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S1 Variational Inference: Regression
Model

The variational approach introduced by Titsias [2009],
considers an augmented probability model for the
marginal likelihood, based on a set of inducing inputs
Z. The exact marginal likelihood is then computed by

p(y|X) =

∫∫
p(y|f)p(f |u,X,Z)p(u|Z)dudf , (S.1)

where u is the Gaussian process evaluated at Z. The
inducing inputs are turned into variational parameters
by introducing the variational distribution

q(f ,u|X,Z) = p(f |u,X,Z)φ(u). (S.2)

The variational terms Z and φ(·) are then optimized
by minimizing the the Kullback-Leibler divergence
KL (q(f ,u|X,Z) ‖ p(f ,u|y,X,Z)). We refer the reader
to Titsias [2009] for a detailed explanation.

S2 Variational Inference: Joint Model

The joint probability model for the GP-LVM is given
by

p(Y,X) = p(Y|X)p(X), (S.3)

where the dimensions of Y are considered independent
conditioned on the features. Hence, p(Y|X) can be
factorized as

p(Y|X) =

p∏
j=1

p(yj |X), (S.4)

where {yj}pj=1 represent the columns of Y. No-
tice that X is non-linear inside p(yj |X). The exact
marginal likelihood is given by

p(Y) =

∫
p(Y|X)p(X)dX. (S.5)

Thus, computing the marginal distribution of the joint
model involves computing the expected value of (S.1)
under the distribution p(X). This does not allow for
the variational distribution φ(·) to be optimized in the
same way as in the regression case. For this reason,
Titsias and Lawrence [2010] introduced a factorized
variational distribution

q(X) =

n∏
i=1

N (xi|µi,Si), (S.6)

where {Si}ni=1 are defined as diagonal matrices. A
lower bound on log p(Y) can now be defined using
(S.6) and φ(·) can determined through a mean field
approach. We refer the reader to Titsias and Lawrence
[2010] for a detailed explanation.

S3 EP-DTC Derivation

Consider a Gaussian process f with covariance Kff .
In the regression case with Gaussian likelihoods, the
probabilistic variational sparse GP approximation to
the marginal likelihood, proposed by Titsias [2009],
is formulated as a lower bound. This guarantees
the parameters learning to be more rigorous. The
lower bound is defined as the DTC approximation to
the marginal likelihood, but corrected with a trace
term, which guarantees consistency when modelling
the training and test sets. We are interested in ex-
tending the variational sparse GP approximation for
the case of non-Gaussian likelihoods. As a first step,
we propose a derivation of the EP algorithm based on
the DTC approximation.

Let the dependence of f on the inducing inputs u be
defined deterministically as in the DTC approximation

q(f |u) = N (KfuK−1uuu,0), (S.7)

where Kfu is the covariance function computed across
the training data and the inducing inputs, and Kuu is
the covariance function computed between the induc-
ing inputs. Then, in can be shown that the marginal
distribution of f is given by

q(f |X) = N (f |0,Qff ), (S.8)

where Qff = KfuK−1uuKuf .

Let the EP site approximations {ti(fi) ≈ p(yi|fi)}ni=1

be un-normalized Gaussians with moment parameters
µ̃i and σ̃2

i . The overall likelihood approximation is
then be given by

p(y|f) ≈ Z̃×N (f |µ̃, Σ̃), (S.9)

for some constant Z̃. Notice that p(y|f) normalizes
over y, whilst the Gaussian distribution in the r.h.s.
of (S.9) normalizes over f .

The combination of the prior distribution in (S.8) with
the likelihood in (S.9) yields a posterior distribution of
f with parameters

Σ =
(
Q−1ff + Σ̃−1

)−1
, (S.10)

µ = Σ
(
Σ̃−1µ̃

)
. (S.11)

The gain of the sparse approximation depends on for-
mulating the computation of the posterior parameters,
µ and Σ, in an efficient way. In this case, this is
achievable at a computational complexity of O(m2n)
and with storage demands of O(mn). By applying the
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matrix inversion lemma, the posterior variance can be
computed as

Σ =
((

KfuK−1uuKuf

)−1
+ Σ̃−1

)−1
= Σ̃− Σ̃

(
KfuK−1uuKuf + Σ̃

)−1
Σ̃

= Kfu

(
Kuu + Kuf Σ̃

−1Kfu

)−1
Kuf

= Kfu(LL>)−1Kuf ,

(S.12)

where L is the Cholesky decomposition of (Kuu +
Kuf Σ̃

−1Kfu).

EP is an iterative algorithm in which the site ap-
proximations are updated one at a time, until conver-
gence is achieved (see Williams and Rasmussen [2006]
for a detailed explanation). In our sparse formula-
tion, the procedure for updating the parameters of the
site approximations remains the same as in standard
EP. What changes is the computation of the poste-
rior parameters, which now depends on factorization
of the covariance matrix given in (S.12). We will ex-
plain these updates based on the natural parameters
{τ̃i}ni=1 and {ν̃i}ni=1, rather than the moment para-
menters {µ̃i}ni=1 and {σ̃2

i }ni=1, as this simplifies the
notation. Suppose that, after updating the i-th site
approximation, we change its natural parameters by
∆τ̃i and ∆ν̃i. Let

E = Σ̃−1 + ∆τ̃ieie
>
i , (S.13)

E−1 = Σ̃− τ̃2i ∆τ̃i
1 + τ̃i∆τ̃i

eie
>
i , (S.14)

where ei is the i-th canonical basis vector of Rn. Then,
the updates of the posterior variance can be computed
as

Σnew =
((

KfuK−1uuKuf

)−1
+ E

)−1
= Kfu (Kuu + KufEKfu)

−1
Kuf

= Kfu(LL> + ki∆τ̃ik
>
i Kfu)−1Kuf

= Kfu(LnewLnew>)−1Kuf ,

(S.15)

where ki is the i-th column of Kuf and Lnew is the
Cholesky decomposition of (LL> + ki∆τ̃ik

>
i Kfu).

Finally, the update of µ can be computed as

µnew = Σnew (Σ−1µ+ ∆ν̃iei

)
= Σnew ((Σnew−1 −∆τ̃ieie

>
i

)
µ+ ∆ν̃i

)
= µ+ Σnew (∆ν̃i −∆τ̃iµi) ei

= µ+ (∆ν̃i −∆τ̃iµi) snew
i ,

(S.16)

where snew
i is the i-th column of Σnew.

S4 Variational inference and EP-DTC

Assume we already have an optimal EP-DTC approx-
imation of the form of (S.9). Following Titsias [2009]
in using Jensen’s inequality to define a lower bound on
the logarithm of (S.1), we see that

log p(y|X) = log

∫∫
p(y|f)p(f |u,X,Z)

× p(u|Z)
φ(u)

φ(u)
dfdu

≥
∫∫

p(f |u,X,Z)φ(u)

× log
p(y|f)p(u|Z)

φ(u)
dfdu.

(S.17)

By replacing p(y|f) in (S.17) with the EP-DTC ap-
proximation, we obtain

log p(y|X) &
∫∫

p(f |u,X,Z)φ(u)

× log
Z̃N (f |µ̃, Σ̃)p(u|Z)

φ(u)
dfdu

&
∫
φ(u)

(
H + log

Z̃p(u|Z)

φ(u)

)
du,

(S.18)

where

H =

∫
p(f |u,X,Z) logN (f |µ̃, Σ̃)df . (S.19)

Let α = KfuK−1uuu, we can re-express H as

H = −n
2

log 2π − 1

2
|Σ̃|

−
∫
p(f |u,X,Z)(f − µ̃)>Σ̃−1(f − µ̃)df

= −N
2

log 2π − 1

2
|Σ̃|

− 1

2
tr
(

(αα> − 2µ̃α> + µ̃µ̃>)Σ̃−1
)

− 1

2
tr
(

(Kff −Qff )Σ̃−1
)

= logN (µ̃|α, Σ̃)− 1

2
tr
(

(Kff −Qff )Σ̃−1
)
.

(S.20)

Using (S.20) in (S.18) and reversing Jensen’s inequality
in (S.17) leads to the definition of the lower bound on
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log p(y|X)

LE = log

∫
N (µ̃|α, Σ̃)p(u|X)du

− 1

2
tr
(

(Kff −Qff )Σ̃−1
)

+ Z̃

= logN (µ̃|0,Qff + Σ̃)

− 1

2
tr
(

(Kff −Qff )Σ̃−1
)

+ Z̃

. log p(y|X).

(S.21)

S5 Sparse EP For Uncertain Inputs

Consider a posterior covariance and a posterior mean
given by

Σ =
(
Σ̃−1 + (Ψ̂

>
R>RΨ̂ + Λ̂)−1

)−1
, (S.22)

µ = Σ
(
Σ̃−1µ̃

)
, (S.23)

where Ψ̂ ∈ Rm×n, Λ̂ ∈ Rn×n is a diagonal matrix,
and µ̃ and Σ̃ are the mean and covariance of an EP
likelihood approximation. By applying the matrix in-
version lemma, Σ can be re-expressed as follows:

Σ =
(
Σ̃−1 + Λ̂−1

−Λ̂−1Ψ̂R>(RΨ̂
>

Λ̂−1Ψ̂R> + I)−1RΨ̂
>

Λ̂−1
)−1

.

(S.24)

After applying a second time the matrix inversion
lemma, to get rid of the negative exponent in (S.24),
we get that

Σ =Ψ̂
new

(Rnew)>Rnew(Ψ̂
new

)>

+ (Λ̂new)>,
(S.25)

for some suitable Ψ̂
new

, Rnew and Λ̂new.

As in the case of the EP-DTC formulation, the updates
in this new setting will depend on the covariance fac-
torization, given by (S.25) in this case. Suppose that,
after updating the i-th site approximation, we change
its natural parameters by ∆τ̃i and ∆ν̃i. An efficient
way of defining the updates according to these changes
is given by the following equations:

Λ̂new = Λ̂− ∆τ̃iλ̂
2
ii

1 + ∆τ̃iλ̂ii
eie

ᵀ
i , (S.26)

Ψ̂
new

= Ψ̂− ∆τ̃iλ̂ii

1 + ∆τ̃iλ̂ii
eiψ̂i, (S.27)

δi =
∆τ̃i

1 + ∆τ̃isii
, (S.28)

Rnew = Cholesky
(
Rᵀ
(
I−Rψ̂iδiψ̂

ᵀ
i Rᵀ

)
R
)
.

(S.29)

Let µ be re-expressed as

µ = ω + Ψ̂γ, (S.30)

for some ω ∈ Rn and γ ∈ Rm. Then, the correspond-
ing updates are given by

ωnew = ω +
(∆ν̃i −∆τ̃iωi)λ̂ii

1 + ∆τ̃iλ̂ii
ei, (S.31)

γnew = Ψ̂
new

γ

+Ψ̂
new (

(∆ν̃i −∆τ̃iµ̃i)R
newᵀ

Rnewψ̂
new
i

)
.

(S.32)

S6 Uncertain Inputs with EP

Following Titsias and Lawrence [2010] and putting to-
gether (S.5) and (S.6), we get the lower bound

log p(Y) ≥
q∑

j=1

〈p(yj |X)〉q(X) −KL (q(X) ‖ p(X)) .

(S.33)

If we consider an EP approximation, as in (S.9), and
follow a similar approach as the one from (S.17) to
(S.21), we get that

〈p(yj |X)〉q(X) & log〈exp(N (µ̃j |αj , Σ̃j))〉p(uj |X)

− 1

2
tr
(
〈Kff −Qff 〉q(X)Σ̃

−1
)

+ Z̃.

(S.34)

We can now compute a lower bound on the log-
marginal likelihood as

LH = logN
(
µ̃|0,Ψ>1 K−1uuΨ1 + Λ + Σ̃

)
− ψ̃0

+ tr
(
K−1uuΨ̃2

)
+ KL (q(X) ‖ p(X)) + Z̃

. log p(Y),

(S.35)

where ψ̃0 = tr
(
Σ̃−1〈Kff 〉q(X)

)
, Ψ1 = 〈Kuf 〉q(X),

Ψ̃2 = 〈Kuf Σ̃
−1Kfu〉q(X), and Λ is a diagonal matrix

such that Λii = tr
(
Ψ̃2(i)K

−1
uu

)
−Ψ>1(i)K

−1
uuΨ1(i). The

sub-index (i) means that we are only taking the i-th
column of the corresponding matrix.


