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Abstract

Random projection has been widely used in data classification. It maps high-dimensional
data into a low-dimensional subspace in order to reduce the computational cost in solving
the related optimization problem. While previous studies are focused on analyzing the
classification performance of using random projection, in this work, we consider the recovery
problem, i.e., how to accurately recover the optimal solution to the original optimization
problem in the high-dimensional space based on the solution learned from the subspace
spanned by random projections. We present a simple algorithm, termed Dual Random
Projection, that uses the dual solution of the low-dimensional optimization problem to
recover the optimal solution to the original problem. Our theoretical analysis shows that
with a high probability, the proposed algorithm is able to accurately recover the optimal
solution to the original problem, provided that the data matrix is of low rank or can be
well approximated by a low rank matrix.
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1. Introduction

Random projection is a simple yet powerful dimensionality reduction technique that projects
the original high-dimensional data onto a low-dimensional subspace using a random ma-
trix (Kaski, 1998; Bingham and Mannila, 2001). It has been successfully applied to many
machine learning tasks, including classification (Fradkin and Madigan, 2003; Vempala, 2004;
Rahimi and Recht, 2008), regression (Maillard and Munos, 2012), clustering (Fern and Brod-
ley, 2003; Boutsidis et al., 2010), manifold learning (Dasgupta and Freund, 2008; Freund
et al., 2008), and information retrieval (Goel et al., 2005).

In this work, we focus on random projection for classification. While previous studies
were devoted to analyzing the classification performance using random projection (Arriaga
and Vempala, 1999; Balcan et al., 2006; Paul et al., 2012; Shi et al., 2012), we examine the
effect of random projection from a very different aspect. In particular, we are interested
in accurately recovering the optimal solution to the original high-dimensional optimization
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problem using random projection. This is particularly useful for feature selection (Guyon
and Elisseeff, 2003), where important features are often selected based on their weights in
the linear prediction model learned from the training data. In order to ensure that similar
features are selected, the prediction model based on random projection needs to be close to
the model obtained by solving the original optimization problem directly.

The proposed algorithm for recovering the optimal solution consists of two simple steps.
In the first step, similar to previous studies, we apply random projection to reducing the
dimensionality of the data, and then solve a low-dimensional optimization problem. In the
second step, we construct the dual solution of the low-dimensional problem from its primal
solution, and then use it to recover the optimal solution to the original high-dimensional
problem. Our analysis reveals that with a high probability, we are able to recover the optimal
solution with a small error by using Ω(r log r) projections, where r is the rank of the data
matrix. A similar result also holds when the data matrix can be well approximated by a
low rank matrix. We further show that the proposed algorithm can be applied iteratively
to recovering the optimal solution with a relative error ǫ by using O(log 1/ǫ) iterations.

The rest of the paper is arranged as follows. Section 2 describes the problem of recovering
optimal solution by random projection, the theme of this work. Section 3 describes the dual
random projection approach for recovering the optimal solution. Section 4 presents the main
theoretical results for the proposed algorithm. Section 5 presents the proof for the theorems
stated in Section 4. Section 6 concludes this work.

2. The Problem

Let (xi, yi), i = 1, . . . , n be a set of training examples, where xi ∈ R
d is a vector of d

dimension and yi ∈ {−1,+1} is the binary class assignment for xi. Let X = (x1, . . . ,xn)
and y = (y1, . . . , yn)

⊤ include input patterns and the class assignments of all training
examples. A classifier w ∈ R

d is learned by solving the following optimization problem:

min
w∈Rd

λ

2
‖w‖2 +

n∑

i=1

ℓ(yix
⊤
i w), (1)

where ℓ(z) is a convex loss function that is differentiable1. By writing ℓ(z) in its convex
conjugate form, i.e.,

ℓ(z) = max
α∈Ω

αz − ℓ∗(α),

where ℓ∗(α) is the convex conjugate of ℓ(z) and Ω is the domain of the dual variable, we
get the dual optimization problem:

max
α∈Ωn

−
n∑

i=1

ℓ∗(αi)−
1

2λ
α⊤Gα, (2)

where α = (α1, · · · , αn)
⊤ and D(y) = diag(y) and G is the Gram matrix given by

G = D(y)X⊤XD(y). (3)

1. For non-differentiable loss functions such as hinge loss, we could apply the smoothing technique described
in (Nesterov, 2005) to make it differentiable.
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In the following, we denote by w∗ ∈ R
d the optimal primal solution to (1), and by α∗ ∈ R

n

the optimal dual solution to (2). The following proposition connects w∗ and α∗.

Proposition 1 Let w∗ ∈ R
d be the optimal primal solution to (1), and α∗ ∈ R

n be the
optimal dual solution to (2). We have

w∗ = − 1

λ
XD(y)α∗, and [α∗]i = ∇ℓ

(
yix

⊤
i w∗

)
, i = 1, . . . , n. (4)

The proof of Proposition 1 and other omitted proofs are deferred to the Appendix. When
the dimensionality d is high and the number of training examples n is large, solving either
the primal problem in (1) or the dual problem in (2) can be computationally expensive.
To reduce the computational cost, one common approach is to significantly reduce the
dimensionality by random projection. Let R ∈ R

d×m be a Gaussian random matrix, where
each entry Ri,j is independently drawn from a Gaussian distribution N (0, 1) and m is
significantly smaller than d. Using the random matrix R, we generate a low-dimensional
representation for each input example by

x̂i =
1√
m
R⊤xi, (5)

and solve the following low-dimensional optimization problem:

min
z∈Rm

λ

2
‖z‖2 +

n∑

i=1

ℓ(yiz
⊤x̂i). (6)

The corresponding dual problem is written as

max
α∈Ωn

−
n∑

i=1

ℓ∗(αi)−
1

2λ
α⊤Ĝα, (7)

where

Ĝ = D(y)X⊤RR⊤

m
XD(y). (8)

Intuitively, the choice of Gaussian random matrix R is justified by the expectation of the
dot-product between any two examples in the projected space is equal to the dot-product
in the original space, i.e.,

E[x̂⊤
i x̂j ] = x⊤

i E

[
1

m
RR⊤

]
xj = x⊤

i xj ,

where the last equality follows from E[RR⊤/m] = I. Thus, G = Ĝ holds in expectation.
Let z∗ ∈ R

m denote the optimal primal solution to the low-dimensional problem (6),
and α̂∗ ∈ R

n denote the optimal dual solution to (7). Similar to Proposition 1, the following
proposition connects z∗ and α̂∗.

Proposition 2 We have

z∗ = − 1

λ

1√
m
R⊤XD(y)α̂∗, and [α̂∗]i = ∇ℓ

(
yi√
m
x⊤
i Rz∗

)
, i = 1, . . . , n. (9)
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Given the optimal solution z∗ ∈ R
m, the data point x ∈ R

d is classified by x⊤Rz∗/
√
m,

which is equivalent to defining a new solution ŵ ∈ R
d given below, which we refer to as the

naive solution

ŵ =
1√
m
Rz∗. (10)

The classification performance of ŵ has been examined by many studies (Arriaga and
Vempala, 1999; Balcan et al., 2006; Paul et al., 2012; Shi et al., 2012). The general conclusion
is that when the original data is linearly separable with a large margin, the classification
error for ŵ is usually small.

Although these studies show that ŵ can achieve a small classification error under appro-
priate assumptions, it is unclear whether ŵ is a good approximation of the optimal solution
w∗. In fact, as we will see in Section 4, the naive solution is almost guaranteed to be a
BAD approximation of the optimal solution, that is, ‖ŵ −w∗‖2 = Ω(

√
d/m‖w∗‖2). This

observation leads to an interesting question: is it possible to accurately recover the optimal
solution w∗ based on z∗, the optimal solution to the low-dimensional optimization problem?

Relationship to Compressive Sensing The proposed problem is closely related to
compressive sensing (Donoho, 2006; Candès and Wakin, 2008) where the goal is to recover
a high-dimensional but sparse vector using a small number of random measurements. The
key difference between our work and compressive sensing is that we do not have the direct
access to the random measurement of the target vector (which in our case is w∗ ∈ R

d).
Instead, z∗ ∈ R

m is the optimal solution to (6), the primal problem using random projection.
However, the following theorem shows that z∗ is a good approximation of R⊤w∗/

√
m, which

includes m random measurements of w∗, if the data matrix X is of low rank and the number
of random measurements m is sufficiently large.

Theorem 1 For any 0 < ε ≤ 1/2, with a probability at least 1− δ− exp(−m/32), we have

‖√mz∗ −R⊤w∗‖2 ≤
√
2ε√

1− ε
‖R⊤w∗‖2,

provided

m ≥ (r + 1) log(2r/δ)

cε2
,

where constant c is at least 1/4, and r is the rank of X.

Given the approximation bound in Theorem 1, it is appealing to reconstruct w∗ using the
compressive sensing algorithm provided that w∗ is sparse to certain bases. We note that
the low rank assumption for data matrix X implies that w∗ is sparse with respect to the
singular vectors of X. However, since z∗ only provides an approximation to the random
measurements of w∗, running the compressive sensing algorithm will not be able to perfectly
recover w∗ from z∗. In Section 3, we present an algorithm, that recovers w∗ with a small
error, provided that the data matrix X is of low rank. Compared to the compressive sensing
algorithm, the main advantage of the proposed algorithm is its computational simplicity;
it neither computes the singular vectors of X nor solves an optimization problem that
minimizes the ℓ1 norm.
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Algorithm 1 A Dual Random Projection Approach for Recovering Optimal Solution

1: Input: input patterns X ∈ R
d×n, binary class assignment y ∈ {−1,+1}n, and sample

size m
2: Sample a Gaussian random matrix R ∈ R

d×m and compute X̂ = [x̂1, . . . , x̂n] =
R⊤X/

√
m

3: Obtain the primal solution z∗ ∈ R
m by solving the optimization problem in (6)

4: Construct the dual solution α̂∗ ∈ R
n by Proposition 2, i.e.,

[α̂∗]i = ∇ℓ

(
yi√
m
x⊤
i Rz∗

)
, i = 1, . . . , n

5: Compute w̃ ∈ R
d according to (12), i.e., w̃ = −XD(y)α̂∗/λ

6: Output: the recovered solution w̃

3. Algorithm

To motivate our algorithm, let us revisit the optimal primal solution w∗ to (1), which is
given in Proposition 1, i.e.,

w∗ = − 1

λ
XD(y)α∗, (11)

where α∗ is the optimal solution to the dual problem (2). Given the projected data x̂ =
R⊤x/

√
m, we have reached an approximate dual problem in (7). Comparing it with the

dual problem in (2), the only difference is that the Gram matrix G = D(y)X⊤XD(y) in (2)
is replaced with Ĝ = D(y)X⊤RR⊤XD(y)/m in (7). Recall that E[RR⊤/m] = I. Thus,
when the number of random projections m is sufficiently large, Ĝ will be close to the G and
we would also expect α̂∗ to be close to α∗. As a result, we can use α̂∗ to approximate α∗
in (11), which yields a recovered prediction model given below:

w̃ = − 1

λ
XD(y)α̂∗ = −

n∑

i=1

1

λ
yi[α̂∗]ixi. (12)

Note that the key difference between the recovered solution w̃ and the naive solution
ŵ is that ŵ is computed by mapping the optimal primal solution z∗ in the projected space
back to the original space via the random matrix R, while w̃ is computed directly in the
original space using the approximate dual solution α̂∗. Therefore, the naive solution ŵ lies
in the subspace spanned by the column vectors in the random matrix R (denoted by AR),
while the recovered solution w̃ lies in the subspace that also contains the optimal solution
w∗, i,e., the subspace spanned by columns of X (denoted by A). The mismatch between
spaces AR and A leads to the large approximation error for ŵ.

According to Proposition 2, we can construct the dual solution α̂∗ from the primal
solution z∗. Thus, we do not need to solve the dual problem in (7) to obtain α̂∗. Instead,
we solve the low-dimensional optimization problem in (6) to get z∗ and construct α̂∗ from it.
Algorithm 1 shows the details of the proposed method. We note that although dual variables
have been widely used in the analysis of convex optimization (Boyd and Vandenberghe, 2004;
Hazan et al., 2011) and online learning (Shalev-Shwartz and Singer, 2006), to the best of
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Algorithm 2 An Iterative Dual Random Projection Approach for Recovering Optimal
Solution

1: Input: input patterns X ∈ R
d×n, binary class assignment y ∈ {−1,+1}n, sample size

m, and number of iterations T
2: Sample a Gaussian random matrix R ∈ R

d×m and compute X̂ = R⊤X/
√
m

3: Initialize w̃0 = 0
4: for t = 1, . . . , T do
5: Obtain zt∗ ∈ R

m by solving the following optimization problem

min
z∈Rm

λ

2

∥∥∥∥z+
1√
m
R⊤w̃t−1

∥∥∥∥
2

2

+
n∑

i=1

ℓ
(
yiz

⊤x̂i + yi[w̃
t−1]⊤xi

)
(13)

6: Construct the dual solution α̂t
∗ ∈ R

n using

[α̂t
∗]i = ∇ℓ

(
yix̂

⊤
i z

t
∗ + yi[w̃

t−1]⊤xi

)
, i = 1, . . . , n

7: Update the solution by w̃t = −XD(y)α̂t
∗/λ

8: end for
9: Output the recovered solution w̃T

our knowledge, this is the first time that dual variables are used in conjunction with random
projection for recovering the optimal solution.

To further reduce the recovery error, we develop an iterative method shown in Algo-
rithm 2. The idea comes from that fact that if ‖w̃−w∗‖2 ≤ ǫ‖w∗‖2 with a small ǫ, we can
apply the same dual random projection algorithm again to recover ∆w = w∗ − w̃, which
will result in a recovery error of ǫ‖∆w‖2 ≤ ǫ2‖w∗‖2. If we repeat the above process with
T iterations, we should be able to obtain a solution with a recovery error of ǫT ‖w∗‖2. This
simple intuition leads to an iterative method shown in Algorithm 2. At the t-th iteration,
given the recovered solution w̃t−1 obtained from the previous iteration, we solve the opti-
mization problem in (13) that is designed to recover w∗ − w̃t−1. The detailed derivation of
Algorithm 2 is provided in Section 5.2.

It is important to note that although Algorithm 2 consists of multiple iterations, the
random projection of the data matrix is only computed once before the start of the itera-
tions. This important feature makes the iterative algorithm computationally attractive as
calculating random projections of a large data matrix is computationally expensive and has
been the subject of many studies, e.g., (Achlioptas, 2003; Liberty et al., 2008; Braverman
et al., 2010). However, it is worth noting that at each iteration in Algorithm 2, we need
to compute the dot-product [w̃t−1]⊤xi for all training data in the original space. We also
note that Algorithm 2 is related to the Epoch gradient descent algorithm (Hazan and Kale,
2011) for stochastic optimization in the sense that the solution obtained from the previous
iteration serves as the starting point to the optimization problem at the current iteration.
Unlike the algorithm in (Hazan and Kale, 2011), we do not shrink the domain size over the
iterations in Algorithm 2.
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Application to the Square Loss In the following, we take the square loss ℓ(z) =
1
2(1 − z)2 as an example to illustrate the recovery procedure. The original optimization
problem, which is refereed to as the ridge regression (Hastie et al., 2009), is

min
w∈Rd

λ

2
‖w‖2 + 1

2

n∑

i=1

(1− yix
⊤
i w)2

yi∈{±1}
=

λ

2
‖w‖2 + 1

2

n∑

i=1

(yi − x⊤
i w)2.

Setting the derivative to 0, we obtain the optimal solution

w∗ =
(
λI +XX⊤

)−1
Xy = X

(
λI +X⊤X

)−1
y. (14)

where the last equality follows from the Woodbury matrix identity (Golub and Van Loan,
1996). Thus, the computational cost is either O(d2n+ d3) or O(n2d+ n3).

Following the dual random projection algorithm, we first solve the the low-dimensional
problem in (6), whose solution is z∗ = (λI+ X̂X̂⊤)−1X̂y, where X̂ = R⊤X/

√
m. Then, we

construct the dual solution α̂∗ = D(y)X̂⊤z∗ − 1. Finally, we recover the optimal solution
w̃ = − 1

λXD(y)α̂∗. It is straightforward to check that computational cost of our algorithm
is O(mnd+m2n+m3), which is significantly smaller than that of (14) when both d and n
are large.

After some algebraic manipulation, we can show that

w̃ = X

(
λI +X⊤SS⊤

m
X

)−1

y. (15)

Comparing (14) with (15), we can see the difference between w∗ and w̃ comes from the
Gram matrix. When m is large enough, X⊤RR⊤X/m is close to the X⊤X, and as a result
w̃ is also close to w∗.

4. Main Results

In this section, we will bound the recovery error ‖w∗− w̃‖2 of dual random projection. We
first assume X is of low rank, and then extend the results to the full rank case.

4.1. Low Rank

The low rank assumption is closely related to the sparsity assumption made in compressive
sensing. This is because w∗ lies in the subspace spanned by the column vectors of X and
the low rank assumption directly implies that w∗ is sparse with respect to the singular
vectors of X.

We denote by r the rank of matrix X. The following theorem shows that the recovery
error of Algorithm 1 is small provided that (1) X is of low rank (i.e., r ≪ min(d, n)), and
(2) the number of random projections is sufficiently large.

Theorem 2 Let w∗ be the optimal solution to (1) and let w̃ be the solution recovered by
Algorithm 1. For any 0 < ε ≤ 1/2, with a probability at least 1− δ, we have

‖w̃ −w∗‖2 ≤
ε

1− ε
‖w∗‖2,
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provided

m ≥ (r + 1) log(2r/δ)

cε2
,

where constant c is at least 1/4.

According to Theorem 2, the number of required random projections is Ω(r log r). This
is similar to a compressive sensing result if we view rank r as the sparsity measure used
in compressive sensing. Following the same arguments as compressive sensing, it may be
possible to argue that Ω(r log r) is optimal due to the result of the coupon collector’s prob-
lem (Mowani and Raghavan, 1995), although the rigorous analysis remains to be developed.

As a comparison, the following theorem shows that with a high probability, the naive
solution ŵ given in (10) does not accurately recover the true optimal solution w∗.

Theorem 3 For any 0 < ε ≤ 1/3, with a probability at least 1 − exp(−(d − r)/32) −
exp(−m/32)− δ, we have

‖ŵ −w∗‖2 ≥
1

2

√
d− r

m

(
1− ε

√
2(1 + ε)

1− ε

)
‖w∗‖2,

provided the condition on m in Theorem 2 holds.

As indicated by Theorem 3, when m is sufficiently larger than r but significantly smaller
than d, we have ‖ŵ−w∗‖2 = Ω(

√
d/m‖w∗‖2), indicating that ŵ does not approximate w∗

well.
It is important to note that Theorem 3 does not contradict the previous results showing

that the random projection based method could result in a small classification error if the
data is linearly separable with a large margin. This is because, to decide whether ŵ carries
a similar classification performance to w∗, we need to measure the following term

max
x∈span(X),‖x‖2≤1

x⊤(ŵ −w∗). (16)

Since ‖ŵ −w∗‖2 can also be written as

‖ŵ −w∗‖2 = max
‖x‖2≤1

x⊤(ŵ −w∗),

the quantity defined in (16) could be significantly smaller than ‖ŵ−w∗‖2 if the data matrix
X is of low rank. The following theorem quantifies this statement.

Theorem 4 For any 0 < ε ≤ 1/2, with a probability at least 1− δ, we have

max
x∈span(X),‖x‖2≤1

x⊤(ŵ −w∗) ≤ ε

(
1 +

1

1− ε

)
‖w∗‖2,

provided the condition on m in Theorem 2 holds.

We note that Theorem 4 directly implies the result of margin classification error for random
projection (Blum, 2006; Shi et al., 2012). This is because when a data point (xi, yi) can be
separated by w∗ with a margin γ, i.e., yiw

⊤
∗ xi ≥ γ‖w∗‖, it will be classified by ŵ with a

margin at least γ − ε
(
1 + 1

1−ε

)
provided γ > ε

(
1 + 1

1−ε

)
.

Based on Theorem 2, we now state the recovery result for the iterative method.

8



Dual Random Projection

Theorem 5 Let w∗ be the optimal solution to (1) and let w̃T be the solution recovered by
Algorithm 2. For any 0 < ε < 1/2, with a probability at least 1− δ, we have

‖w̃T −w∗‖2 ≤
(

ε

1− ε

)T

‖w∗‖2,

provided the condition on m in Theorem 2 holds.

Notice that the number of random projectionm does not depend on the number of iterations
T . That is because we only apply random projection once to reducing the dimensionality of
the data. Theorem 5 implies that we can recover the optimal solution with a relative error
ǫ, i.e., ‖w∗ − w̃T ‖2 ≤ ǫ‖w∗‖2, by using log(1−ε)/ε 1/ǫ iterations.

4.2. Full Rank

If X has full rank, we established the following theorem to bound the recovery error.

Theorem 6 Assume w∗ lies in the subspace spanned by the first k left singular vectors of
X, and the loss ℓ(·) is γ-smooth. For any 0 < ε ≤ 1, with a probability at least 1 − δ, we
have

‖w̃ −w∗‖2 ≤
ε

1− ε

(
1 +

√
λ√

γσk

)
‖w∗‖2,

provided

m ≥ r̄σ2
1

cε2(λ/γ + σ2
1)

log
2d

δ
,

where σi is the i-th singular value of X, r̄ =
∑d

i=1
σ2
i

λ/γ+σ2
i
, and the constant c is at least

1/32.

The above theorem implies the number of required random projections is Ω(r̄ log d), which

can be significantly smaller than d. The number r̄ is closely related to the numerical
√

λ
γ -

rank of X (Hansen, 1998). We say that X has numerical ν-rank rν if

σrν > ν ≥ σrν+1.

Using the notation of numerical rank, we have

r̄ ≤ r√
λ/γ

+
d∑

i=r√
λ/γ

+1

σ2
i

λ/γ + σ2
i

.

Thus, when the singular value σi ≪
√
λ/γ for i > r√

λ/γ
, which means that X can be well

approximated by a rank r√
λ/γ

matrix, we have r̄ = O(r√
λ/γ

).

One remarking property of our approach is it enjoys a multiplicative bound even in the

full rank case. Thus, as long as ε
1−ε

(
1 +

√
λ√

γσk

)
< 1, we can use Algorithm 2 to reduce the

reconstruction error exponentially over the iterations. In contrast, the random projection
based algorithm for SVD (Halko et al., 2011), although is able to accurately recover the
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eigen-space when the matrix is of low rank, it will result in a significant error in uncovering
the subspace spanned by the top singular vectors when applied to matrices of full rank, and
therefore is unable to recover the optimal solution w∗ accurately.

Finally, we note that the assumption that the optimal solution lies in the subspace
spanned by the top singular vectors has been used in kernel learning (Guo and Zhou, 2012)
and semi-supervised learning (Ji et al., 2012).

5. Analysis

Due to the limitation of space, we just provided the analysis for the low rank case. Before
presenting the analysis, we first establish some notations and facts. Let the SVD of X be

X = UΣV ⊤ =
r∑

i=1

λiuiv
⊤
i ,

where Σ = diag(λ1, . . . , λr), U = (u1, . . . ,ur), V = (v1, . . . ,vr), λi is the i-th singular value
of X, ui ∈ R

d and vi ∈ R
n are the corresponding left and right singular vectors of X. We

define
γ∗ = ΣV ⊤D(y)α∗, and γ̃ = ΣV ⊤D(y)α̂∗. (17)

It is straightforward to show that

w∗ = − 1

λ
UΣV ⊤D(y)α∗ = − 1

λ
Uγ∗, and w̃ = − 1

λ
UΣV ⊤D(y)α̂∗ = − 1

λ
U γ̃.

Since U is an orthogonal matrix, we have

‖w∗‖2 =
1

λ
‖γ∗‖2, ‖w̃‖2 =

1

λ
‖γ̃‖2, and ‖w̃ −w∗‖2 =

1

λ
‖γ̃ − γ∗‖2. (18)

Let us define
A = U⊤R ∈ R

r×m.

It is easy to verify that A is a Gaussian matrix of size r ×m.

5.1. Proof of Theorem 2

We first introduce the following concentration inequality for Gaussian random matrix, which
serves the key to our analysis.

Corollary 7 Let A ∈ R
r×m be a standard Gaussian random matrix. For any 0 < ε ≤ 1/2,

with a probability at least 1− δ, we have

∥∥∥∥
1

m
AA⊤ − I

∥∥∥∥
2

≤ ε,

provided

m ≥ (r + 1) log(2r/δ)

cε2
,

where ‖ · ‖2 is the spectral norm of matrix and c is a constant whose value is at least 1/4.
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Define L(α) and L̂(α) as

L(α) = −
n∑

i=1

ℓ∗(αi)−
1

2λ
α⊤Gα, and L̂(α) = −

n∑

i=1

ℓ∗(αi)−
1

2λ
α⊤Ĝα.

Since α̂∗ maximizes L̂(α) over the domain Ωn, we have

L̂(α̂∗) ≥ L̂(α∗) +
1

2λ
(α̂∗ −α∗)

⊤Ĝ(α̂∗ −α∗). (19)

Using the concaveness of L̂(α), we have

L̂(α̂∗) +
1

2λ
(α̂∗ −α∗)

⊤Ĝ(α̂∗ −α∗)

≤ L̂(α∗) + (α̂∗ −α∗)
⊤
(
∇L̂(α∗)−∇L(α∗) +∇L(α∗)

)

≤ L̂(α∗) +
1

λ
(α̂∗ −α∗)

⊤(G− Ĝ)α∗, (20)

where the last inequality follows from the fact that (α̂∗ − α∗)⊤∇L(α∗) ≤ 0 since α∗
maximizes L(α) over the domain Ωn. Combining the inequalities in (19) and (20), we have

1

λ
(α̂∗ −α∗)

⊤(G− Ĝ)α∗ ≥
1

λ
(α̂∗ −α∗)

⊤Ĝ(α̂∗ −α∗).

We rewrite G and Ĝ as

G = D(y)V ΣU⊤UΣV ⊤D(y) = D(y)V ΣΣV ⊤D(y),

Ĝ = D(y)V ΣU⊤RR⊤

m
UΣV ⊤D(y) = D(y)V Σ

AA⊤

m
ΣV ⊤D(y).

Using the definitions of γ∗ and γ̃ in (17), we obtain

(γ̃ − γ∗)
⊤
(
I − AA⊤

m

)
γ∗ ≥ (γ̃ − γ∗)

⊤AA⊤

m
(γ̃ − γ∗). (21)

From Corollary 7, with a probability at least 1− δ, we have
∥∥I − 1

mAA⊤∥∥
2
≤ ε, under the

given condition on m. Therefore, we obtain

(1− ε)‖γ̃ − γ∗‖2 ≤ ε‖γ∗‖2.

We complete the proof by using the equalities given in (18).

5.2. Proof of Theorem 5

At the t-th iteration, we consider the following optimization problem:

min
w∈Rd

Lt(w;X,y) =
λ

2
‖w + w̃t−1‖22 +

n∑

i=1

ℓ
(
yi(w + w̃t−1)⊤xi

)
, (22)

11
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where w̃t−1 is the solution obtained from the t−1-th iteration. It is straightforward to show
that ∆t

∗ = w∗ − w̃t−1 is the optimal solution to (22). Then we can use the dual random
projection approach to recover ∆t

∗ by ∆̃t. If we can similarly show that

‖∆̃t −∆t
∗‖2 ≤

ε

1− ε
‖∆t

∗‖2,

then we update the recovered solution by w̃t = w̃t−1 + ∆̃t and have

‖w̃t −w∗‖2 = ‖∆̃t −∆t
∗‖2 ≤

ε

1− ε
‖∆t

∗‖2 =
ε

1− ε
‖w̃t−1 −w∗‖2.

As a result, if we repeat the above process for t = 1, . . . , T , the recovery error of the last
solution w̃T is upper bounded by

‖w̃T −w∗‖2 ≤
(

ε

1− ε

)T

‖w̃0 −w∗‖2 =
(

ε

1− ε

)T

‖w∗‖2,

where we assume w̃0 = 0.
The remaining question is how to compute the ∆̃t using the dual random projection

approach. In order to make the previous analysis remain valid for the recovered solution ∆̃t

to the problem (22), we need to write the primal optimization problem in the same form
as in (1). To this end, we first note that w̃t−1 lies in the subspace spanned by x1, . . . ,xn,
thus we write w̃t−1 as

w̃t−1 = − 1

λ
XD(y)α̂t−1

∗ = − 1

λ

n∑

i=1

[α̂t−1
∗ ]iyixi.

Then, Lt(w;X,y) can be written as

Lt(w;X,y) =
λ

2
‖w̃t−1‖22 +

λ

2
‖w‖22 + λw⊤w̃t−1 +

n∑

i=1

ℓ
(
yiw

⊤xi + yi[w̃
t−1]⊤xi

)

=
λ

2
‖w̃t−1‖22 +

λ

2
‖w‖22 +

n∑

i=1

ℓ
(
yiw

⊤xi + yi[w̃
t−1]⊤xi

)
− [α̂t−1

∗ ]iyiw
⊤xi

=
λ

2
‖w̃t−1‖22 +

λ

2
‖w‖22 +

n∑

i=1

ℓti

(
yiw

⊤xi

)
,

where the new loss function ℓti(z), i = 1, . . . , n is defined as

ℓti(z) = ℓ
(
z + yi[w̃

t−1]⊤xi

)
− [α̂t−1

∗ ]iz. (23)

Therefore, ∆t
∗ is the solution to the following problem:

min
w∈Rd

λ

2
‖w‖22 +

n∑

i=1

ℓti

(
yiw

⊤xi

)
.

12
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To apply the dual random projection approach to recover ∆t
∗, we solve the following

low-dimensional optimization problem:

min
z∈Rm

λ

2
‖z‖22 +

n∑

i=1

ℓti

(
yiz

⊤x̂i

)
,

where x̂i ∈ R
m is the low-dimensional representation for example xi ∈ R

d. The following
derivation signifies that the above problem is equivalent to the problem in (13).

λ

2
‖z‖22 +

n∑

i=1

ℓti

(
yiz

⊤x̂i

)

=
λ

2
‖z‖22 +

n∑

i=1

ℓ
(
yiz

⊤x̂i + yi[w̃
t−1]⊤xi

)
− [α̂t−1

∗ ]iyiz
⊤x̂i

=
λ

2
‖z‖22 +

λ√
m
z⊤(R⊤w̃t−1) +

n∑

i=1

ℓ
(
yiz

⊤x̂i + yi[w̃
t−1]⊤xi

)

=
λ

2

∥∥∥∥z+
1√
m
R⊤w̃t−1

∥∥∥∥
2

2

+
n∑

i=1

ℓ
(
yiz

⊤x̂i + yi[w̃
t−1]⊤xi

)
− λ

2

∥∥∥∥
1√
m
R⊤w̃t−1

∥∥∥∥
2

2

,

where in the third line we use the fact that x̂i = R⊤xi/
√
m and w̃t−1 = −∑i[α̂

t−1
∗ ]iyixi/λ.

Given the optimal solution zt∗ to the above problem, we can recover ∆t
∗ by

∆̃t = − 1

λ
XD(y)ât∗,

where ât∗ is computed by

[ât∗]i = ∇ℓti

(
yix̂

⊤
i z

t
∗
)
= ∇ℓ

(
yix̂

⊤
i z

t
∗ + yi[w̃

t−1]⊤xi

)
− [α̂t−1

∗ ]i, i = 1, . . . , n.

The updated solution w̃t is computed by

w̃t = w̃t−1 + ∆̃t = − 1

λ
XD(y)

(
α̂t−1

∗ + ât∗
)
= − 1

λ
XD(y)α̂t

∗,

where [α̂t
∗]i = [α̂t−1

∗ ]i + [ât∗]i = ∇ℓ(yix̂
⊤
i z

t
∗ + yi[w̃

t−1]⊤xi), i = 1, . . . , n.

6. Conclusion

In this paper, we consider the problem of recovering the optimal solution w∗ to the original
high-dimensional optimization problem using random projection. To this end, we propose
to use the dual solution α̂∗ to the low-dimensional optimization problem to recover w∗.
Our analysis shows that with a high probability, the solution w̃ returned by our proposed
method approximates the optimal solution w∗ with small error.
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Appendix A. Proof of Proposition 1 and Proposition 2

Since the two propositions can be proved similarly, we only present the proof of Proposi-
tion 1. First, if α∗ is the optimal dual solution, by replacing ℓ(·) in (1) with its conjugate
form, the optimal primal solution can be solved by

w∗ = arg min
w∈Rd

λ

2
‖w‖22 +

n∑

i=1

[α∗]iyix
⊤
i w.

Setting the gradient with respect to w to zero, we obtain

w∗ = − 1

λ

n∑

i=1

[α∗]iyixi = − 1

λ
XD(y)α∗.
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Second, let’s consider how to obtain the dual solution α∗ from the primal solution w∗.
Note that

ℓ(yix
⊤
i w∗) = [α∗]i

(
yix

⊤
i w∗

)
− ℓ∗ ([α∗]i) .

By the Fenchel conjugate theory (Borwein et al., 2006; Cesa-Bianchi and Lugosi, 2006), we
have α∗ satisfying

[α∗]i = ∇ℓ
(
yix

⊤
i w∗

)
, i = 1, . . . , n.

Appendix B. Proof of Corollary 7

In the proof, we make use of the recent development in tail bounds for the eigenvalues of a
sum of random matrices (Gittens and Tropp, 2011; Zhu, 2012).

Theorem 8 (Theorem 1 (Zhu, 2012)) Let {ξj : j = 1, . . . , n} be i.i.d. samples drawn
from a multivariate Gaussian distribution N (0, C), where C ∈ R

d×d. Define

Ĉn =
1

n

n∑

j=1

ξjξ
⊤
j .

We denote the trace of X by tr(X), and the spectral norm of X by ‖X‖. Then, for any
θ ≥ 0

Pr

{∥∥∥Ĉn − C
∥∥∥ ≥

(√
2θ(k + 1)

n
+

2θk

n

)
‖C‖

}
≤ 2d exp(−θ),

where k = tr(C)/‖C‖.

We write A = (ξ1, . . . , ξm), where ξi ∈ R
r is i.i.d. sampled from the Gaussian distribution

N (0, I), and write AA⊤/m as

1

m
AA⊤ =

1

m

m∑

i=1

ηiη
⊤
i .

Following Theorem 8, we have, with a probability at least 1− 2r exp(−θ)

∥∥∥∥
1

m
AA⊤ − I

∥∥∥∥ ≤
√

2θ(r + 1)

m
+

2θr

m
.

By setting 2r exp(−θ) = δ, we have, with a probability at least 1− δ

∥∥∥∥
1

m
AA⊤ − I

∥∥∥∥ ≤
√

2(r + 1) log(2r/δ)

m
+

2r log(2r/δ)

m
≤ ε

√
2c+ 2cε2 ≤ (

√
2c+ c)ε ≤ ε,

provided

m ≥ (r + 1) log(2r/δ)

cε2
, ε ≤ 1

2
, and c = 2−

√
3 ≥ 1

4
.
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Appendix C. Proof of Theorem 1

Before presenting our analysis, we first state a version of Johnson-Lindenstrauss theorem
that is useful to our analysis.

Theorem 9 (Theorem 2 (Blum, 2006)) Let x ∈ R
d, and x̂ = R⊤x/

√
m, where R ∈

R
d×m is a random matrix whose entries are chosen independently from N (0, 1). Then

Pr
{
(1− ε)‖x‖22 ≤ ‖x̂‖22 ≤ (1 + ε)‖x‖22

}
≥ 1− 2 exp

(
−m

4
(ε2 − ε3)

)
.

According to (21) in the proof of Theorem 2, we have

(γ̃ − γ∗)
⊤
(
I − AA⊤

m

)
γ∗ ≥ (γ̃ − γ∗)

⊤AA⊤

m
(γ̃ − γ∗).

Notice that

√
mz∗ = − 1

λ
R⊤XD(y)α̂∗ = − 1

λ
R⊤UΣV ⊤D(y)α̂∗ = − 1

λ
R⊤U γ̃ = − 1

λ
A⊤γ̃,

R⊤w∗ = − 1

λ
R⊤Uγ∗ = − 1

λ
A⊤γ∗.

Then, we have
λ2

m
‖√mz∗ −R⊤w∗‖22 ≤ (γ̃ − γ∗)

⊤
(
I − AA⊤

m

)
γ∗.

Using Corollary 7, with a probability at least 1− δ, we have

1

m
‖√mz∗ −R⊤w∗‖22 ≤ ε‖w∗‖2‖w̃ −w∗‖2.

Following Theorem 2, with a probability at least 1− δ, we have

1

m
‖√mz∗ −R⊤w∗‖22 ≤

ε2

1− ε
‖w∗‖22. (24)

To replace w∗ on R. H. S. of the above inequality with R⊤w∗, we make use of Theorem 9.
With a probability at least 1− exp(−(τ2 − τ3)m/4), we have

(1− τ)‖w∗‖22 ≤
1

m
‖R⊤w∗‖22.

By choosing τ = 1/2, we have, with a probability at least 1− exp(−m/32)

1

2
‖w∗‖22 ≤

1

m
‖R⊤w∗‖22. (25)

We complete the proof by combining the two inequalities in (24) and (25).
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Appendix D. Proof of Theorem 3

As discussed before, the key reason for the large difference between ŵ and w∗ is because
they do not lie in the same subspace: w∗ lies in the subspace spanned by the columns in U
while ŵ lies in the subspace spanned by the column vectors in a random matrix.

In the subspace orthogonal to u1, . . . ,ur, we randomly choose a subset of d−r orthogonal
bases, denoted by ur+1, . . . ,ud. Let U⊥ = (ur+1, . . . ,ud). Since

‖ŵ −w∗‖2 = max
‖x‖2≤1

x⊤(ŵ −w∗),

to facilitate our analysis, we restrict the choice of x to the subspace spanned by ur+1, . . . ,ud

and have
‖ŵ −w∗‖2 ≥ max

x∈span(ur+1,...,ud),‖x‖2≤1
x⊤ŵ,

where we use the fact w∗ ⊥ span(ur+1, . . . ,ud). From Proposition 2, we can express ŵ as

ŵ =
1√
m
Rz∗ = − 1

mλ
RR⊤XD(y)α̂∗ = − 1

mλ
RR⊤UΣV ⊤D(y)α̂∗ = − 1

mλ
RR⊤U γ̃,

where γ̃ is defined in (17). Write x as x = U⊥a, where a ∈ R
d−r. Define

Λ = U⊤
⊥R ∈ R

(d−r)×m.

As a result, we bound ‖w∗ − ŵ‖2 by

max
x∈span(ur+1,...,um),‖x‖2≤1

x⊤ŵ = max
‖a‖2≤1

1

mλ
a⊤U⊤

⊥RR⊤U γ̃ =
1

mλ
‖ΛA⊤γ̃‖2. (26)

It is easy to verify that A and Λ are two independent Gaussian random matrices. There-
fore, we can fix the vector A⊤γ̃ and estimate how the random matrix Λ affect the norm
of vector A⊤γ̃. According to Theorem 9 (i.e., Johnson-Lindenstrauss theorem), for a fixed
vector A⊤γ̃, with a probability at least 1− exp(−(d− r)/32)

1√
d− r

‖ΛA⊤γ̃‖2 ≥
1√
2
‖A⊤γ̃‖2. (27)

We now bound ‖A⊤γ̃‖2. Note that we cannot directly apply Theorem 9 to bound the
norm of A⊤γ̃ because γ̃ is a random variable depending on the random matrix A. To
decouple the dependence between A and γ̃, we expand ‖A⊤γ̃‖2 as

‖A⊤γ̃‖2 ≥ ‖A⊤γ∗‖2 − ‖A⊤(γ∗ − γ̃)‖2, (28)

where γ∗ is defined in (17). We bound the two terms on the right side of the inequality in
(28) separately. Using Theorem 9, with a probability at least 1 − exp(−m/32), we bound
‖A⊤γ∗‖ by

1√
m
‖A⊤γ∗‖2 ≥

1√
2
‖γ∗‖2 =

λ√
2
‖w∗‖2. (29)
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To bound the second term ‖A⊤(γ∗ − γ̃)‖, with a probability at least 1− δ, we have

1√
m
‖A⊤(γ∗ − γ̃)‖2 ≤

√
λmax(AA⊤/m)‖γ∗ − γ̃‖2 ≤

√
1 + ελ‖w∗ − w̃‖2,

where we use the result in Corollary 7. According to Theorem 2, we have

‖w∗ − w̃‖2 ≤
ε

1− ε
‖w∗‖2.

As a result, with a probability at least 1− δ, we have

1√
m
‖A⊤(γ∗ − γ̃)‖2 ≤ λ

√
1 + ε

ε

1− ε
‖w∗‖2. (30)

We complete the proof by putting together (26), (27), (28), (29), and (30).

Appendix E. Proof of Theorem 4

It is straightforward to check that

ŵ =
RR⊤

m
w̃.

Therefore,

max
x∈span(X),‖x‖2≤1

x⊤(ŵ −w∗)

≤ ‖w̃ −w∗‖2 + max
‖x‖2≤1,x∈span(X)

x⊤(ŵ − w̃)

= ‖w̃ −w∗‖2 + max
‖a‖2≤1

a⊤
(

1

m
U⊤RR⊤U − I

)
γ̃/λ

≤ ‖w̃ −w∗‖2 + λmax

(
1

m
U⊤RR⊤U − I

)
‖w̃‖2

≤ ‖w̃ −w∗‖2 + λmax

(
1

m
AA⊤ − I

)
‖w∗‖,

where in the fourth line we use the fact ‖w̃‖2 = ‖γ̃‖2/λ. Using Corollary 7, we have, with
a probability at least 1− δ

λmax

(
1

m
AA⊤ − I

)
≤ ε.

We complete the proof by using the bound for ‖w̃ −w∗‖2 stated in Theorem 2.

Appendix F. Proof of Theorem 6

Define L(α) and L̂(α) as

L(α) = −
n∑

i=1

ℓ∗(αi)−
1

2λ
α⊤Gα, and L̂(α) = −

n∑

i=1

ℓ∗(αi)−
1

2λ
α⊤Ĝα.
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Since ℓ(·) is γ-smooth, and thus ℓ∗(·) is 1
γ -strongly convex. Define

g∗(α) = ℓ∗(α)−
1

2γ
α2, H = G+

λ

γ
I, and Ĥ = Ĝ+

λ

γ
I.

Evidently, g∗(α) is still a convex function. We write L(α) and L̂(α) as

L(α) = −
n∑

i=1

g∗(αi)−
1

2λ
α⊤Hα, and L̂(α) = −

n∑

i=1

g∗(αi)−
1

2λ
α⊤Ĥα.

Since α̂∗ maximizes L̂(α) over the domain Ωn, we have

L̂(α̂∗) ≥ L̂(α∗) +
1

2λ
(α̂∗ −α∗)

⊤Ĥ(α̂∗ −α∗). (31)

Using the concaveness of L̂(α), we have

L̂(α̂∗) +
1

2λ
(α̂∗ −α∗)

⊤Ĥ(α̂∗ −α∗)

≤ L̂(α∗) + (α̂∗ −α∗)
⊤
(
∇L̂(α∗)−∇L(α∗) +∇L(α∗)

)

≤ L̂(α∗) +
1

λ
(α̂∗ −α∗)

⊤(H − Ĥ)α∗, (32)

where the last inequality follows from the fact that (α̂∗ − α∗)⊤∇L(α∗) ≤ 0 since α∗
maximizes L(α) over the domain Ωn. Combining the inequalities in (31) and (32), we have

1

λ
(α̂∗ −α∗)

⊤(H − Ĥ)α∗ ≥
1

λ
(α̂∗ −α∗)

⊤Ĥ(α̂∗ −α∗). (33)

Define K = H−1/2ĤH−1/2. We rewrite the bound in (33) as

(α̂∗ −α∗)
⊤H1/2 (I −K)H1/2α∗ ≥ (α̂∗ −α∗)

⊤H1/2KH1/2(α̂∗ −α∗).

To bound the spectral norm of K, we have the following lemma.

Lemma 3 With a probability at least 1− δ, we have

(1− ε)I � K � (1 + ε)I,

provided the condition on m in Theorem 6 holds.

Proof [Lemma 3] Let the SVD of X be

X = UΣV ⊤ =
d∑

i=1

σiuiv
⊤
i ,

where Σ = diag(σ1, . . . , σd), U = (u1, . . . ,ud), V = (v1, . . . ,vd), σi is the i-th singular value
of X, ui ∈ R

d and vi ∈ R
n are the corresponding left and right singular vectors of X. Since

yi ∈ {−1,+1}, it is straightforward to check that the SVD of XD(y) is given by

XD(y) = UΣ[D(y)V ]⊤ =
d∑

i=1

σiui[D(y)vi]
⊤,
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and the eigen decomposition of G = D(y)X⊤XD(y) is

G =
d∑

i=1

σ2
i [D(y)vi][D(y)vi]

⊤.

Following the Corollary 11 in Appendix G, we obtain Lemma 3.

From Lemma 3, we have, with a probability at least 1− δ,

‖I −K‖2 ≤ ε,

and therefore

ε
∥∥∥H1/2α∗

∥∥∥
2
≥ (1− ε)

∥∥∥H1/2(α̂∗ −α∗)
∥∥∥
2
≥ (1− ε)

∥∥∥G1/2(α̂∗ −α∗)
∥∥∥
2
. (34)

Since

w∗ = − 1

λ
XD(y)α∗ = − 1

λ

d∑

i=1

σi

(
[D(y)vi]

⊤α∗
)
ui,

the assumption that w∗ lies in the subspace spanned by {u1, . . . ,uk} implies α∗ lies in the
subspace spanned by {D(y)v1, . . . , D(y)vk}. Then, we have

α⊤
∗ Gα∗ = α⊤

∗ Gkα∗ ≥ σ2
kα

T
∗ α∗,

where Gk is the rank-k best approximation of G and σk is the k-th singular value of X. As
a result, we conclude

‖H1/2α∗‖22 = α⊤
∗

(
G+

λ

γ
I

)
α∗ ≤

(
1 +

λ

γσ2
k

)
α⊤

∗ Gα∗ =

(
1 +

λ

γσ2
k

)
‖G1/2α∗‖22. (35)

Combining (34) and (35), we have, with a probability at least 1− δ

ǫ

√
1 +

λ

γσ2
k

‖G1/2α∗‖2 ≥ (1− ǫ)‖G1/2(α∗ − α̂∗)‖2.

We complete the proof by using the relationship between w∗, w̃ and α∗, α̂∗.

Appendix G. A matrix concentration inequality

Theorem 10 Let C = diag(c1, . . . , cp) and S = diag(s1, . . . , sp) be p× p diagonal matrices,
where ci 6= 0 and c2i + s2i = 1 for all i. Let R be a Gaussian random matrix of size p × n.
Let M = C2 + 1

nSRR⊤S and r =
∑

i s
2
i .

Pr(λ1(M) ≥ 1 + t) ≤ q · exp
(
− cnt2

maxi(s2i )r

)
,

Pr(λp(M) ≤ 1− t) ≤ q · exp
(
− cnt2

maxi(s2i )r

)
,

where the constant c is at least 1/32, and q is the rank of S.
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Proof [Theorem 10] The proof is similar to Theorems 5.3 and 7.1 of (Gittens and Tropp,

2011), expect for adding a bias matrix. Let g(θ) = θ2

2(1−θ) . We have

Pr

{
λ1(C

2 +
1

n
SRR⊤S) ≥ 1 + t

}

≤ inf
θ>0

tr exp

{
θ

(
C2 +

1

n
E
[
SRR⊤S

]
− (1 + t)I

)
+

1

n
g(θ)E

[
(SRR⊤S)2

]}

≤ inf
θ>0

tr exp
{
−θt+ 8g(θ)tr(S2)S2

}

≤ inf
θ>0

q exp {−θt+ 8rg(θ)} ≤ q exp

(
−nt2

32r

)
,

Pr

{
λq(C

2 +
1

n
SRR⊤S) ≤ 1− t

}

≤ inf
θ>0

tr exp

{
−θ

(
C2 +

1

n
E
[
SRR⊤S

]
− (1− t)I

)
+

1

n
g(θ)E

[
(SRR⊤S)2

]}

≤ inf
θ>0

q exp {−θt+ 8rg(θ)} ≤ q exp

(
−nt2

32r

)
.

Corollary 11 Let A be a given matrix of size m× p, and R be a Gaussian random matrix

of size p × n. Let λ be a positive constant, σ2
i = λi(A

⊤A) , and r =
∑

i
σ2
i

λ+σ2
i
. Let

K = λIm +AA⊤, K̃ = λIm + 1
nARR⊤A⊤, and Ĩ = K−1/2K̃K−1/2. If n ≥ rσ2

1

ct2(λ+σ2
1
)
log 2p

δ ,

then with probability at least 1− δ,

(1− t)Im � Ĩ � (1 + t)Im. (36)

Proof [Corollary 11] Let s2i =
σ2
i

λ+σ2
i
, and c2i = 1 − s2i . By SVD and Theorem 10, we have

Pr(1− t ≤ λi(Ĩ) ≤ 1 + t) ≥ 1− δ.
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