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Abstract

We formulate sparse support recovery as a
salient set identification problem and use
information-theoretic analyses to character-
ize the recovery performance and sample
complexity. We consider a very general
framework where we are not restricted to lin-
ear models or specific distributions. We state
non-asymptotic bounds on recovery proba-
bility and a tight mutual information for-
mula for sample complexity. We evaluate
our bounds for applications such as sparse
linear regression and explicitly characterize
effects of correlation or noisy features on
recovery performance. We show improve-
ments upon previous work and identify gaps
between the performance of recovery algo-
rithms and fundamental information. This
illustrates a trade-off between computational
complexity and sample complexity, contrast-
ing the recovery of the support as a discrete
object with signal estimation approaches.

1 Introduction

We consider problems where among a set of D vari-
ables/features X = (X1, . . . , XD), only K variables
(indexed by set S) are directly relevant to the observa-
tion/label Y . These types of problems frequently arise
in a number of scenarios in high-dimensional analysis,
such as compressive sensing [1], feature selection in
learning [2] or other high-dimensional problems with
an inherent low-dimensional structure. We formulate
these problems with the following Markovian property:
Given XS = {Xk}k∈S , observation Y is independent
of {Xk}k 6∈S , i.e.,

P (Y |X) = P (Y |XS). (1)
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Given N sample pairs (XN , Y N ) =
{(X(1), Y (1)), . . . , (X(N), Y (N))}, our goal is to
identify the set of relevant/salient variables S. Our
analysis aims to characterize the recovery perfor-
mance probabilistically and establish necessary &
sufficient conditions on N in order to recover S with
an arbitrarily small error probability in terms of K,
D and model parameters such as the signal-to-noise
ratio (SNR).

As an illustrative example, consider the sparse linear
regression model given by Y N = XNβ+WN , where S
is the support of sparse random vector β and random
noise WN independent of XN and β. The elements
in a row of the matrix XN correspond to variables
X1, . . . , XD. Each row is a realization of X and XN

is formed from sampled rows. Markov assumption (1)
is satisfied, since each Y (n) depends only on the lin-

ear combination of the elements X
(n)
S . The coefficients

of this combination are given by βS , viewed as a ran-
dom “nuisance” parameter in the observation model.
This perspective also holds for non-linear models, thus
unifying many sparse recovery problems.

Information-theoretic approaches with relation to
channel coding [3] have been considered in previous
work for different application areas, where the salient
set S is seen as a message encoded by XN and is re-
covered from outputs Y N . Specifically, the problem of
group testing was formulated in a similar framework
in Russian literature [4–8] and in [9]. [10] has followed
a similar approach to [9] to obtain sample complex-
ity results for general sparse signal processing models.
Note that the identification problem formulated here
has key differences with channel coding, namely the
inability to “code” the variables XN and different mes-
sages/sets overlapping and thus sharing codewords.

Previous work on general models, namely [10], has se-
vere limitations related to the specific analysis tech-
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niques used. In this work we overcome several of these
limitations, where we (1) consider dependent instead
of independent and identically distributed (IID) vari-
ables and relate correlation to sample complexity, (2)
present a non-asymptotic analysis through probability
of recovery bounds instead of solely asymptotic anal-
yses for sample complexity and (3) state more general
results for the high-dimensional sparsity regime where
sparsity scales with the number of variables.

The bounds we present for the sample complexity are
of the form

N I(XS ;Y ) > log

(
D

K

)
, (2)

which can be interpreted as follows: The right side of
the inequality is the number of bits required to repre-
sent all sets S of size K. On the left side, the mutual
information term [3] represents the uncertainty reduc-
tion on the output Y when given the input XS , in
bits per sample. This term essentially quantifies the
“capacity” of the observation model P (Y |XS). (2) is
then a statement that uncertainty reduction with N
samples should exceed the uncertainty of set S.

Furthermore, our analysis also provides us with a
sharp exponential upper bound on the probability of
error in identifying the salient set. This bound can be
computed easily and a closed form expression can be
obtained for some applications, such as in the case of
linear models. We compute these bounds for the sparse
linear model described, where we explicitly character-
ize the effects of correlation, SNR or noisy variables.

Many models sharing the common structure of spar-
sity satisfy the Markovian assumption (1). These in-
clude sparse linear regression or compressive sensing
(CS) [1], probit regression or 1-bit CS [11, 12], group
testing [9], sparse logistic regression and multiple re-
gression models [13] with group sparsity property. In
addition, variants of these problems can be considered,
e.g., with noisy or missing data where variables are not
fully observed (see [14]).

1.1 Related Work and Contributions

The problem of sparse recovery and in particular
information-theoretic (IT) analysis is extensive. We
only describe work closely related to this paper. Much
of the IT literature deals with linear models and mean-
squared estimation of β in the sparse linear model with
sub-Gaussian assumptions on variables XN . Below we
list the contributions of our approach and contrast it
with some of the related work in the literature.

Unifying framework through Markovianity:
Much of the literature on sparse recovery is special-
ized with tailored algorithms for different problems.

For instance, Lasso for linear regression [15, 16], re-
laxed integer programs for group testing [17], convex
programs for 1-bit quantization [12], projected gradi-
ent descent for sparse regression with noisy and miss-
ing data [14] and other general forms of penalization.
While all of these problems share an underlying sparse
structure, it is conceptually unclear from a purely IT
perspective, how they come together from an inference
point-of-view. Our Markovian viewpoint of (1) unifies
these different sparse problems from an inference per-
spective.

Discrete objects with continuous observations:
While [16,18–23] describe IT bounds for sparsity pat-
tern recovery to recover S, they exclusively focus on
the linear sub-Gaussian setting. Furthermore, their
approach is circuitous. Indeed, they rely on first es-
timating the sparse vector β, which is then thresh-
olded to obtain S. This not only complicates the anal-
ysis and introduces unnecessary assumptions on β but
also obfuscates the distinction between signal estima-
tion vs. support discovery. It is well-known that if
support is known, signal estimation is easy and least-
squares estimates are reliable. At a conceptual level IT
tools such as Fano’s inequality and capacity theorems
are powerful tools for inferring about discrete objects
(messages) given continuous observations. Indeed, to
exploit IT tools, [18–23] resort to one of the following
strategies: (a) Use IT tools only for necessity part by
assuming a special case of discrete β and derive suffi-
ciency with some well-known algorithm (Lasso, Basis
pursuit etc.); or (b) find a ε-cover for β in some met-
ric space (which requires imposing extra assumptions)
and reduce β to a discrete object. In contrast our ap-
proach lifts these assumptions and focuses on the nat-
ural discrete object S. Our result shows that indeed
the discrete part, namely, uncertainty support pattern
is the dominating factor and not β itself.

Furthermore, prior work relied heavily on the design
of sampling matrices with special structures such as
Gaussian ensembles and RIP matrices, which is a key
difference from the setting we consider herein as for
our purpose we do not always have the freedom to de-
sign the matrix X. We do not make explicit assump-
tions about the structure of the sensing matrix, such
as the restricted isometry property [24] or incoherence
properties [15], or about the distribution of the matrix
elements, such as sub-Gaussianity. Also, the existing
IT bounds which are largely based on Gaussian ensem-
bles are limited to the linear CS model and hence not
suitable for the non-linear models we consider herein.

Information-theoretic tight error bounds:
Through our analysis of the ML decoder, we obtain a
tight upper bound on the probability of error of sup-
port recovery, in addition to necessary and sufficient
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conditions on the sample complexity. We compute
this upper bound explicitly for popular problems
such as sparse linear regression and its variants.
We compare the information-theoretic bound to the
performance of practical algorithms used to solve
the sparse recovery problem, such as Lasso [15, 16]
or orthogonal matching pursuit (OMP) variants [25]
and illustrate large gaps between their performance
and our bounds. The presence of these gaps show
that there is still room to improve the performance
of practical algorithms for solving support recovery
problems.

Bounds for new sparse recovery problems: Our
unifying approach also allows the study of problems
that are not previously analyzed, or that are not eas-
ily analyzed using other approaches. These types of
problems may include sparse recovery with novel ob-
servation models, or existing models with different dis-
tributions of variables or noise. Due to our Markovian
formulation, obtaining necessary and sufficient condi-
tions and error bounds only necessitate computation
of simple mutual information and error exponent ex-
pressions.

Feature selection: The Markovian framework we
consider in (1) is also a natural formulation for feature
selection. However, in a learning framework it is usu-
ally not feasible to assume that the observation model
or variable distributions exist and are known exactly,
whereas we assume these are exactly known and use
them in the computation of our bounds. Therefore,
while our results are not applicable for the analysis of
practical feature selection problems, they are informa-
tive when an idealized Bayesian setting with known
distributions are considered. We plan to further ex-
plore the unknown distributions scenario from a ro-
bust statistics point of view in future work, to present
a worst-case analysis for mismatched or estimated dis-
tributions.

As mentioned in the introduction, the identification
problem was formulated in a channel coding frame-
work in [9] and [4–8], which was extended to gen-
eral sparse signal processing models with IID vari-
ables and latent variable observation model in [10]
and [26]. In contrast to [10], we consider the analysis
of models with correlated variables, specifically condi-
tionally IID variables X given a latent parameter θ.
We also state a non-asymptotic bound on the proba-
bility of error, which in turn allows us to identify per-
formance gaps between practical algorithms and our
information-theoretic results. In addition, we consider
a general scaling regime where K = O(D) for linear
models and variants through this bound. We also in-
troduce the noisy data framework and explicitly char-
acterize recovery performance w.r.t. the noise variance.

1.2 Problem setup

Notation. We represent variables with row vectors
and samples as different rows to obtain aN×D matrix,
while the observation samples form a column vector.
In that context, subscripts are used for column index-
ing and superscripts with parentheses are used for row
indexing. log denotes logarithm to the base 2.

Problem setup. We observe the realizations of N
variable-observation pairs (XN , Y N ) with each sam-
ple (X(n), Y (n)), n = 1, 2, . . . , N . Observations Y
are given by P (Y |XS , βS) with latent model param-
eter βS ∼ P (βS) and satisfy the Markovian property
(1), where |S| ≤ K with known K � D. Obser-
vation parameters βS correspond to the coefficients
on the support of the sparse vector in sparse recov-
ery problems. For simplicity of exposition we consider
the case |S| = K. The variables X(n) are IID across
n = 1, . . . , N . However, the observations Y (n) are in-
dependent for different n only when conditioned on βS .
Our goal is to identify the set S from the N samples of
variables and the associated observations (XN , Y N ),
with an arbitrarily small average error probability.

We index the different sets of size K as Sω, so that Sω
is a set of K indices corresponding to the ω-th set of
variables. Since there are D variables in total, there

are
(
D
K

)
such sets, hence ω ∈

{
1, 2, . . .

(
D
K

)}
.

Let Ŝ(XN , Y N ) denote the estimate of the set S and
let P (E) denote the average probability of error, av-
eraged over all sets S of size K, variables XN and
observations Y N , i.e., P (E) = Pr[Ŝ(XN , Y N ) 6= S].

2 Recovery and Error Bounds

Central to our analysis are the following four assump-
tions, which we utilize in order to analyze the probabil-
ity of error in recovering the salient set and to obtain
bounds on sample complexity.

(A1) Equiprobable support: Any set Sω ⊂
{1, . . . , D} with K elements is equally likely a priori
to be the salient set, as such we assume no prior knowl-
edge of the salient set S among

(
D
K

)
such sets.

(A2) Conditional independence: The observation
Y is conditionally independent of other variables given
variables with indices in S, i.e., P (Y |X) = P (Y |XS).
A simple example is the sparse linear model,

Y = 〈X,β〉+W = 〈XS , βS〉+W,

with noise W ; with non-linear extensions Y =
f(〈XS , βS〉+W ), for a function f: R→ R.

(A3) Conditionally IID variables: The variables
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X1, . . . , XD are IID conditioned on a latent parameter
θ. For conditionally IID variables, the joint distribu-
tion of variables can be written as

P (X1, . . . , XD) =

∫
Θ

D∏
k=1

P (Xk|θ)P (θ) dθ,

where θ ∈ Θ is the latent coupling parameter with den-
sity P (θ). (A3) appears restrictive and so we describe
a few examples and extensions to build intuition.
Bouquet model [27] arises in sparsity-based face
recognition and given by Xk = µ+Wk, k = 1, . . . , D,
with Wk ∼ N (0, σ2

W ) IID across k and µ ∼ N (0, σ2
µ).

It can be seen that two variables Xi and Xj are
dependent and correlated with correlation coefficient
ρ = σ2

µ/(σ
2
µ + σ2

W ) but IID conditioned on µ.

Meta parameters: We can account for several
possibilities by selectively introducing meta param-
eters. For instance, we can let Xk = α>k µ with
µ ∼ N (0, ID) and IID random vectors αk. Here
({Xk} | {αk}, µ) are independent, not identically dis-
tributed with E(XkXj | {αk}, µ) = α>k αj . Neverthe-
less, our results also extend to this setting. Note that
Xk’s are exchangeable. Indeed, there is a close connec-
tion between conditional IID random variables and ex-
changeable random variables through de Finetti’s the-
orem [28–30].

(A4) Observation model symmetry: For any per-
mutation mapping π, P (Y |XS) = P (Y |Xπ(S)), i.e.,
the observations are independent of the ordering of
variables. This is not a very restrictive assumption
since the asymmetry w.r.t. the indices can be incor-
porated into βS , as the symmetry is assumed for the
observation model averaged over βS .

With only these four general assumptions, we are able
to identify bounds that we state in the next section,
for a general class of problems.

2.1 Recovery Conditions and Error Bounds

To derive the upper bound on recovery error and suf-
ficiency bound for the required number of samples, we
analyze the error probability of a Maximum Likelihood
(ML) decoder [31]. The decoder goes through all

(
D
K

)
sets of size K and chooses the set Sω∗ for which ob-
servation Y N is most likely, i.e.,

P (Y N |XN
Sω∗

) > P (Y N |XN
Sω ), ∀ω 6= ω∗. (3)

An error occurs if any set other than the true set S
is more likely. This ML decoder is a minimum proba-
bility of error decoder assuming uniform prior on the
candidate sets of variables. Note that the ML de-
coder requires the knowledge of the observation model

P (Y |XS , βS) and the prior P (βS). Next, we derive an
upper bound on the error probability P (E) of the ML
decoder, averaged over all sets, data realizations and
observations.

Our methodology for the analysis is as follows: To deal
with scenarios where a candidate set Sω and true set
S have overlapping elements (and thus XN

Sω
and XN

S

share certain columns), we define the error event Ei
as the event of mistaking the true set for a set which
differs from the true set S in exactly i variables, i.e.,
there exists some set which differs from the true set
in i variables and is more likely to the decoder. Note
that E =

⋃K
i=1Ei. Then for each i we use an anal-

ysis based on the characterization of error exponents
as in [31] to obtain an upper bound on P (Ei), which
leads to Theorem 2.1 and a sufficient condition on N .
We derive a matching necessity bound on N with an
argument based on Fano’s inequality [3].

Our first main result is the following theorem, which
states a non-asymptotic upper bound on the probabil-
ity of error of exact support recovery.

Theorem 2.1. Under the assumptions (A1)-(A4), the
probability of error P (E) that a set other than S is
selected by the ML decoder is bounded from above by

P (E) ≤ min
δ∈[0,1]

K∑
i=1

2
−N

(
Eo(δ)−δ

log (D−Ki )(Ki )
N

)
, (4)

where

Eo(δ) = − 1

N
logEθN

∑
Y N

∑
XN
S2

P (XN
S2 |θN )

∑
XN
S1

P (XN
S1 |θN )P (Y N |XN

S1 , XN
S2)

1
1+δ


1+δ

 ,
for 0 ≤ δ ≤ 1. (S1,S2) denotes any disjoint parti-
tion of the true set S with cardinalities i and K− i,
(XN
S1 , XN

S2) is the corresponding disjoint partition of
the N ×K input XN

S of size N × i and N × (K−i),
respectively. θ is the parameter in the cond. IID rep-
resentation. The bound holds for any (N,K,D).

Remark 2.1. For fixed and known βS, observations
Y (n) are independent and Eo(δ) simplifies to

Eo(δ) =− logEθ

∑
Y

∑
XS2

P (XS2 |θ)

∑
XS1

P (XS1 |θ)P (Y |XS1 , XS2)
1

1+δ

1+δ
 .
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Next, we state our main result for the sample com-
plexity of support recovery. The following theorem
provides tight necessary and sufficient conditions on
the number of samples N asymptotically for an arbi-
trarily small average error probability.

Theorem 2.2. Let I(XS1 ;Y |XS2 , βS , θ) be the mu-
tual information between XS1 and Y conditioned on
XS2 , βS and θ. Under the assumptions (A1)-(A4),
a necessary condition on the number of samples N to
recover S with an arbitrarily small average probability
is given by

N > (1 + ε) max
i=1,...,K

log
(
D−K+i

i

)
I(XS1 ;Y |XS2 , βS , θ)

, (5)

and ε = 0. If I(XS1 ;Y |XS2 , βS , θ) = ω(1/ logD) for
all i = 1, . . . ,K, (5) is also a sufficient condition,
where ε > 0 is an arbitrary constant. The necessary
condition holds for all scalings K = O(D), while the
sufficiency bound holds for any fixed K as D →∞.

Note that the condition that I(XS1 ;Y |XS2 , βS , θ) =
ω(1/ logD) is not restrictive, since typically the mu-
tual information per sample depends on the number
of salient variables K and not on the total number of
variables D and we consider the regime where K is
fixed w.r.t. D for the sufficient condition.

IID variables. For IID variables, the mu-
tual information expression in the denomina-
tor is I(XS1 ;Y |XS2 , βS) and further reduces to
I(XS1 ;Y |XS2) for fixed observation parameters βS .

Interpretation. Intuitively, the condition in (5) can
be explained as follows: For each i, the numerator is
the number of bits required to represent all sets Sω
with K − i indices known beforehand. The denomi-
nator represents the information given by the output
variable Y about the remaining i indices S1, given
the subset S2 of K − i true indices. Hence, the ratio
represents the number of samples needed to control i
support errors in S1 and maximization accounts for all
possible support errors.

Partial recovery. As we analyze the error probabil-
ity separately for i = 1, . . . ,K support errors in order
to obtain the necessity and sufficiency results, it is triv-
ial to determine conditions for partial instead of exact
support recovery. By changing the maximization from
over i = 1, . . . ,K to i = bαKc, . . . ,K in (5), the con-
ditions to recover at least (1− α)K of the K support
indices can be determined.

Support pattern recovery dominates support
coefficient estimation. In the proof of Theorem
2.2, we show that βS being unknown with prior P (βS)
induces a penalty term in the denominator given
by I(βS ;XN

S1 |XN
S2 , Y N , θN )/N , compared to the case

where support coefficients βS are fixed and known.
We show that this term is always dominated by
I(XS1 ;Y |XS2 , βS , θ) provided a mild condition on the
mutual information is satisfied, therefore does not af-
fect the sample complexity asymptotically. This shows
that recovering support while knowing the support co-
efficients is as hard as recovering with unknown coef-
ficients, underlying the importance of recovering the
support in sparse recovery problems.

3 Applications

In this section, using the result of Theorem 2.1, we
provide explicit non-asymptotic upper bounds for the
error probability for sparse linear models that may in-
clude correlations or noisy variables. We also state
asymptotic sample complexity results using the er-
ror bounds and Theorem 2.2. We then compare the
information-theoretic error bounds we obtained with
the recovery performance of practical algorithms.

3.1 Sparse linear regression

We consider the normalized model [20],

Y N = XNβ +WN , (6)

where XN is the N × D sensing matrix, β is a K-
sparse vector of length D with support S and Y N is
the observation vector of length N . We assume X(n)

are jointly Gaussian row vectors and IID across rows

n. Each element X
(n)
k is zero mean and has variance

1/N . WN is the IID observation noise, with W ∼
N (0, 1

SNR ). The coefficients of the support, βS , are
either fixed and |βk| = σ, or IID Gaussian with zero
mean and variance σ2.

We consider a generalized model, which may in-
clude correlations between sensing columns, such that

E[X
(n)
k X

(n)
k′ ] = ρ/N . ρ is then the correlation coef-

ficient between two columns. Note that this model
is statistically equivalent to the following one: Let

X
(n)
k = µ(n)+U

(n)
k , where µ is also a Gaussian random

variable with zero mean and variance ρ/N . U
(n)
k is IID

Gaussian, with zero mean and variance (1−ρ)/N . We
analyze the latter model, where entries are condition-
ally IID given µ. Correlated columns have been ana-
lyzed for Lasso in this context [15, 16]. The strongest
results due to [15] require correlations to decay asymp-
totically to zero as 1/ log(D), while [16] is not strictly
comparable since their results are for high-SNR limit.
In contrast, we will show that fundamentally, up to
constant correlation can be tolerated. The following
theorem provides an upper bound to the probability
of error for exact support recovery.
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Figure 2: Illustration of SNR cutoff, K = 32, D = 512.

Theorem 3.1. P (E) ≤
∑K
i=1 2−Nf(ρ), where f(ρ) =

1
2 log

(
1 + (1−ρ) 2iσ2SNR

N

)
− i

4N log 4− log (D−Ki )(Ki )
N .

The first term in f(ρ) is related to the information be-
tween X and Y via SNR and ρ, while the second term
is related to the uncertainty of βS and the last term to
the uncertainty of S. Note that the error bound given
above precisely characterizes the achievable error for
any (N,K,D), in contrast to the setting for the suffi-
cient condition in Section 2.1 where K is fixed w.r.t.
D. Using this bound, we show the probability of re-
covery vs. other interesting quantities (see Figs. 4, 5).
Also note the relation between f(ρ) and ρ, e.g., for the
degenerate case where ρ = 1, f(ρ) is negative for any
N . This is expected since recovery is not possible in
that case, which we prove with the necessity bound.

We now present necessary and sufficient conditions for
exact support recovery. We start with a lemma de-
scribing the mutual information for this model.

Lemma 3.1.

I(XS1 ;Y |XS2 , βS , µ)=
1

2
E

[
log

(
1+(1−ρ)

‖βS1‖2SNR

N

)]
,

where the expectation is w.r.t. βS1 .

The mutual information formula along with the bound
given by Theorem 3.1 allow us to obtain the following
necessary & sufficient condition for exact recovery.

Theorem 3.2. Consider the correlated setup de-
scribed above. First, SNR = Ω(logD) is a necessary
condition for recovery. Furthermore, for this SNR we
can recover S with average error probability approach-

ing zero if and only if N = Ω
(

K log(D/K)
log(1+(1−ρ)σ2)

)
.

The necessary condition on SNR is also illustrated in
Figure 2, where we plot the probability of error bound

given by Theorem 3.1 for different SNR values. In-
deed, we show an SNR cutoff regardless of number of
measurements as well as tradeoffs beyond the cutoff
point. Note that the relation between SNR and N is
not explicitly described for Lasso [15,16].

Both upper and lower bounds hold for the general case
K = O(D), since we use the error bound in Theorem
3.1 to obtain the upper bound instead of Theorem 2.2.

Remark 3.1. It follows that our relatively simple
analysis gives us a bound asymptotically identical to
the best-known bound N = Ω(K log(D/K)) [20] with
an independent Gaussian sensing matrix. Our results
also incorporate correlations to explicitly characterize
the effect of correlated columns on sample complexity.
We have shown that the number of samples increases
by 1

log(1+(1−ρ)C) relative to 1
log(1+C) for the indepen-

dent model for some constant C.

3.2 Noisy variables

We also analyze the additive noise model considered
in [14,25], where in the sparse linear regression model
(6), a matrix ZN is observed instead of the sensing
matrix XN , with the relation ZN = XN + V N , where
V (n) ∼ N (0, νN ID) IID for n = 1, . . . , N . The rest
of the setup is as given in Section 3.1. The model de-
scribed here exhibits a non-linear relationship between
the variables ZN and the observations Y N in contrast
to Section 3.1. For this problem with noisy observa-
tions of variables, we have the following theorem for
an upper bound on the probability of error of exact
support recovery.

Theorem 3.3. The error probability of exact sup-
port recovery in the noisy data model is given
by P (E) ≤

∑K
i=1 2−Nf(ρ,ν), where f(ρ, ν) =

1
2 log

(
1 + 1−ρ

1+ν
2iσ2SNR

Nξ

)
− i

4N log 4 − log (D−Ki )(Ki )
N ,

where ξ = 1 + (1−ρ)ν
1+ν

KSNRσ2

N .

The error exponent f(ρ, ν) differs from f(ρ) defined
in Section 3.1 mainly by an extra 1 + ν term in the
denominator in the log term and reduces to f(ρ) for
ν = 0. Also note that ξ ≈ 1 for sufficiently large N .

We now state a sufficient condition on the number of
measurements with the theorem below, which follows
from an analysis of the upper bound on recovery error
provided in Theorem 3.3.

Theorem 3.4. For SNR = Ω (logD), a sufficient
condition on the number of measurements is N =

Ω

(
K log(D/K)

log(1+ 1−ρ
1+ν σ

2)

)
.

Remark 3.2. We observe that the sufficient num-
ber of measurements is affected by a factor of

1
log(1+C/(1+ν)) in our results, which greatly improves
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Figure 3: Comparison of information-theoretic bound
vs. Lasso.

upon the bound with a factor of (1 + ν)2 by [25].

We also note that while [15, 18] analyze correlated
Gaussians and others noisy or missing data [14, 25]
separately, our error bounds and asymptotic sample
complexity results unify these into a single expression.

3.3 Experiments and comparisons

In this section we compare the information-theoretic
probability of error bounds (or equivalently, bounds
on the probability of successful recovery) we derived
in the above sections with the frequency of successful
exact support recovery for two recovery algorithms.

For all experiments and evaluation of bounds, we set
K = 32 and D = 512. The XN and Y N are gener-
ated according to the normalized model (6), where we
choose S uniformly at random and let βS ∈ {−1, 1}K
with uniform probability. Nn = N/(K log(D/K)) is
the normalized number of measurements.

We compare our bounds for independent and cor-
related sensing elements with Lasso [15, 16], as de-
fined in [15]. We set the regularization parameter as
λ = 2

√
2 logD/

√
SNR as suggested in [15]. We also

investigated different values however we have not ob-
served any significant improvements in performance.

Figure 3(a) plots the recovery bound for IID variables
vs. Lasso simulation performance, for different num-
ber of measurements N . The probability of recovery
for Lasso is computed over 100 iterations. Our IT
bound has a much sharper transition, while also be-
ing tighter, matching closely our lower bound (vertical
line for SNR/ logD = 20 dB) obtained with Theo-
rem 3.1. The theoretical results in [16, 18] are not
strictly comparable since they require a significantly
large SNR regime. Furthermore, the performance gap
approaches infinity as we let K approach D. Thus
Lasso works strictly in sublinear regime.

Figure 3(b) shows our probability of error bound vs.
Lasso performance for different values of the correla-
tion coefficient ρ, where Nn = 10. The probability of
recovery for Lasso is computed over 20 iterations. This
plot demonstrates clearly that while our bounds show
tolerance to correlation up to a constant approaching
1 (as seen from the sample complexity bound in The-
orem 3.2), Lasso can tolerate at most ρ = 0.5 correla-
tion for exact recovery in this scenario, with very high
SNR and N . Note that strongest results due to [15]
require correlations to decay asymptotically to zero as
1/ log(D).

For the second set of experiments, we compare with
a variant of the orthogonal matching pursuit (OMP)
algorithm called support-OMP. This algorithm is pro-
posed by [25] and shown to have good performance
with theoretical guarantees for problems with noisy or
missing observations of the sensing matrix as we con-
sider in Section 3.2.

Figure 4(a) shows the performance of support-OMP
vs. information-theoretic bound, for noisy variables
with different noise variances ν. For support-OMP, the
recovery probability is computed over 40 iterations. It
can be seen that support-OMP performs reasonably
well for noisy variables but fails in high variance noise,
whereas our information-theoretic bound shows that
recovery in much higher noise levels are achievable,
especially with higher SNR.

A similar conclusion can be reached from Figure 4(b),
where we plot recovery performance for both corre-
lated and noisy variables. For support-OMP, the re-
covery probability is computed over 20 iterations. The
gap is more pronounced for correlated variables com-
pared to noisy variables, which shows support-OMP is
highly affected by correlation and by variable noise to
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a lesser degree.

4 Discussion

We have presented a framework for analyzing sparse
recovery problems from an inference perspective by
introducing a Markovian assumption. This frame-
work unifies linear and non-linear observation models,
dependent and non-Gaussian measurements matrices,
and noisy data. This framework leads to a tight, ex-
ponential upper bound on the support recovery error
probability and an explicit universal mutual informa-
tion formula for computing the sample complexity of
sparse recovery problems. The central theme here is
“inference of a discrete object (sparse support pattern)
in a continuous world of observations.” Our approach
is not algorithmic and therefore must be used in con-
junction with tractable algorithms. Nevertheless, it
is useful for identifying gaps between existing algo-
rithms and fundamental information. Fundamentally,

we identify a sample complexity and computational
complexity trade-off: Treating the support pattern as
a discrete object optimizes sample complexity, while
approaches that estimate the sparse vector in a con-
tinuous space optimize computational complexity.

Although we consider sparse linear regression and its
variants as applications in this paper, there are many
other sparse recovery applications for which the frame-
work we consider is applicable and the error bound or
the sample complexity bounds we have described are
explicitly computable through the formulas in Theo-
rems 2.1 and 2.2. Some examples we have not included
due to space considerations are group testing, quan-
tized compressive sensing, multiple regression models
or models with missing observations.

As we have shown our approach is also useful in under-
standing fundamental tradeoffs between different de-
sign parameters such as SNR, correlations, measure-
ments matrices and noisy features. For instance, in
the linear Gaussian setting we have shown that we
could information theoretically tolerate up to constant
correlation across different variables while existing re-
sults require vanishing correlation. The linear setting
has also identified large sample complexity gaps be-
tween Lasso, support-OMP and information theoretic
bounds. Specifically, these gaps get larger as correla-
tion and variable noise increases.
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