-problems, combining the local estimates by averaging
as usual. In contrast to Figure 5(a), there is an obvious gap between the performance of
the algorithms when m = 1 and m > 1, as our theory predicts.

It is also interesting to understand the number of partitions m into which a dataset
of size N may be divided while maintaining good statistical performance. According to
Corollary 3 with ν = 1, for the first-order Sobolev kernel, performance degradation should
be limited as long as m . N1/3. In order to test this prediction, Figure 2 plots the mean-
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N m = 1 m = 16 m = 64 m = 256 m = 1024

212
Error 1.26 · 10−4 1.33 · 10−4 1.38 · 10−4

N/A N/A
Time 1.12 (0.03) 0.03 (0.01) 0.02 (0.00)

213
Error 6.40 · 10−5 6.29 · 10−5 6.72 · 10−5

N/A N/A
Time 5.47 (0.22) 0.12 (0.03) 0.04 (0.00)

214
Error 3.95 · 10−5 4.06 · 10−5 4.03 · 10−5 3.89 · 10−5

N/A
Time 30.16 (0.87) 0.59 (0.11) 0.11 (0.00) 0.06 (0.00)

215
Error

Fail
2.90 · 10−5 2.84 · 10−5 2.78 · 10−5

N/A
Time 2.65 (0.04) 0.43 (0.02) 0.15 (0.01)

216
Error

Fail
1.75 · 10−5 1.73 · 10−5 1.71 · 10−5 1.67 · 10−5

Time 16.65 (0.30) 2.21 (0.06) 0.41 (0.01) 0.23 (0.01)

217
Error

Fail
1.19 · 10−5 1.21 · 10−5 1.25 · 10−5 1.24 · 10−5

Time 90.80 (3.71) 10.87 (0.19) 1.88 (0.08) 0.60 (0.02)

Table 1. Timing experiment giving ‖f̄ − f∗‖2
2
as a function of number of partitions m and

data size N , providing mean run-time (measured in second) for each number m of partitions
and data size N .

square error ‖f̄ − f∗‖22 versus the ratio log(m)/ log(N). Our theory predicts that even as the
number of partitions m may grow polynomially in N , the error should grow only above some
constant value of log(m)/ log(N). As Figure 2 shows, the point that ‖f̄ − f∗‖2 begins to
increase appears to be around log(m) ≈ 0.45 log(N) for reasonably large N . This empirical
performance is somewhat better than the (1/3) thresholded predicted by Corollary 3, but it
does confirm that the number of partitions m can scale polynomially with N while retaining
minimax optimality.

Our final experiment gives evidence for the improved time complexity partitioning pro-
vides. Here we compare the amount of time required to solve the KRR problem using the
naive matrix inversion (18) for different partition sizes m and provide the resulting squared
errors ‖f̄ − f∗‖22. Although there are more sophisticated solution strategies, we believe this
is a reasonable proxy to exhibit Fast-KRR’s potential. In Table 1, we present the results
of this simulation, which we performed in Matlab using a Windows machine with 16GB
of memory and a single-threaded 3.4Ghz processor. In each entry of the table, we give
the mean error of Fast-KRR and the mean amount of time it took to run (with standard
deviation over 10 simulations in parentheses; the error rate standard deviations are an order
of magnitude smaller than the errors, so we do not report them). The entries “Fail” corre-
spond to out-of-memory failures because of the large matrix inversion, while entries “N/A”
indicate that ‖f̄ − f∗‖2 was significantly larger than the optimal value (rendering time im-
provements meaningless). The table shows that without sacrificing accuracy, decomposition
via Fast-KRR can yield substantial computational improvements.
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f̂ Empirical KRR minimizer based on n samples
f∗ Optimal function generating data, where yi = f∗(xi) + εi
∆ Error f̂ − f∗

ξx RKHS evaluator ξx := K(x, ·), so 〈f, ξx〉 = 〈ξx, f〉 = f(x)

Σ̂ Operator mapping H → H defined as the outer product Σ̂ := 1
n

∑n
i=1 ξxi

⊗ξxi
,

so that Σ̂f = 1
n

∑n
i=1 〈ξxi

, f〉 ξxi

φj jth orthonormal basis vector for L2(P)
δj Basis coefficients of ∆ or E[∆ | X] (depending on context), i.e. ∆ =

∑∞
j=1 δjφj

θj Basis coefficients of f∗, i.e. f∗ =
∑∞

j=1 θjφj

d Integer-valued truncation point
M Diagonal matrix with M = diag(µ1, . . . , µd)
Q Diagonal matrix with Q = Id×d + λM−1

Φ n× d matrix with coordinates Φij = φj(xi)

v↓ Truncation of vector v. For v =
∑

j νjφj ∈ H, defined as v↓ =
∑d

j=1 νjφj; for

v ∈ ℓ2(N) defined as v↓ = (v1, . . . , vd)
v↑ Untruncated part of vector v, defined as v↑ = (vd+1, vd+1, . . .)
βd The tail sum

∑
j>d µj

γ(λ) The sum
∑∞

j=1 1/(1 + λ/µj)

b(n, d, k) The maximum max{
√

max{k, log(2d)},max{k, log(2d)}/n1/2−1/k}
Table 2: Notation used in proofs

Appendix A. Proof of Lemma 5

This appendix is devoted to the bias bound stated in Lemma 5. Let X = {xi}ni=1 be short-

hand for the design matrix, and define the error vector ∆ = f̂ − f∗. By Jensen’s inequal-
ity, we have ‖E[∆]‖2 ≤ E[‖E[∆ | X]‖2], so it suffices to provide a bound on ‖E[∆ | X]‖2.
Throughout this proof and the remainder of the paper, we represent the kernel evaluator by
the function ξx, where ξx := K(x, ·) and f(x) = 〈ξx, f〉 for any f ∈ H. Using this notation,
the estimate f̂ minimizes the empirical objective

1

n

n∑

i=1

(
〈ξxi

, f〉H − yi
)2

+ λ ‖f‖2H . (19)

This objective is Fréchet differentiable, and as a consequence, the necessary and sufficient
conditions for optimality (Luenberger, 1969) of f̂ are that

1

n

n∑

i=1

(〈ξxi
, f̂ − f∗〉H − εi) + λf̂ =

1

n

n∑

i=1

(〈ξxi
, f̂〉H − yi) + λf̂ = 0. (20)

Taking conditional expectations over the noise variables {εi}ni=1 with the designX = {xi}ni=1

fixed, we find that

1

n

n∑

i=1

ξxi
〈ξxi

,E[∆ | X]〉+ λE[f̂ | X] = 0.
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Define the sample covariance operator Σ̂ := 1
n

∑n
i=1 ξxi

⊗ ξxi
. Adding and subtracting λf∗

from the above equation yields

(Σ̂ + λI)E[∆ | X] = −λf∗. (21)

Consequently, we see we have ‖E[∆ | X]‖H ≤ ‖f∗‖H, since Σ̂ � 0.
We now use a truncation argument to reduce the problem to a finite dimensional prob-

lem. To do so, we let δ ∈ ℓ2(N) denote the coefficients of E[∆ | X] when expanded in the
basis {φj}∞j=1:

E[∆ | X] =

∞∑

j=1

δjφj , with δj = 〈E[∆ | X], φj〉L2(P). (22)

For a fixed d ∈ N, define the vectors δ↓ := (δ1, . . . , δd) and δ↑ := (δd+1, δd+2, . . .) (we
suppress dependence on d for convenience). By the orthonormality of the collection {φj},
we have

‖E[∆ | X]‖22 = ‖δ‖22 = ‖δ↓‖22 + ‖δ↑‖22. (23)

We control each of the elements of the sum (23) in turn.

Control of the term ‖δ↑‖22: By definition, we have

‖δ↑‖22 =
µd+1

µd+1

∞∑

j=d+1

δ2j ≤ µd+1

∞∑

j=d+1

δ2j
µj

(i)

≤ µd+1 ‖E[∆ | X]‖2H (ii)≤ µd+1 ‖f∗‖2H , (24)

where inequality (i) follows since ‖E[∆ | X]‖2H =
∑∞

j=1

δ2j
µj
; and inequality (ii) follows from

the bound ‖E[∆ | X]‖H ≤ ‖f∗‖H, which is a consequence of equality (21).

Control of the term ‖δ↓‖22: Let (θ1, θ2, . . .) be the coefficients of f∗ in the basis {φj}.
In addition, define the matrices Φ ∈ R

n×d by

Φij = φj(xi) for i ∈ {1, . . . , n}, and j ∈ {1, . . . , d}

and M = diag(µ1, . . . , µd) ≻ 0 ∈ R
d×d. Lastly, define the tail error vector v ∈ R

n by

vi : =
∑

j>d

δjφj(xi) = E[∆↑(xi) | X].

Let l ∈ N be arbitrary. Computing the (Hilbert) inner product of the terms in equation (21)
with φl, we obtain

−λ
θl
µl

= 〈φl,−λf∗〉 =
〈
φl, (Σ̂ + λ)E[∆ | X]

〉

=
1

n

n∑

i=1

〈φl, ξxi
〉 〈ξxi

,E[∆ | X]〉 + λ 〈φl,E[∆ | X]〉 = 1

n

n∑

i=1

φl(xi)E[∆(xi) | X] + λ
δl
µl

.
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We can rewrite the final sum above using the fact that ∆ = ∆↓ +∆↑, which implies

1

n

n∑

i=1

φl(xi)E[∆(xi) | X] =
1

n

n∑

i=1

φl(xi)

( d∑

j=1

φj(xi)δj +
∑

j>d

φj(xi)δj

)

Applying this equality for l = 1, 2, . . . , d yields

(
1

n
ΦTΦ+ λM−1

)
δ↓ = −λM−1θ↓ − 1

n
ΦTv. (25)

We now show how the expression (25) gives us the desired bound in the lemma. By
definining the shorthand matrix Q = (I + λM−1), we have

1

n
ΦTΦ+ λM−1 = I + λM−1 +

1

n
ΦTΦ− I = Q

(
I +Q−1

(
1

n
ΦTΦ− I

))
.

As a consequence, we can rewrite expression (25) to

(
I +Q−1

(
1

n
ΦTΦ− I

))
δ↓ = −λQ−1M−1θ↓ − 1

n
Q−1ΦT v. (26)

We now present a lemma bounding the terms in equality (26) to control δ↓.

Lemma 7 The following bounds hold:

∥∥∥λQ−1M−1θ↓
∥∥∥
2

2
≤ λ ‖f∗‖2H /2, and (27a)

E

[∥∥∥∥
1

n
Q−1ΦT v

∥∥∥∥
2

2

]
≤ ρ4 ‖f∗‖2H tr(K)βd

4λ
. (27b)

Define the event E :=
{∣∣∣∣∣∣Q−1((1/n)ΦTΦ− I)

∣∣∣∣∣∣ ≤ 1/2
}
. Under Assumption A with moment

bound E[φj(X)2k] ≤ ρ2k, there exists a universal constant C such that

P(Ec) ≤
(
max

{√
k ∨ log(2d),

k ∨ log(2d)

n1/2−1/k

}
C(ρ2γ(λ) + 1)√

n

)k

. (28)

We defer the proof of this lemma to Appendix A.1.
Based on this lemma, we can now complete the proof. Whenever the event E holds, we

know that (I +Q−1((1/n)ΦTΦ− I)) � (1/2)I. In particular, we have

‖δ↓‖22 ≤ 4
∥∥∥λQ−1M−1θ↓ + (1/n)Q−1ΦT v

∥∥∥
2

2

on E , by Eq. (26). Since E is X-measureable, we thus obtain

E

[
‖δ↓‖22

]
= E

[
1(E) ‖δ↓‖22

]
+ E

[
1(Ec) ‖δ↓‖22

]

≤ 4E

[
1(E)

∥∥∥λQ−1M−1θ↓ + (1/n)Q−1ΦT v
∥∥∥
2

2

]
+ E

[
1(Ec) ‖δ↓‖22

]
.
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Applying the bounds (27a) and (27b), along with the elementary inequality (a + b)2 ≤
2a2 + 2b2, we have

E

[
‖δ↓‖22

]
≤ 4λ ‖f∗‖2H +

2ρ4 ‖f∗‖2H tr(K)βd
λ

+ E

[
1(Ec) ‖δ↓‖22

]
. (29)

Now we use the fact that by the gradient optimality condition (21), ‖E[∆ | X]‖22 ≤ ‖f∗‖22.
Recalling the shorthand (5) for b(n, d, k), we apply the bound (28) to see

E

[
1(Ec) ‖δ↓‖22

]
≤ P(Ec) ‖f∗‖22 ≤

(
Cb(n, d, k)(ρ2γ(λ) + 1)√

n

)k

‖f∗‖22 .

Combining this with the inequality (29), we obtain the desired statement of Lemma 5.

A.1. Proof of Lemma 7

Proof of bound (27a): Beginning with the proof of the bound (27a), we have

∥∥∥Q−1M−1θ↓
∥∥∥
2

2
= (θ↓)T (M + λI)−2θ↓ = (θ↓)T (M2 + λ2I + 2λM)−1θ↓

≤ (θ↓)T (2λM)−1θ↓ ≤ 1

2λ
(θ↓)TM−1θ↓ ≤ 1

2λ
‖f∗‖2H .

Multiplying both sides by λ2 gives the result.

Proof of bound (27b): Next we turn to the proof of the bound (27b). We begin by
re-writing Q−1ΦT v as the product of two components:

1

n
Q−1ΦTv = (M1/2 + λM−1/2)−1

(
1

n
M1/2ΦTv

)
. (30)

The first matrix is a diagonal matrix whose operator norm is bounded:

∣∣∣
∣∣∣
∣∣∣(M

1
2 + λM− 1

2 )−1
∣∣∣
∣∣∣
∣∣∣ = max

j∈[d]

1
√
µj + λ/

√
µj

= max
j∈[d]

√
µj

µj + λ
≤ 1

2
√
λ
, (31)

the final inequality coming because
√
µj/(µj + λ) is maximized at µj = λ.

For the second factor in the product (30), the analysis is a little more complicated. Let
Φℓ = (φl(x1), . . . , φl(xn)) be the ℓth column of Φ. In this case,

∥∥∥M1/2ΦT v
∥∥∥
2

2
=

d∑

ℓ=1

µℓ(Φ
T
ℓ v)

2 ≤
d∑

ℓ=1

µℓ ‖Φℓ‖22 ‖v‖
2
2 , (32)

using the Cauchy-Schwarz inequality. Taking expectations with respect to the design {xi}ni=1

and applying Hölder’s inequality yields

E[‖Φℓ‖22 ‖v‖
2
2] ≤

√
E[‖Φℓ‖42]

√
E[‖v‖42].
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We bound each of the terms in this product in turn. For the first, we have

E[‖Φℓ‖42] = E

[( n∑

i=1

φ2
ℓ(Xi)

)2]
= E

[ n∑

i,j=1

φ2
ℓ (Xi)φ

2
ℓ (Xj)

]
≤ n2

E[φ4
ℓ (X1)] ≤ n2ρ4

since the Xi are i.i.d., E[φ2
ℓ(X1)] ≤

√
E[φ4

ℓ (X1)], and E[φ4
ℓ(X1)] ≤ ρ4 by assumption. Turn-

ing to the term involving v, we have

v2i =

(∑

j>d

δjφj(xi)

)2

≤
(∑

j>d

δ2j
µj

)(∑

j>d

µjφ
2
j(xi)

)

by Cauchy-Schwarz. As a consequence, we find

E[‖v‖42] = E

[(
n
1

n

n∑

i=1

v2i

)2]
≤ n2 1

n

n∑

i=1

E[v4i ] ≤ n

n∑

i=1

E

[(∑

j>d

δ2j
µj

)2(∑

j>d

µjφ
2
j (Xi)

)2]

≤ n2
E

[
‖E[∆ | X]‖4H

(∑

j>d

µjφ
2
j (X1)

)2]
,

since the Xi are i.i.d. Using the fact that ‖E[∆ | X]‖H ≤ ‖f∗‖H, we expand the second
square to find

1

n2
E[‖v‖42] ≤ ‖f∗‖4H

∑

j,k>d

E
[
µjµkφ

2
j (X1)φ

2
k(X1)

]
≤ ‖f∗‖4H ρ4

∑

j,k>d

µjµk = ‖f∗‖4H ρ4
(∑

j>d

µj

)2

.

Combining our bounds on ‖Φℓ‖2 and ‖v‖2 with our initial bound (32), we obtain the in-
equality

E

[∥∥∥M1/2ΦTv
∥∥∥
2

2

]
≤

d∑

l=1

µℓ

√
n2ρ4

√√√√n2 ‖f∗‖4H ρ4
(∑

j>d

µj

)2

= n2ρ4 ‖f∗‖2H
(∑

j>d

µj

) d∑

l=1

µℓ.

Dividing by n2, recalling the definition of βd =
∑

j>d µj, and noting that tr(K) ≥∑d
l=1 µℓ

shows that

E

[∥∥∥∥
1

n
M1/2ΦT v

∥∥∥∥
2

2

]
≤ ρ4 ‖f∗‖2H βd tr(K).

Combining this inequality with our expansion (30) and the bound (31) yields the claim (27b).

Proof of bound (28): Let us consider the expectation of the norm of the matrixQ−1((1/n)ΦTΦ− I).
For each i ∈ [n], let πi = (φ1(xi), . . . , φd(xi)) ∈ R

d denote the ith row of the matrix
Φ ∈ R

n×d. Then we know that

Q−1

(
1

n
ΦTΦ− I

)
=

1

n
Q−1

n∑

i=1

(πiπ
T
i − I).
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Define the sequence of matrices

Ai :=

[
0 Q−1πiπ

T
i − I

I − πiπ
T
i Q

−1 0

]

Then the matrices Ai = AT
i ∈ R

2d×2d, and moreover λmax(Ai) = |||Ai||| =
∣∣∣∣∣∣Q−1πiπ

T
i − I

∣∣∣∣∣∣,
and similarly for their averages Bhatia (1997). Note that E[Ai] = 0 and let εi be i.i.d.
{−1, 1}-valued Rademacher random variables. Applying a standard symmetrization argu-
ment (Ledoux and Talagrand, 1991), we find that for any k ≥ 1, we have

E

[∣∣∣∣
∣∣∣∣
∣∣∣∣Q

−1

(
1

n
ΦTΦ− I

)∣∣∣∣
∣∣∣∣
∣∣∣∣
k
]
= E



∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

n

n∑

i=1

Ai

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

k

 ≤ 2kE



∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

n

n∑

i=1

εiAi

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

k

 . (33)

Lemma 8 The quantity E

[∣∣∣∣∣∣ 1
n

∑n
i=1 εiAi

∣∣∣∣∣∣k
]1/k

is upper bounded by

√
e(k ∨ 2 log(2d))

ρ2
∑d

j=1
1

1+λ/µj
+ 1

√
n

+
4e(k ∨ 2 log(2d))

n1−1/k

( d∑

j=1

ρ2

1 + λ/µj
+ 1

)
. (34)

We take this lemma as given for the moment, returning to prove it shortly. Recall the
definition of the constant γ(λ) =

∑∞
j=1 1/(1 + λ/µj) ≥

∑d
j=1 1/(1 + λ/µj). Then using our

symmetrization inequality (33), we have

E

[ ∣∣∣∣
∣∣∣∣
∣∣∣∣Q

−1

(
1

n
ΦTΦ− I

)∣∣∣∣
∣∣∣∣
∣∣∣∣
k ]

≤ 2k
(√

e(k ∨ log(2d))
ρ2γ(λ) + 1√

n
+

4e(k ∨ 2 log(2d))

n1−1/k
(ρ2γ(λ) + 1)

)k

≤ max

{√
k ∨ log(2d),

k ∨ log(2d)

n1/2−1/k

}k (C(ρ2γ(λ) + 1)√
n

)k

, (35)

where C is a numerical constant. By definition of the event E , we see by Markov’s inequality
that for any k ∈ R, k ≥ 1,

P(Ec) ≤
E

[∣∣∣∣∣∣Q−1
(
1
nΦ

TΦ− I
)∣∣∣∣∣∣k

]

2−k
≤ max

{√
k ∨ log(2d),

k ∨ log(2d)

n1/2−1/k

}k (2C(ρ2γ(λ) + 1)√
n

)k

.

This completes the proof of the bound (28).

It remains to prove Lemma 8, for which we make use of the following result, due
to Chen et al. (2012, Theorem A.1(2)).

Lemma 9 Let Xi ∈ R
d×d be independent symmetrically distributed Hermitian matrices.

Then

E

[∣∣∣∣
∣∣∣∣
∣∣∣∣

n∑

i=1

Xi

∣∣∣∣
∣∣∣∣
∣∣∣∣
k]1/k

≤
√

e(k ∨ 2 log d)

∣∣∣∣
∣∣∣∣
∣∣∣∣

n∑

i=1

E[X2
i ]

∣∣∣∣
∣∣∣∣
∣∣∣∣
1/2

+ 2e(k ∨ 2 log d)

(
E[max

i
|||Xi|||k]

)1/k

.

(36)
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The proof of Lemma 8 is based on applying this inequality with Xi = εiAi/n, and then
bounding the two terms on the right-hand side of inequality (36).

We begin with the first term. Note that

E[A2
i ] = E diag

([
Q−1πiπ

T
i + πiπ

T
i Q

−1 − πiπ
T
i Q

−2πiπ
T
i − I

Q−1πiπ
T
i + πiπ

T
i Q

−1 −Q−1πiπ
T
i πiπ

T
i Q

−1 − I

])
.

Moreover, we have E[πiπ
T
i ] = Id×d, which leaves us needing to compute E[πiπ

T
i Q

−2πiπ
T
i ]

and E[Q−1πiπ
T
i πiπ

T
i Q

−1]. Instead of computing them directly, we provide bounds on their
norms. Since πiπ

T
i is rank one and Q is diagonal, we have

∣∣∣∣∣∣Q−1πiπ
T
i

∣∣∣∣∣∣ =
∣∣∣∣∣∣πiπT

i Q
−1
∣∣∣∣∣∣ = πT

i (I + λM−1)−1πi =

d∑

j=1

φj(xi)
2

1 + λ/µj
.

We also note that, for any k ∈ R, k ≥ 1, convexity implies that

( d∑

j=1

φj(xi)
2

1 + λ/µj

)k

=



∑d

l=1 1/(1 + λ/µℓ)∑d
l=1 1/(1 + λ/µℓ)

d∑

j=1

φj(xi)
2

1 + λ/µj




k

≤
( d∑

l=1

1

1 + λ/µℓ

)k 1
∑d

l=1 1/(1 + λ/µℓ)

d∑

j=1

φj(xi)
2k

1 + λ/µj
,

so if E[φj(Xi)
2k] ≤ ρ2k, we obtain

E

[( d∑

j=1

φj(xi)
2

1 + λ/µj

)k]
≤
( d∑

j=1

1

1 + λ/µj

)k

ρ2k. (37)

The sub-multiplicativity of the matrix norm implies
∣∣∣∣∣∣Q−1πiπ

T
i πiπ

T
i Q

−1
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣Q−1πiπ
T
i

∣∣∣∣∣∣2,
and consequently we have

E[
∣∣∣∣∣∣Q−1πiπ

T
i πiπ

T
i Q

−1
∣∣∣∣∣∣] ≤ E

[(
πT
i (I + λM−1)−1πi

)2] ≤ ρ4
( d∑

j=1

1

1 + λ/µj

)2

,

where the final step follows from inequality (37).
Returning to our expectation of A2

i , we note that 0 � Q−1 � I and E[πiπ
T
i ] = I, and

hence ∣∣∣∣∣∣E[Q−1πiπ
T
i + πiπ

T
i Q

−1 − I]
∣∣∣∣∣∣ =

∣∣∣∣∣∣2Q−1 − I
∣∣∣∣∣∣ ≤ 1.

Consequently,

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

(
1

n2

n∑

i=1

E[A2
i ]

)1/2
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ =
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

n2

n∑

i=1

E[A2
i ]

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

1/2

≤ 1√
n

√√√√ρ4
( d∑

j=1

1

1 + λ/µj

)2

+ 1.

We have thus obtained the first term on the right-hand side of expression (34).
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We now turn to the second term in expression (34). For real k ≥ 1, we have

E[max
i

|||εiAi/n|||k] =
1

nk
E[max

i
|||Ai|||k] ≤

1

nk

n∑

i=1

E[|||Ai|||k]

Since norms are sub-additive, we find that

|||Ai|||k ≤ 2k−1

( d∑

j=1

φj(xi)
2

1 + λ/µj

)k

+ 2k−1.

Thus, applying inequality (37), we find that

E[max
i

|||εiAi/n|||k] ≤
1

nk−1

[
2k−1

( d∑

j=1

1

1 + λ/µj

)k

ρ2k + 2k−1

]
.

Taking kth roots yields the second term in the expression (34).

Appendix B. Proof of Lemma 6

This proof follows an outline similar to Lemma 5. We begin with a simple bound on ‖∆‖H:

Lemma 10 Under Assumption B, we have E[‖∆‖2H | X] ≤ 2σ2/λ+ 4 ‖f∗‖2H.

Proof We have

λ E[ ‖f̂‖2H | {xi}ni=1] ≤ E

[
1

n

n∑

i=1

(f̂(xi)− f∗(xi)− εi)
2 + λ‖f̂‖2H | {xi}ni=1

]

(i)

≤ 1

n

n∑

i=1

E[ε2i | xi] + λ ‖f∗‖2H

(ii)

≤ σ2 + λ ‖f∗‖2H ,

where inequality (i) follows since f̂ minimizes the objective function (2); and inequality (ii)
uses the fact that E[ε2i | xi] ≤ σ2. Applying the triangle inequality to ‖∆‖H along with the
elementary inequality (a+ b)2 ≤ 2a2 + 2b2, we find that

E[‖∆‖2H | {xi}ni=1] ≤ 2 ‖f∗‖2H + 2E[‖f̂‖2H | {xi}ni=1] ≤ 2σ2

λ
+ 4 ‖f∗‖2H ,

which completes the proof.

With Lemma 10 in place, we now proceed to the proof of the theorem proper. Recall
from Lemma 5 the optimality condition

1

n

n∑

i=1

ξxi
(〈ξxi

, f̂ − f∗〉 − εi) + λf̂ = 0. (38)
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Now, let δ ∈ ℓ2(N) be the expansion of the error ∆ in the basis {φj}, so that ∆ =
∑∞

j=1 δjφj ,
and (again, as in Lemma 5), we choose d ∈ N and truncate ∆ via

∆↓ :=
d∑

j=1

δjφj and ∆↑ := ∆−∆↓ =
∑

j>d

δjφj .

Let δ↓ ∈ R
d and δ↑ denote the corresponding vectors for the above. As a consequence of

the orthonormality of the basis functions, we have

E[‖∆‖22] = E[‖∆↓‖22] + E[‖∆↑‖22] = E[‖δ↓‖22] + E[‖δ↑‖22]. (39)

We bound each of the terms (39) in turn.
By Lemma 10, the second term is upper bounded as

E[‖∆↑‖22] =
∑

j>d

E[δ2j ] ≤
∑

j>d

µd+1

µj
E[δ2j ] = µd+1E[‖∆↑‖2H] ≤ µd+1

(
2σ2

λ
+ 4 ‖f∗‖2H

)
. (40)

The remainder of the proof is devoted the bounding the term E[‖∆↓‖22] in the decompo-
sition (39). By taking the Hilbert inner product of φk with the optimality condition (38),
we find as in our derivation of the matrix equation (25) that for each k ∈ {1, . . . , d}

1

n

n∑

i=1

d∑

j=1

φk(xi)φj(xi)δj +
1

n

n∑

i=1

φk(xi)(∆
↑(xi)− εi) + λ

δk
µk

= 0.

Given the expansion f∗ =
∑∞

j=1 θjφj, define the tail error vector v ∈ R
n by vi =

∑
j>d δjφj(xi),

and recall the definition of the eigenvalue matrix M = diag(µ1, . . . , µd) ∈ R
d×d. Given the

matrix Φ defined by its coordinates Φij = φj(xi), we have
(
1

n
ΦTΦ+ λM−1

)
δ↓ = −λM−1θ↓ − 1

n
ΦT v +

1

n
ΦT ε. (41)

As in the proof of Lemma 5, we find that
(
I +Q−1

(
1

n
ΦTΦ− I

))
δ↓ = −λQ−1M−1θ↓ − 1

n
Q−1ΦT v +

1

n
Q−1ΦT ε, (42)

here Q := (I + λM−1).
We now recall the bounds (27a) and (28) from Lemma 7, as well as the previously defined

event E := {
∣∣∣∣∣∣Q−1((1/n)ΦTΦ− I)

∣∣∣∣∣∣ ≤ 1/2}. When E occurs, the expression (42) implies the
inequality

‖∆↓‖22 ≤ 4
∥∥∥−λQ−1M−1θ↓ − (1/n)Q−1ΦTv + (1/n)Q−1ΦT ε

∥∥∥
2

2
.

When E fails to hold, Lemma 10 may still be applied since E is measureable with respect
to {xi}ni=1. Doing so yields

E[‖∆↓‖22] = E[1(E) ‖∆↓‖22] + E[1(Ec) ‖∆↓‖22]

≤ 4E

[∥∥∥−λQ−1M−1θ↓ − (1/n)Q−1ΦT v + (1/n)Q−1ΦT ε
∥∥∥
2

2

]
+ E

[
1(Ec)E[‖∆↓‖22 | {xi}ni=1]

]

≤ 4E

[∥∥∥∥λQ
−1M−1θ↓ +

1

n
Q−1ΦTv − 1

n
Q−1ΦT ε

∥∥∥∥
2

2

]
+ P(Ec)

(
2σ2

λ
+ 4 ‖f∗‖2H

)
. (43)
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Since the bound (28) still holds, it remains to provide a bound on the first term in the
expression (43).

As in the proof of Lemma 5, we have ‖λQ−1M−1θ↓‖22 ≤ λ/2 via the bound (27a).
Turning to the second term inside the norm, we claim that, under the conditions of Lemma 6,
the following bound holds:

E

[∥∥(1/n)Q−1ΦTv
∥∥2
2

]
≤ ρ4 tr(K)βd(2σ

2/λ+ 4 ‖f∗‖2H)
4λ

. (44)

This claim is an analogue of our earlier bound (27b), and we prove it shortly. Lastly, we
bound the norm of Q−1ΦT ε/n. Noting that the diagional entries of Q−1 are 1/(1 + λ/µj),
we have

E

[∥∥Q−1ΦT ε
∥∥2
2

]
=

d∑

j=1

n∑

i=1

1

(1 + λ/µj)2
E[φ2

j(Xi)ε
2
i ]

Since E[φ2
j (Xi)ε

2
i ] = E[φ2

j (Xi)E[ε
2
i | Xi]] ≤ σ2 by assumption, we have the inequality

E

[∥∥(1/n)Q−1ΦT ε
∥∥2
2

]
≤ σ2

n

d∑

j=1

1

(1 + λ/µj)2
.

Noting that 1/(1 + λ/µj)
2 ≤ 1/(1 + λ/µj), the last sum is bounded by (σ2/n)γ(λ).

Applying the inequality (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2 to inequality (43), we obtain

E

[
‖∆↓‖22

]
≤ 6λ ‖f∗‖2H +

12σ2γ(λ)

n
+

(
2σ2

λ
+ 4 ‖f∗‖2H

)(
3ρ4 tr(K)βd

λ
+ P(Ec)

)
.

Applying the bound (28) to control P(Ec) and bounding E[‖∆↑‖22] using inequality (40)
completes the proof of the lemma.

It remains to prove bound (44). Recalling the inequality (31), we see that

∥∥(1/n)Q−1ΦTv
∥∥2
2
≤
∣∣∣
∣∣∣
∣∣∣Q−1M−1/2

∣∣∣
∣∣∣
∣∣∣
2 ∥∥∥(1/n)M1/2ΦTv

∥∥∥
2

2
≤ 1

4λ

∥∥∥(1/n)M1/2ΦT v
∥∥∥
2

2
. (45)

Let Φℓ denote the ℓth column of the matrix Φ. Taking expectations yields

E

[∥∥∥M1/2ΦT v
∥∥∥
2

2

]
=

d∑

l=1

µℓE[〈Φℓ, v〉2] ≤
d∑

l=1

µℓE

[
‖Φℓ‖22 ‖v‖

2
2

]
=

d∑

l=1

µℓE

[
‖Φℓ‖22 E

[
‖v‖22 | X

]]
.

Now consider the inner expectation. Applying the Cauchy-Schwarz inequality as in the
proof of the bound (27b), we have

‖v‖22 =
n∑

i=1

v2i ≤
n∑

i=1

(∑

j>d

δ2j
µj

)(∑

j>d

µjφ
2
j (Xi)

)
.
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Notably, the second term is X-measureable, and the first is bounded by ‖∆↑‖2H ≤ ‖∆‖2H.
We thus obtain

E

[∥∥∥M1/2ΦT v
∥∥∥
2

2

]
≤

n∑

i=1

d∑

l=1

µℓE

[
‖Φℓ‖22

(∑

j>d

µjφ
2
j(Xi)

)
E[‖∆‖2H | X]

]
. (46)

Lemma 10 provides the bound 2σ2/λ+ 4 ‖f∗‖2H on the final (inner) expectation.
The remainder of the argument proceeds precisely as in the bound (27b). We have

E[‖Φℓ‖22 φj(Xi)
2] ≤ nρ4

by the moment assumptions on φj, and thus

E

[∥∥∥M1/2ΦT v
∥∥∥
2

2

]
≤

d∑

l=1

∑

j>d

µℓµjn
2ρ4
(
2σ2

λ
+ 4 ‖f∗‖2H

)
≤ n2ρ4βd tr(K)

(
2σ2

λ
+ 4 ‖f∗‖2H

)
.

Dividing by 4λn2 completes the proof.
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