
Improved Bounds for Online Learning Over the Permutahedron and Other
Ranking Polytopes

Nir Ailon
Department of Computer Science, Technion IIT, Haifa, Israel

nailon@cs.technion.ac.il

Abstract

Consider the following game: There is a fixed set
V of n items. At each step an adversary chooses
a score function st : V 7→ [0, 1], a learner out-
puts a ranking of V , and then st is revealed. The
learner’s loss is the sum over v ∈ V , of st(v)
times v’s position (0th, 1st, 2nd, ...) in the rank-
ing. This problem captures, for example, on-
line systems that iteratively present ranked lists
of items to users, who then respond by choosing
one (or more) sought items. The loss measures
the users’ burden, which increases the further the
sought items are from the top. It also captures a
version of online rank aggregation.

We present an algorithm of expected regret
O(n
√
OPT + n2), where OPT is the loss of

the best (single) ranking in hindsight. This im-
proves the previously best known algorithm of
Suehiro et. al (2012) by saving a factor of
Ω(
√

log n). We also reduce the per-step run-
ning time fromO(n2) toO(n log n). We provide
matching lower bounds.

1 Introduction

An online ranking system outputs at each step a complete
ranking of some ground set V of n elements, observes
some feedback and suffers a correpsonding loss. In this
work we study a particular case of this game in which the
feedback is a nonegative score function over V , and the
loss is the sum, over the elements of V , of their score times
their position (0th, 1st, 2nd...) in the ranking. Equivalently,
this is an online linear optimization game over a polytope
called the permutahedron.

Appearing in Proceedings of the 17th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2014, Reykjavik,
Iceland. JMLR: W&CP volume 33. Copyright 2014 by the au-
thors.

The goal of the system is to minimize its total loss af-
ter T steps. (For simplicity assume T is known in this
work.) The total loss of the system is (additively) com-
pared against that of the best (in hindsight) single ranking
played throughout. The difference is called regret.

1.1 Motivation

We present several motivating examples that are addressed
by our setting.

Online ranking for discrete choice. Many interac-
tive online information systems (search, recommendation)
present to a stream of users rankings of a set items in re-
sponse to a specific query. As feedback, these systems of-
ten observe a the user’s choice (expressed by clicking or
tapping) on one (or more) of these items. Such systems are
considered to be good if users choose items that are closer
to the top of the retrieved ranked list, because it means
they suffered less burden when seeking their information
needs (making the simplifying assumption that a typical
user scans the list from top to bottom).1 We call this game
online ranking for discrete choice.

We model this as the following online ranking game. The
set of items is V . At each step t, nature chooses (and hides)
a subset Ut of V , which models the next user’s needs. We
denote this set by its indicator (score) function st : V 7→
{0, 1}. The system outputs a ranking πt of the set using
some (randomized) algorithm, and then st is revealed to
it. The system (and user) suffer a loss which is low if the
elements of Ut are close to the top of πt, and high if they
are close to the bottom. More precisely, the loss function
penalizes the algorithm by the sum, over the elements of
Ut, of their position in πt.

Online rank aggregation. Here, both nature and the al-
gorithm select a ranking of V at each step, and the loss is a
measure of distance, or discordance between the rankings.

1Note that the exact order a typical user scans the list is imma-
terial, as long as all users are assumed to scan the list in the same
order.

29

Improved Bounds for Online Learning Over the Permutahedron and Other Ranking Polytopes

This may arise in online settings in which users specify a
complete ranking of a set of alternatives presented to them
in some order. This problem has been extensively studied
in the offline setting (see e.g. Ailon et al. (2008) and refer-
ences therein). As an online game, Yasutake et al. (2012)
considered the case in which the distance between rankings
is the Kendall-τ metric, defined as the number of pairwise
inversions. (Note that the corresponding offline problem is
NP-Hard to solve exactly, see Dwork et al. (2001).) If, in-
stead we take the complement of the well known Spearman
correlation measure (see Section 2 for an exact definition)
then the offline problem becomes polynomial time solvable
(via matching). Our setting allows to address the online
version via a simple transformation.

1.2 Main Results and Contribution

We define the general online game exactly in Section 2. We
design in Section 3 an extremely efficient algorithm and
derive bounds on its maximal expected regret. We express
the bound as a function of n and a bound L̃ on the optimal
loss in hindsight. (Standard tricks can be used to deal with
the case in which no nontrivial bound is known. We omit
the details from this extended abstract.)

Our main result is given in Theorem 3.1 below. Essentially,
we show an expected regret bound ofO

(
n
√
L̃+ n2

)
. We

argue in Theorem 3.2 that this bound is tight, even in the
extreme case in which st is an indicator function of a sin-
gleton.

The proofs of these theorems are given in Sections 5
and 6. In Section 4 we compare our results to previous ap-
proaches. To the best of our knowledge, the previously best
known bound is that of Suehiro et al. (2012), who devise an
algorithm with a bound of

O

(
n

√
L̃ log n+ n2 log n

)
(1.1)

on the expected regret. We hence reduce their bound by
a factor of Ω(

√
log n).2 Additionally, our algorithms can

be executed in running time O(n log n) per iteration, while
theirs require time O(n2). It should be noted that Suehiro
et al. (2012) also provide an alternative algorithm with a re-
gret bound ofO(n2

√
T) for time horizon T , which is better

than (1.1) under the assumption that L̃ = Ω(n2T/ log n).
Note that this assumption is extreme in the sense that al-
ways trivially L̃ can be taken as Θ(n2T) (in which case,
incidentally, their result matches ours).

Finally, we discuss a more general class of loss functions
which assign arbitrary nonnegative, monotonically nonde-
creasing importance weights to the various positions in the

2It turns out that the factor
√
logn in the proof of Suehiro

et al. (2012) can be removed with a more careful analysis of their
algorithm. This has been pointed out by an anonymous reviewer,
and will be explained in detailed in the full version of this work.

output ranking (instead of 0,1,2,...). The definition, result
and proof sketch of this generalization are presented in Sec-
tion 7 to avoid confusion at this early point.

1.3 Main Techniques

Our algorithm maintains a weight vector w ∈ RV which,
after step t completes, is proportional to

∑t
t′=1 st′ . In the

next round, the algorithm will use this weight vector as in-
put to a noisy sorting procedure.3 The main result in this
work is, that as long as the noisy sorting procedure’s out-
put satisfies a certain property related to its behaviour on a
fixed pair of elements (see Lemma 5.1), the algorithm has
the desired regret bounds. We show that two noisy sorting
procedures, one a version of QuickSort and the other based
on a statistical model for rank data by Plackett and Luce,
satisfy this property. (We refer the reader to the book Mar-
den (1995) for more details about the Plackett-Luce model
in statistics.)

2 Definitions and Problem Statement

Let V be a ground set of n items. A ranking π over V is
an injection π : V 7→ [n], where [n] denotes {1, 2, . . . , n}.
We let S(V) denote the space of rankings over V . The ex-
pression π(v) for v ∈ V is the position of v in the ranking,
where we think of lower positions as more favorable. For
distinct u, v ∈ V , we say that u ≺π v if π(u) < π(v)
(in words: u beats v). We use [u, v]π as shorthand for the
indicator function of the predicate u ≺π v.

At each step t = 1, . . . , T the algorithm outputs a ranking
πt over V and then observes a function st : V 7→ [0, 1].
The instantaneous loss incurred by the algorithm is then

`(πt, st) = πt · st :=
∑
u∈V

πt(u)st(u) , (2.1)

namely, the dot product of the πt and st, both viewed as
vectors in Rn ≡ RV . In this work we are interested in
bounding the expected additive regret by an expression of
the form

f1(n)
√
L̃+ f2(n) ,

where L̃ is an upper bound on
∑T
t=1 `(π

∗, st), for
π∗ some optimal single ranking in hindsight: π∗ ∈
argminπ∈S(V)

∑T
t=1 `(π, st). Therefore, we can replace

the loss ` with any nonnegative loss that is upper bounded
by ` and differs from ` by a constant that may depend on st
(but not on πt). Taking advantage of this fact, we will use
the following pairwise loss function, ``, defined as follows:

``(πt, st) :=
∑
u 6=v

[u, v]πt [st(v)− st(u)]+ , (2.2)

3By this we mean, a procedure that outputs a randomized rank-
ing of an input set.

30

Nir Ailon

where [x]+ is x if x ≥ 0 and 0 otherwise. In words, this
will introduce a loss component of st(v) − st(u) when-
ever the pair u, v is misordered in the sense that u ≺πt v.
To see why for any s : V 7→ [0, 1] and π ∈ S(V) the
losses `(π, s) and ``(π, s) differ by a number that depends
on s only, one trivially verifies that when moving from π
to a ranking π′ obtained from π by swapping two consec-
utive elements, the two differences `(π′, s) − `(π, s) and
``(π′, st) − ``(π, st) are equal. To see why `` ≤ `, no-
tice that ``(π, s) = 0 if π orders V in decreasing s-value.
Slightly abusing notation, we define

``(π, s, u, v) := [u, v]π[s(v)−s(u)]++[v, u]π[s(u)−s(v)]+ ,

so that ``(πt, st) takes the form
∑
{u,v}⊆V ``(π, s, u, v).4

Over a horizon of T steps, the algorithm’s total loss is now
defined as LT (Alg) :=

∑T
t=1 ``(πt, st), and LT (π∗) is

now defined as
∑T
t=1 ``(π

∗, st).5

We will say that we are in the k-choice setting if, for all t,
the function st is an indicator function of a set of size at
most k. The 1-choice (or, single choice) case is extremely
well motivated in applications such as online search and
recommendation systems in which users choose at most a
single result. We will say that we are in the Spearman rank
aggregation case if for all t,

st = 1− σt/n (2.3)

for some σt ∈ S(V). The functional `(πt, st) is then an
affine transformation of the Spearman correlation πt · σt =∑
v∈V πt(v)σt(v). (Note that we take σt with a minus sign

in 2.3 so that we can consistently use the terminology of
loss minimization when thinking of aggregating the rank-
ings σ1, . . . , σT .)

3 The Algorithm and its Guarantee

Our algorithm OnlineRank (Algorithm 1) takes as input
the ground set V , a learning rate parameter η ∈ [0, 1],
a reference to a randomized sorting procedure SortProc
and a time horizon T . We present two possible ran-
domized sorting procedures, QuickSort (Algorithm 2) and
PlackettLuce (Algorithm 3). Both options satisfy an im-
portant property, described below in Lemma 5.1.

Very much like standard online gradient descent algo-
rithms, OnlineRank maintains a weight vector over V at
each step t, which is proportional to the total cost gradient∑t
t′=1 st. Unlike previous approaches, the algorithm (by

using QuickSort or PlackettLuce) takes advantage of the
structure of permutations in drawing the action in the next
step. Our main lower and upper bounds are as follows:

4Note that this expression makes sense because ``(π, s, ·, ·) is
symmetric in its last two arguments.

5We slightly abuse notation by thinking of π∗ both as a rank-
ing and as an algorithm that outputs the same ranking at each step.

Algorithm 1 Algorithm OnlineRank(V, η, SortProc, T)

1: given: ground set V , learning rate η, randomized sort-
ing procedure SortProc, time horizon T

2: set w0(u) = 0 for all u ∈ V
3: for t = 1..T do
4: output πt = SortProc(V,wt−1)
5: observe st : V 7→ {0, 1}
6: set wt(u) = wt−1(u) + ηst(u) for all u ∈ V
7: end for

Algorithm 2 Algorithm QuickSort(V,w)

1: given: ground set V , score function w : V 7→ R
2: choose p ∈ V (pivot) uniformly at random
3: set VL = VR = ∅
4: for v ∈ V , v 6= p do
5: with probability ew(v)

ew(v)+ew(p) add v to VL
6: otherwise, add v to VR
7: end for
8: return concatenation of

QuickSort(VL, w), p,QuickSort(VR, w)

Theorem 3.1. Let L̃ be an upper bound on LT (π∗). If
strategy OnlineRank is used with either SortProc =
QuickSort or SortProc = PlackettLuce and with η =

ln

(
1 +

√
n2(log 2)/L̃

)
then E[LT (OnlineRank)] is up-

per bounded by

LT (π∗) + n

√
(log 2)L̃+ n2(log 2)/2 . (3.1)

Additionally, the expected running time of the algorithm
per time step is O(n log n).

Theorem 3.2. There exists an integer n0 and some func-
tion h such that for all n ≥ n0 and T ≥ h(n), for any al-
gorithm, the minimax expected total regret in the k-choice
setting after T steps is at least 0.003 · n3/2

√
Tk.

In this extended abstract, we only show (in Section 6) the
proof for the case k = 1, with helpful notes for extending
to general k. Also note that we did not make an effort to
bound the function h in the theorem, which relies on weak
convergence properties guaranteed by the central limit the-
orem. Better bounds could be derived by considering tight
convergence rates of binomial distributions to the normal
distribution. We leave this to future work.

4 Comparison With Previous Work

There has been much work on online ranking with various
types of feedback and loss functions.

Yasutake et al. (2012) consider online learning for Kendall-
τ rank aggregation, where at each step nature chooses a
permutation σt ∈ S(V), and the algorithm incurs the loss

31

Improved Bounds for Online Learning Over the Permutahedron and Other Ranking Polytopes

Algorithm 3 Algorithm PlackettLuce(V,w)

1: given: ground set V , score function w : V 7→ R
2: set U = V
3: initialize π(u) =⊥ for all u ∈ V
4: for i = 1..n(= |V |) do
5: choose random u ∈ U with Pr[u] ∝ ew(u)

6: set π(u) = i
7: remove u from U
8: end for
9: return π

∑
u 6=v[u, v]πt [v, u]σt . Optimizing over this loss summed

over t = 1, . . . , T is NP-Hard even in the offline setting, as
shown by Dwork et al. (2001), while our problem is easy to
solve offline by simple sorting. Our problem is, however,
different, and is not simply a special case of the setting of
Yasutake et al. (2012).

A naı̈ve, obvious approach to the problem of predicting
rankings, which we state for the purpose of self contain-
ment, is by viewing each permutation as one of n! ac-
tions, and “tracking” the best permutation using Hedge al-
gorithm. Such schemes (Freund & Schapire (1995); Little-
stone & Warmuth (1994)) guarantee an expected the opti-
mal loss is maximal. The distribution over the output per-
mutation πt ∈ S(V) at each time step t arising in Hedge
would assign for any ranking π a probability proportional
to exp{−βLt−1(π)}, where Lt−1(π) is the total loss of π
over the first t − 1 steps, and β > 0 is some learning rate.
This distribution is not equivalent to neither QuickSort nor
PlackettLuce, and it is not even clear how to efficiently
draw from it for large n. Hence, one of the main con-
tributions of Suehiro et al. (2012) is in obtaining bounds
competitive with Hedge, but with an efficient per time-step
running time of O(n2). Their approach relies on a clever
representation of the problem as a special case of optimiza-
tion over the base polytope of a carefully chosen submod-
ular function.

4.1 Online Linear Optimization View

As stated above, the set S(V) is the vertex set of a well
known polytope known as the permutahedron. Since our
problem is, equivalently, that of online minimization of a
linear function of the permutahedron, we can use any on-
line linear optimization tools over discrete subsets of a real
vector space, such as Kalai & Vempala (2005). In fact,
as we shall see below, the permutahedron is only one rea-
sonable embedding. We mention most relevant results in
online linear optimization in what follows.

It is easy to see that for any real vector s, minimizing π ·s =∑
π(u)s(u) over π ∈ S(V) is simply done by ordering the

elements of V in decreasing s-value u0, u1, . . . , un−1 and
setting π(ui) = i for all i. The highly influencial paper

of Kalai & Vempala (2005) suggests Follow the Perturbed
Leader (FPL) as a general approach for solving such online
linear optimization problems. The bound derived there (us-
ing the ‘multiplicative version’ FPL∗) yields an expected
regret bound of

O

(
n3/2

√
L̃ log n+ n3 log n

)
, (4.1)

which is polynomially worse than ours. (A closer
inspection reveals that, for example, in the k-
choice case FPL∗ gives an expected regret bound of

O

(
n

√
kL̃ log n+ n2k log n

)
.)

As we shall see in Section 7, however, it seems that this
suboptimal bound is due to the fact that analysis of FPL∗

should be done more carefully, taking advantage of the
structure of rankings and of the loss functions we consider.
We further elaborate on this in Section 7.

Continuing our comparison to previous results, Dani et al.
(2007) provide for online linear oprimization problems a
regret bound of

O(n2
√
Td log d log T) , (4.2)

where d (in our case) is the ambient dimension of the set
S(V) ⊆ Rn. Clearly d = Θ(n), hence this bound is worse
than ours by a factor of Ω(n

√
log n log T). (Note that L̃

can always be taken to be the trivial bound of n2/2.)

A less efficient embedding can be done in Rn2 ≡ RV×[n]
using the Birkhoff-vonNeumann polytope, as follows.
Given π ∈ S(V), we define the matrix Aπ ∈ Rn2

by

Aπ(u, i) =

{
i π(u) = i

0 otherwise
.

For an indicator function s : V 7→ {0, 1} we define the
embedding Cs ∈ Rn2

by

Cs(u, i) = s(u) .

It is clear that `(πt, st) is equivalently given byAπt•Cst :=∑
u,iAπt(u, i)Cst(u, i). Using the analysis of FPL∗ again

gives an expected regret bound of

O

(
n2
√
L̃ log n+ n4 log n

)
.

Hence this embedding clearly does not help FPL∗. Inter-
estingly, recent work of Helmbold & Warmuth (2009) who
studied linear optimization over the Birkhoff-vonNeumann
polytope does offer an improvement over FPL∗. Its ex-
pected regret bound is (1.1), which is worse than ours by a
factor of Ω(

√
log n). Their algorithm is also more compli-

cated.

32

Nir Ailon

The Single Choice Setting as a Bandit Problem It is
worth noting that in the single choice case, given πt and
`(πt, st) it is possible to recover st exactly. This means
that we can study the game in the single choice case in the
bandit setting, where the algorithm only observes the loss
at each step.6 We should practice however due caution with
this comparison because standard bandit algorithms work
in more difficult environments where only a noisy estimate
of the loss vector can be used. The comparison here is pre-
sented for the sake of completeness.

The algorithm CombBand of Cesa-Bianchi & Lugosi
(2012) (building on the methodology of Dani et al.
(2007)) which employs the Birkhoff-vonNeumann embed-
ding achieves an expected regret bound of O(n2.5

√
T),

which is worse by a factor of Θ(
√
n) than our approach.7

Also, their algorithm is quite complicated, relying on per-
manent approximations.

We also mention the online linear optimization approach
in the bandit setting of Abernethy et al. (2008) in case the
search is in a convex polytope. The expected regret for our
problem in the single choice setting using their approach
is O(n2d

√
θ(n)T), where d is the ambient dimension of

the polytope, and θ(n) is a number that can be bounded
by the number of its facets (by Hazan (2013)). Using
the permutahedron embedding (in Rn), d = n − 1 and
θ(n) = 2n. Using the Birkhoff-vonNeumann polytope we
have d = Θ(n2) and θ(n) = Θ(n). For both embeddings
and for all cases we study, the bound is at least polynomi-
ally worse than ours.

Comparison of Lower Bounds Our lower bound (Theo-
rem 3.2) is a strict refinement of a previous lower bound of
Helmbold & Warmuth (2009), who present a lower bound
for a worse case of a more general online ranking problem.
Their worst case is not an instance of our problem, and their
lower bound is asymptotically higher than our upper bound
(3.1), and hence not informative for us.

5 Proof of Theorem 3.1

5.1 Regret Performance

In order to prove the regret bound (3.1) for Algorithm 1
with both SortProc = QuickSort and SortProc =
PlackettLuce, we start with a simple lemma.
Lemma 5.1. The random ranking π returned by
SortProc(V,w) satisfies that for any given pair of dis-
tinct elements u, v ∈ V , the probability of the event u ≺π

6Note that generally the bandit setting is more difficult than the
full-information setting, where the loss of all actions are known
to the algorithm. The fact that the two are equivalent in the single
choice case is a special property of the problem.

7This is not explicitly stated in their work, and requires plug-
ging in various calculations (which they provide) in the bound
provided in their main theorem.

v equals ew(u)/(ew(u) + ew(v)), for both SortProc =
QuickSort and SortProc = PlackettLuce.

The proof for case QuickSort uses techniques from e.g.
Ailon et al. (2008).

Proof. For the case SortProc = QuickSort, the internal
order between u and v can be determined in one of two
ways. (i) The element u (resp. v) is chosen as pivot in
some recursive call, in which v (resp. u) is part of the input.
Denote this event E{u,v}. (ii) Some element p 6∈ {u, v} is
chosen as pivot in a recursive call in which both v and u
are part of the input, and in this recursive call the elements
u and v are separated (one goes to the left recursion, the
other to the right one). Denote this event Ep;{u,v}.

It is clear that the collection of events {E{u,v}} ∪
{Ep;{u,v} : p ∈ V \{u, v}} is a disjoint cover of the proba-
bility space of QuickSort. If π is the (random) output, then
it is clear from the algorithm that

Pr[u ≺π v|E{u,v}] = ew(u)/(ew(u) + ew(v)) .

It is also clear, using Bayes rule, that for all p 6∈ {u, v},

Pr[u ≺π v|Ep;{u,v}]

=

ew(u)

ew(u)+ew(p)
ew(p)

ew(p)+ew(v)

ew(u)

ew(u)+ew(p)
ew(p)

ew(p)+ew(v) + ew(v)

ew(v)+ew(p)
ew(p)

ew(p)+ew(u)

= ew(u)/(ew(u) + ew(v)) ,

as required. For the case SortProc = PlackettLuce, for
any subset X ⊆ V containing u and v, let FX denote the
event that, when the first of u, v is chosen in Line 3, the
value of U (in the main loop) equals X . It is clear that
{FX} is a disjoint cover of the probability space of the al-
gorithm. If π now denotes the output of PlackettLuce,
then the proof is completed by noticing that for any X ,
Pr[u ≺π v|FX] = ew(u)/(ew(u) + ew(v)).

The conclusion from the lemma is, as we show now, that
for each pair {u, v} ⊆ V the algorithm plays Hedge
over the set of two possible actions, namely u ≺ v and
v ≺ u. We now make this precise. For each ordered
pair (u, v) of two distinct elements in V , let φt(u, v) =

e−η
∑t
t′=1

[st′ (v)−st′ (u)]+ . We also let φ0(u, v) = 1. On
one hand, we have∑

{u,v}

log
φT (u, v) + φT (v, u)

φ0(u, v) + φ0(v, u)

≥
∑

u,v:u≺π∗v
log φT (u, v)−

(
n

2

)
log 2

= −ηLT (π∗)−
(
n

2

)
log 2 . (5.1)

33

Improved Bounds for Online Learning Over the Permutahedron and Other Ranking Polytopes

On the other hand,∑
{u,v}

log
φT (u, v) + φT (v, u)

φ0(u, v) + φ0(v, u)
(5.2)

=
∑
{u,v}

T∑
t=1

log
φt(u, v) + φt(v, u)

φt−1(u, v) + φt−1(v, u)

=
∑
{u,v}

T∑
t=1

log

(
φt−1(u, v)e−η[st(v)−st(u)]+

φt−1(u, v) + φt−1(v, u)

+
φt−1(v, u)e−η[st(u)−st(v)]+

φt−1(u, v) + φt−1(v, u)

)
It is now easily verified that for any u, v,

φt−1(u, v)

φt−1(u, v) + φt−1(v, u)

=
1

1 + eη
∑t−1

t′=1
([st′ (v)−st′ (u)]+−[st′ (u)−st′ (v)]+)

=
1

1 + eη
∑t−1

t′=1
(st′ (v)−st′ (u))

=
1

1 + ewt−1(v)−wt−1(u)

=
ewt−1(u)

ewt−1(u) + ewt−1(v)
. (5.3)

Plugging (5.3) in (5.2) and using Lemma 5.1, we conclude∑
{u,v}

log
φT (u, v) + φT (v, u)

φ0(u, v) + φ0(v, u)

=
∑
{u,,v}

T∑
t=1

logE
[
e−η`(πt,st,u,v)

]

≤
∑
{u,v}

T∑
t=1

logE
[
1 + `(πt, st, u, v)(e−η − 1)

]
≤ (e−η − 1)

∑
{u,v}

T∑
t=1

E [`(πt, st, u, v)]

= (e−η − 1)E[LT] , (5.4)

where we used the fact that e−ηx ≤ 1 + x(e−η − 1) for all
0 ≤ x ≤ 1, and that log(1 + x) ≤ x for all x. Combining
(5.4) with (5.1), we get

E[LT] ≤
ηLT (π∗) +

(
n
2

)
log 2

1− e−η
.

Using a simple analytical technique from Freund &
Schapire (1995), it can be shown that by choosing η =

ln

(
1 +

√
n2(log 2)/L̃

)
we get the required result.

5.2 Running Time

It is well known that QuickSort is an algorithm of expected
running time of O(n log n) when used as a simple sorting

algorithm. That it has the same run time bound in our case
(in which the output is random) has been proven, for exam-
ple by Ailon & Mohri (2010).

As for PlackettLuce, it is well known (especially among
economists who specialize in discrete choice theory) that
the PlackettLuce noisy sorting algorithm’s output is dis-
tributed identically to the random process of adding to each
coordinate of w (see notation in Algorithm 3) an iid noise
variable following an extreme value of type I law, and then
sorting (using anyO(n log n)-time algorithm) the elements
in decreasing perturbed-w value.8 (The extreme value of
type I distribution has a cdf of F (x) = e−e

−x
.) A proof of

this classic result can be found, for example, in the work of
Yellott (1977) (see also the book of Marden (1995)).

6 Proof of Theorem 3.2

We provide a proof for the single choice case in this ex-
tended abstract, and include notes for the k-choice case
within the proof.

Fix n and V of size n, and assume T ≥ 2n. Assume
the adversary chooses a sequence u1, . . . , uT of single el-
ements so that each element ui is chosen independently
and uniformly at random from V . [For general k, we
will select subsets U1, . . . , UT of size k at each step, uni-
formly at random from the space of such subsets]. For
each u ∈ V , let f(u) denote the frequency of u in the
sequence, namely f(u) = |{i : ui = u}|. Clearly, the
minimizer π∗ of LT (π) can be taken to be any ranking π
satisfying f(π−1(1)) ≥ f(π−1(2)) ≥ · · · ≥ f(π−1(n)).
For ease of notation we let uj = π∗−1(j), namely the
element in position j in π∗. The cost LT (π∗) is given
by LT (π∗) =

∑n
j=1| f(uj)(j − 1). For any number

x ∈ [0, T], let m(x) = |{u ∈ V : f(u) ≥ x}|, namely,
the number of elements with frequency at least x. Chang-
ing order of summation, LT (π∗) can also be written as

LT (π∗) =
∑T
x=1(0 + 1 + 2 + · · · + (m(x) −

1)) = 1
2

∑T
x=1m(x)(m(x) − 1). This, in turn, equals

1
2

∑T
x=1

∑
u6=v 1f(u)≥x1f(v)≥x.

By linearity of expectation, E[LT (π∗)] =
1
2

∑T
x=1

∑
u6=v E[1f(u)≥x1f(v)≥x]. This clearly equals

1
2n(n − 1)

∑T
x=1 E[1f(u∗)≥x1f(v∗)≥x], where u∗, v∗ are

any two fixed, distinct elements of V . Note that f(u) is
distributed B(T, 1/n) for any u ∈ V , where B(N, p)
denotes Binomial with N trials and probability p of
success. In what follows we let XN,p be a random variable
distributed B(N, p). Let µ = T/n be the expectation
of XT,1/n, and let σ =

√
T (n− 1)/n be its standard

deviation. [For general k, instead, we have moments of a
the binomial with n trials and probability k/n of success.]
We will assume for simplicity that µ is an integer (although

8Also often known as the Gumbel distribution.

34

Nir Ailon

this requirement can be easily removed). We will fix an
integer j > 0 that will be chosen later. We split the last
expression as E[LT (π∗)] = α+ β + γ, where

α =
1

2
n(n− 1)

µ−bjσc−1∑
x=1

E[1f(u∗)≥x1f(v∗)≥x]

β =
1

2
n(n− 1)

µ+bjσc∑
x=µ−bjσc

E[1f(u∗)≥x1f(v∗)≥x]

γ =
1

2
n(n− 1)

T∑
x=µ+bjσc+1

E[1f(u∗)≥x1f(v∗)≥x] .

Before we bound α, β, γ, first note that for any x, the ran-
dom variable (f(u∗)|f(v∗) = x) is distributed B(T −
x, 1/(n − 1)). Also, for any x the function g(x′) =
Pr[f(u∗) ≥ x|f(v∗) = x′] is monotonically decreasing
in x′. Hence, for any 1 ≤ x ≤ T ,

E [1f(u∗)≥x1f(v∗)≥x] (6.1)

=

T∑
x′=x

Pr[f(v∗) = x′] · Pr[f(u∗) ≥ x|f(v∗) = x′]

≤
T∑

x′=x

Pr[f(v∗) = x′] · Pr[f(u∗) ≥ x|f(v∗) = x]

= Pr[f(v∗) ≥ x] · Pr[f(u∗) ≥ x|f(v∗) = x]

= Pr[XT,1/n ≥ x] · Pr[XT−x,1/(n−1) ≥ x] (6.2)

Bounding γ: We use Chernoff bound, stating that for any
integer N and probability p,

∀x ∈ [Np, 2Np],

Pr[XN,p ≥ x] ≤ exp

{
−(x−Np)2

(3Np)

}
.(6.3)

∀x > 2Np,

Pr[XN,p ≥ x] ≤ Pr[XN,p ≥ 2NP] . (6.4)

Plugging (6.2) in the definition of γ and using (6.3-6.4),
we conclude that there exists global integers j, n0 and a
polynomial P such that for all n ≥ n0 and T ≥ P (n),

γ ≤ 0.001 · n(n− 1)
√
T/n ≤ 0.001 · n3/2

√
T . (6.5)

Bounding β: Using the same j as just chosen, possibly
increasing n0 and applying the central limit theorem, we
conclude that there exists a function h such that for all n ≥
n0 and T ≥ h(n),

β ≤ 1

2
n(n− 1)

(√
T

n
+ 1

)
j∑

i=−j
(1− Φ(i− 1/100))2 ,

(6.6)

where Φ is the normal cdf. For notation purposes, let
Ψ(x) = 1− Φ(x) and ε = 1/100. Hence,

β ≤ 1

2
n(n− 1)

(√
T

n
+ 1

)

×

(
Φ(−ε)2 +

j∑
i=1

(
Φ(i− ε)2 + Ψ(i+ ε)2

))
.

We now make some rough estimates of the normal cdf. The
reason for doing these tedious calculations will be made
clear shortly. One verifies that Φ(−ε) ≤ 0.497, Φ(1− ε) ≤
0.839, Φ(2 − ε) ≤ 0.977, Φ(3 − ε) ≤ 0.999, Ψ(1 + ε) ≤
0.157, Ψ(2 + ε) ≤ 0.023, Ψ(3 + ε) ≤ 0.001. Hence,

β ≤ 1

2
n(n− 1)

(√
T

n
+ 1

)

×

(
2.929 +

j∑
i=4

(
Φ(i− ε)2 + Ψ(i+ ε)2

))

It is now easy to verify using standard analysis that for all
i ≥ 4,

Φ(i− ε)2 + Ψ(i+ ε)2 ≤ 1 . (6.7)

Therefore,

β ≤ 1

2
n(n− 1)

(√
T

n
+ 1

)
(j − 0.07)

≤ 1

2
n3/2
√
T (j − 0.07) +

1

2
n2(j − 0.07)

(Note that the crux of the enitre proof is in getting the first
summand in the last expression to be 1

2n
3/2
√
T (j − c) for

some c > 0 . This is the reason we needed to estimate the
normal cdf around small integers, and the inequality (6.7)
for larger integers.)

Bounding α is done trivially by using
E[1f(u∗)≥x1f(v∗)≥x] ≤ 1. This gives,

α ≤ 1

2
n(n− 1) (µ− bjσc − 1)

≤ 1

2
n(n− 1)

(
T/n− j

√
T/n+ 1

)
≤ 1

2
(n− 1)T − 1

2
jn3/2

√
T +

1

2
j
√
Tn+

1

2
n2 .

Combining our bound for α, β, γ, possibly increasing
n0 and the function h, we conclude that there exists a global
integer n0 and a function h such that for all n ≥ n0 and
T ≥ h(n),

E[LT (π∗)] = α+β+ γ ≤ 1

2
(n− 1)T − 0.003 ·n3/2

√
T .

35

Improved Bounds for Online Learning Over the Permutahedron and Other Ranking Polytopes

On the other hand, we know that for any algorithm, the ex-
pected total loss is exactly 1

2T (n−1). Indeed, each element
ut in the sequence u1, . . . , uT can be assumed to be ran-
domly drawn after πt is chosen by the algorithm, hence, the
expected loss at time t is exactly (0+1+· · ·+(n−1))/n =
(n− 1)/2. From here the proof conclusion is clear.

7 PlackettLuce, FPL, And Other Ranking
Loss Functions

In view of Section 5.2, our main algorithm OnlineRank
(Algorithm 1) with the PlackettLuce procedure (Algo-
rithm 3) is, in fact, a type of FPL implementation with re-
spect to the uncertainty distribution chosen to be extreme
value of type I. (The QuickSort procedure (Algorithm 2)
does not give rise to FPL.)

The reason the analysis of FPL∗ in the work of Kalai &
Vempala (2005) gave rise to the suboptimal bound (4.1)
was due to the fact that it viewed the problem in an n di-
mensional space. A more careful analysis decomposes the
problem as

(
n
2

)
separate sub-problems, each corresponding

to a pair of elements in V . This analysis also requires set-
ting the learning rate (via the noise shape parameter) differ-
ently from the value proposed by Kalai & Vempala (2005).
Instead of presenting the details of this particular analysis,
we will take advantage of this revised view of FPL∗ for our
problem, and explore a much more general setting.

Consider a setting in which our loss function at time t is
defined as `z(πt, st) =

∑
u∈U z(πt(u)) · st(u), where the

functional parameter z : [n] 7→ R is monotone nondecreas-
ing. This function assigns different importance weights to
the n possible positions. So far we studied the linear func-
tion z = zLIN with zLIN(i) = i. Other important functions
are, for example zNDCG defined as zNDCG(i) = 1/log2(i+
2), related to the commonly used NDCG measure from in-
formation retrieval Järvelin & Kekäläinen (2002). Each z
now gives rise to a linear optimization problem over a “de-
formed” version of the permutahedron.

Theorem 7.1. Assume z(i) = α0 +
∑d
j=1 αj

(
i
j

)
for some

constant degree d ≥ 1 and constants α1, . . . , αd ≥ 0, with
αd > 0. Consider the online ranking problem with re-
spect to `z , as defined above. Let L̃ be an upper bound on
minπ∈S(V)

∑T
t=1 `z(π, st) Let ξ =

∑d
j=1 αj

(
n
j+1

)
j log j.

Then if the shape parameter ε of FPL∗ of Kalai & Vempala

(2005) is taken as min

{√
ξ/L̃, 1

}
, then the expected re-

gret is O
(√

ξL̃+ ξ

)
.

Note that if, instead, we directly used the analysis of Kalai
& Vempala (2005) , then we would take, instead of ξ as
in the theorem, ξ = n

∑n
i=1 z(i) log n. This would give

rise to an expected regret which is worse by a factor of

Θ
(√

n logn
log d

)
, assuming d, α1, . . . , αd are held fixed.

Proof. (Sketch) Let Uj denote all subsets of V of size ex-
actly j, for j ∈ [d+1]. The idea is, for any fixed j ∈ [d+1]
and U ∈ Uj , to consider, for the sake of analysis, a virtual
online linear optimization problem, defined as follows: De-
noting U = {u1, . . . , uj} ⊆ V , given the score function st
at time t, an algorithm for the virtual game chooses one of
j vectors vU1 , . . . , v

U
j ∈ {0, 1}j , where vUj (i) is 1 if i = j

and 0 otherwise. The linear loss in the virtual game, upon
an algorithm’s choice of some vj′ for j′ ∈ [j], is defined as∑j
i=1 st(ui)v

U
j′(i). In fact, this is an expert setting, and the

loss is simply st(uj′).

The key observation is that by playing the FPL∗ strategy of
Kalai & Vempala (2005) on the ranking problem over `z we
are, in fact, simulataneously playing FPL∗ over the virtual
games corresponding to all U ∈ ∪d+1

j=1Uj . More precisely,
by choosing a ranking πt, we are simultaneously choosing,
for all j ∈ [d + 1] and U = {u1, . . . , uj} ∈ Uj , the same
vector that FPL∗ would have chosen for the virtual game
corresponding to U ; This vector is vUj′ , where j′ is such
that uj′ is last in πt among u1, . . . , uj . It now suffices to
notice that

`z(π, st) = α0 +
d∑
j=1

αj
∑

U∈Uj+1

`virt (U) , (7.1)

where `virt (U) is the loss at time t in the virtual game corre-
sponding to U . (Notice, for example, that the contribution
of an element u = π−1(i) to the RHS of (7.1) over all vir-
tual games corresponding to U such that v ∈ U ∈ Uj+1

is exactly αj
(
n
j

)
st(v).) A final step of choosing the best

shape parameter ε concludes the proof.

8 Future Work

Our main open problem is, what can be generally done in
the bandit setting? Is the algorithm CombBand of Cesa-
Bianchi & Lugosi (2012) the optimal for the setting studied
here?

Theorem 7.1 did not apply to functions such as zNDCG,
leaving open the following additional problem: What are
the optimal regret bounds over a given loss function `z for a
given monotone nondecreasing z? What is the algorithmic
complexity required for achieving this bound?

Acknowledgements The author acknowledges the sup-
port of a Marie Curie International Reintegration Grant
PIRG07-GA-2010-268403, an Israel Science Foundation
grant number 1271/13 and a Jacobs Technion-Cornell In-
novation Institute grant. He also wishes to thank Kohei
Hatano, Eiji Takimoto and an anonymous reviewer for en-
lightening comments.

36

Nir Ailon

References
Abernethy, Jacob, Hazan, Elad, and Rakhlin, Alexander.

Competing in the dark: An efficient algorithm for bandit
linear optimization. In COLT, pp. 263–274, 2008.

Ailon, Nir and Mohri, Mehryar. Preference-based learning
to rank. Machine Learning, 80(2-3):189–211, 2010.

Ailon, Nir, Charikar, Moses, and Newman, Alantha. Ag-
gregating inconsistent information: Ranking and cluster-
ing. J. ACM, 55(5), 2008.

Cesa-Bianchi, Nicolò and Lugosi, Gábor. Combinatorial
bandits. J. Comput. Syst. Sci., 78(5):1404–1422, 2012.

Dani, Varsha, Hayes, Thomas P., and Kakade, Sham. The
price of bandit information for online optimization. In
NIPS, 2007.

Dwork, Cynthia, Kumar, Ravi, Naor, Moni, and Sivaku-
mar, D. Rank aggregation methods for the web. In Pro-
ceedings of the Tenth International Conference on the
World Wide Web (WWW10), pp. 613–622, Hong Kong,
2001.

Freund, Yoav and Schapire, Robert E. A decision-theoretic
generalization of on-line learning and an application to
boosting. In EuroCOLT, pp. 23–37, 1995.

Hazan, Elad. Private communication, 2013.

Helmbold, David P. and Warmuth, Manfred K.
Learning permutations with exponential weights.
J. Mach. Learn. Res., 10:1705–1736, De-
cember 2009. ISSN 1532-4435. URL
http://dl.acm.org/citation.cfm?id=1577069.1755841.

Järvelin, Kalervo and Kekäläinen, Jaana. Cumulated gain-
based evaluation of ir techniques. ACM Trans. Inf. Syst.,
20(4):422–446, October 2002. ISSN 1046-8188.

Kalai, Adam and Vempala, Santosh. Efficient algo-
rithms for online decision problems. J. Comput.
Syst. Sci., 71(3):291–307, October 2005. ISSN
0022-0000. doi: 10.1016/j.jcss.2004.10.016. URL
http://dx.doi.org/10.1016/j.jcss.2004.10.016.

Littlestone, Nick and Warmuth, Manfred K. The
weighted majority algorithm. Inf. Comput.,
108(2):212–261, February 1994. ISSN 0890-
5401. doi: 10.1006/inco.1994.1009. URL
http://dx.doi.org/10.1006/inco.1994.1009.

Marden, John I. Analyzing and Modeling Rank Data.
Chapman & Hall, 1995.

Suehiro, Daiki, Hatano, Kohei, Kijima, Shuji, Takimoto,
Eiji, and Nagano, Kiyohito. Online prediction under
submodular constraints. In Algorithmic Learning The-
ory, Lecture Notes in Computer Science, pp. 260–274,
2012.

Yasutake, Shota, Hatano, Kohei, Takimoto, Eiji, and
Takeda, Masayuki. Online rank aggregation. Journal

of Machine Learning Research - Proceedings Track, 25:
539–553, 2012.

Yellott, J. The relationship between Luce’s choice ax-
iom, Thurstone’s theory of comparative judgment, and
the double exponential distribution. Journal of Mathe-
matical Psychology, 15:109–144, 1977.

37

