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S1 Variational Inference: Regression
Model

The variational approach introduced by Titsias [2009],
considers an augmented probability model for the
marginal likelihood, based on a set of inducing inputs
Z. The exact marginal likelihood is then computed by

p(y|X) = / / p(yIE)p(Elu, X, Z)p(ulZ)dudf, (S.1)

where u is the Gaussian process evaluated at Z. The
inducing inputs are turned into variational parameters
by introducing the variational distribution

q(f,u|X,Z) = p(flu, X, Z)¢(u). (S.2)

The variational terms Z and ¢(-) are then optimized
by minimizing the the Kullback-Leibler divergence
KL (¢(f,u|X,Z) || p(f,uly, X, Z)). We refer the reader
to Titsias [2009] for a detailed explanation.

S2 Variational Inference: Joint Model

The joint probability model for the GP-LVM is given
by
p(Y, X) = p(Y|X)p(X), (S.3)

where the dimensions of Y are considered independent
conditioned on the features. Hence, p(Y|X) can be
factorized as

p(Y|X) = [T p(y;1X), (S4)
j=1

where {yj}?:1 represent the columns of Y. No-
tice that X is non-linear inside p(y;|X). The exact
marginal likelihood is given by

p(Y) = [ (Y X)p(X)dX. (5.5)
Thus, computing the marginal distribution of the joint
model involves computing the expected value of (S.1)
under the distribution p(X). This does not allow for
the variational distribution ¢(-) to be optimized in the
same way as in the regression case. For this reason,
Titsias and Lawrence [2010] introduced a factorized
variational distribution

q(X) = HN(Xi‘Niv Si), (S.6)

where {S;}? ; are defined as diagonal matrices. A
lower bound on logp(Y) can now be defined using
(S.6) and ¢(-) can determined through a mean field
approach. We refer the reader to Titsias and Lawrence
[2010] for a detailed explanation.

S3 EP-DTC Derivation

Consider a Gaussian process f with covariance Kg.
In the regression case with Gaussian likelihoods, the
probabilistic variational sparse GP approximation to
the marginal likelihood, proposed by Titsias [2009],
is formulated as a lower bound. This guarantees
the parameters learning to be more rigorous. The
lower bound is defined as the DTC approximation to
the marginal likelihood, but corrected with a trace
term, which guarantees consistency when modelling
the training and test sets. We are interested in ex-
tending the variational sparse GP approximation for
the case of non-Gaussian likelihoods. As a first step,
we propose a derivation of the EP algorithm based on
the DTC approximation.

Let the dependence of f on the inducing inputs u be
defined deterministically as in the DTC approximation

g(fJu) = N (KrKylu,0), (8.7)
where Ky, is the covariance function computed across
the training data and the inducing inputs, and Ky, is
the covariance function computed between the induc-
ing inputs. Then, in can be shown that the marginal
distribution of f is given by

q(f|X) = N(f|0, Qn), (S8)

where Qﬁ‘ = Kqu;&Kuf.

Let the EP site approximations {¢;(f;) =~ p(y:|fi)}i,
be un-normalized Gaussians with moment parameters
fi; and 2. The overall likelihood approximation is
then be given by

p(y|f) ~ Z x N (t|2, %), (S.9)
for some constant Z. Notice that p(y|f) normalizes
over y, whilst the Gaussian distribution in the r.h.s.
of (S.9) normalizes over f.

The combination of the prior distribution in (S.8) with
the likelihood in (S.9) yields a posterior distribution of
f with parameters

> = (Q;fl + 5:*1)_1 , (S.10)

p=3 (i—lp) . (S.11)
The gain of the sparse approximation depends on for-
mulating the computation of the posterior parameters,
p and X, in an efficient way. In this case, this is
achievable at a computational complexity of O(m?n)
and with storage demands of O(mn). By applying the
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matrix inversion lemma, the posterior variance can be
computed as

-1

¥ = ((Kqu;;Kuff1 T i—l)

~ - ~\—1
—5_% (Kqu;ullKuf n 2) ) $12)

~ -1
= Kfu (Kuu + Kufzileu) Kuf
= Kr(LLT) 'Ky,

where L is the Cholesky decomposition of (Kuu +
KufE‘leu).

EP is an iterative algorithm in which the site ap-
proximations are updated one at a time, until conver-
gence is achieved (see Williams and Rasmussen [2006]
for a detailed explanation). In our sparse formula-
tion, the procedure for updating the parameters of the
site approximations remains the same as in standard
EP. What changes is the computation of the poste-
rior parameters, which now depends on factorization
of the covariance matrix given in (S.12). We will ex-
plain these updates based on the natural parameters
{7}, and {7;}"_,, rather than the moment para-
menters {fi;}"_, and {62} ,, as this simplifies the
notation. Suppose that, after updating the i-th site
approximation, we change its natural parameters by
AT; and Ap;. Let

E =314 Afee/, (S.13)

- FIAF
E'=X-_1"" ¢ge' S.14
1+ mAF G (8.14)

where e; is the i-th canonical basis vector of R”. Then,
the updates of the posterior variance can be computed
as

_ —1 -1
EneW — ((KquuS‘Kuf) + E)
= Kfu (Kuu + ]E{:uf]'EI{-fu)71 Kuf
= K (LL" + kAT Kpy) ™' Kur

— Kfu (LHGWLHQWT ) —1 Kuf’

(S.15)

where k; is the i-th column of Ku¢ and L™V is the
Cholesky decomposition of (LLT + kiA']N—ik;rKfu).

Finally, the update of p can be computed as

plew — snew (271;;, + Ave;)
= puew ((Enew*l — Aﬁeie;) o+ Aﬂi)
= p+ IV (AY; — AT e
= p+ (AD; — AFp;) sV,

(2

(S.16)

where s1®W is the i-th column of 3"V,

S4 Variational inference and EP-DTC

Assume we already have an optimal EP-DTC approx-
imation of the form of (S.9). Following Titsias [2009]
in using Jensen’s inequality to define a lower bound on
the logarithm of (S.1), we see that

log p(y[X) = log / / Py |D)p(Elu, X, Z)

X p(u|Z)jE3§dfdu

> / / p(El, X, Z)p(u)

p(yIf)p(alZ) oo
= dfdu.

(S.17)

X log

By replacing p(y|f) in (S.17) with the EP-DTC ap-
proximation, we obtain

log p(y[X) = / / p(flu, X, Z)é(u)

ZN (f|i, £)p(u|Z)
¢(u)

> /qﬁ(u) <H+log ZZ((IIIJ)Z)> du,

(S.18)

x log dfdu

where

H= /p(f\u,X,Z) log N (f| fx, T)df. (S.19)

— —1
Let o = K¢y K yu, we can re-express H as

1 -
H= —g10g27r— 5I5

- [ ot X, 2)(0 - ) TS 8 - )t
N 1 =
- %tr ( (aa” —2pa™ + ﬂﬁT)ifl)
1 N
-5t ( (Kg — Qg)zrl)
= log N (v, 5) — 5r ( (Ker — Q)57
(S.20)

Using (S.20) in (S.18) and reversing Jensen’s inequality
in (S.17) leads to the definition of the lower bound on
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log p(y[X)
Lp= 1og/N(,1|a, S)p(u|X)du
— %tr ( (Kﬂ‘ — fo)i_l> + Z
=log N (2|0, Qg + %)
— 1tl" ( (Kﬂ' — Qﬁ‘)271> + Z

2
< log p(y|X).

(S.21)

S5 Sparse EP For Uncertain Inputs

Consider a posterior covariance and a posterior mean
given by

> = (2*1 (& RTRE + A)*l)_1 . (S:22)

p=3 (fz—lp) , (S.23)

where ¥ € R™*" A € R™ " is a diagonal matrix,
and f and 3 are the mean and covariance of an EP
likelihood approximation. By applying the matrix in-
version lemma, 3 can be re-expressed as follows:

E:(S}*%L.frl
Al GRT M A-lgrT cipd T a-1)
“ANWRTRE AR+ 1) IRE A ) .
(S.24)

After applying a second time the matrix inversion
lemma, to get rid of the negative exponent in (S.24),
we get that

» :@HGW(RHGW)TRHGW(‘:'[)HGW)T §5
+( Anew)T (5-25)
for some suitable li’new’ RIEW and AREW,

As in the case of the EP-DTC formulation, the updates
in this new setting will depend on the covariance fac-
torization, given by (S.25) in this case. Suppose that,
after updating the i-th site approximation, we change
its natural parameters by A7; and Av;. An efficient
way of defining the updates according to these changes
is given by the following equations:

=32
APV — A — L)\”Aeie{, (S.26)
~ New - A7\ o
— BTN o S.27
1+ A7 Wi (53:27)
AT;
5, i (S.28)

- 1+ A’T’ZS“,

R"W — Cholesky (RT (I - Rz/?iaiz/?}RT) R) .
(S.29)

Let p be re-expressed as

p=w+ ¥y, (S.30)

for some w € R™ and v € R™. Then, the correspond-
ing updates are given by

~

new w + (Aﬂi — Aﬂwi))\ii

w = A e, (S5.31)
+ ATiAii
~ New
,YDGW =¥ ~
8 (a5 ARG)RIVTRIOVE )
(S.32)

S6 Uncertain Inputs with EP

Following Titsias and Lawrence [2010] and putting to-
gether (S.5) and (S.6), we get the lower bound

logp(Y) > Z(p(yj 1X))gx) — KL (¢(X) | p(X)) -

(.33)

If we consider an EP approximation, as in (S.9), and
follow a similar approach as the one from (S.17) to
(S.21), we get that

(p(y;1X))qgx) 2 loglexpN (f;]0t, 25))) peus 1x)

1 ) _
— 5t ( (Ke —Qa)y0 =) + 2.
(S.34)

We can now compute a lower bound on the log-
marginal likelihood as

L =log N (0, K11 + A+ 5) =
+tr (Kb ®e ) + KL (a(X) || p(X)) + 2 (5:3)
< logp(Y),

where 1y = tr (271<Kff>q(><)), ¥, = (Kuf)gx)s
U, = (Kuff]’le,Qq(X), and A is a diagonal matrix
such that A;; = tr (@2(1-)K;111) ~ ] Kul¥y,). The
sub-index (7) means that we are only taking the i-th
column of the corresponding matrix.



