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A Examples of L, L; Margins

Here we give two natural learning settings where Lo, L1
margins play a key role.

A.1 Two-sided Disjunctions

A two-sided disjunction h = (hy,h_) is a pair of dis-
junctions over a boolean instance space X = {0,1}"
that labels points according to the positive disjunction
h and is also guaranteed to satisfy hy(z) = —h_(x)
for all examples © ~ D (Balcan et al., 2013; Blum and
Balcan, 2007). The variables included in the disjunc-
tion h, are positive indicators, those included in h_
are negative indicators, and the remaining are the k
non-indicators. If there is a target two-sided disjunc-
tion labeling the data from D then we are guaranteed
that every example from D has at least one indicator
set to 1 and does not have indicators of both types set
to 1.

We can represent the target by a linear separator
w* € {—1,0,1}", where the nonzero values in w* cor-
respond to indicators (positive or negative) and re-
maining variables are the non-indicators. According
to the two-sided disjunction assumption, |w* - z| > 1
for any « ~ D, so when ||z, <k we immediately have
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and when ||z||; > k, |w* - z| is minimized when « has
all k£ non-indicators set to 1, so we have
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Combining these two cases gives us Yeo,1(w*) > k%rl,
so the Lo, L1 margin is roughly inversely proportional

to the number of non-indicators.

A.2 Majority with Margins

As above, we have n boolean variables divided into
positive and negative indicators (this time with no
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non-indicators), and the target is a majority function
over the variables set to 1 in an example. The as-
sumption of majority with margins ensures that for
some constant 1/2 < a < 1, at least an « fraction of
indicators in positive examples are positive (so at most
a 1 — « fraction are negative) and at least an « frac-
tion of indicators in negative examples are negative (at
most a 1 — « fraction are positive). Representing the
target as w* € {—1,1}" and X = {0,1}", we have for
every x ~ D,

w* x| > alzl; - (1= a)llzl, = 2a=1) (],
Thus, Veo,1(w*) > 2ac — 1 because

|w* - | (2 — 1) ||zl
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and we have a constant L., L; margin.

B Generalization Bounds in the
Non-realizable Case

The results in Section 3 apply to the realizable case—
that is, when the two classes are linearly separable by a
positive “hard margin.” When the data is not linearly
separable, convex program (1) has no solution, but
convex program (2) remains solvable and we may still
achieve good generalization performance in the pres-
ence of a “soft margin” (some small margin violations
exist in the data, but the majority of points will be
far from the optimal separator). In this non-realizable
case, we can still obtain generalization bounds analo-
gous to Theorem 4, but they will include an additional
dependence on how far the data is from being separa-
ble by a large margin (the hinge loss).

B.1 Using Rademacher Complexity

The empirical Rademacher complexity of a class F of
real-valued functions is

Ru(F) = ~E [supzaifw)]
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where o = (01,...,0,) is uniform over {—1,1}". In
the case of linear functions z — w -z with [lw||, <
[W{|,, this is
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where we have applied Jensen’s inequality and the
Khintchine inequality as in Section 3. This result is
a special case of Proposition 2 of Kloft and Blanchard
(2012). If [|X[|,,, < Cn®[[X],, then this simplifies to

OB, W], | X
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which can be used to bound the Rademacher com-
plexity term in several standard generalization bounds
such as those in terms of convex loss functions.

B.2 Using Fat-shattering Dimension

Theorem VII.14 of Shawe-Taylor and Cristianini
(2000) gives a generalization error bound in terms of
the fat-shattering dimension of the concept class F and
the sum of the slack variables £ in convex program (2).
The bound is of the form

err(h) <O (711 (fatf ~v/16) + Z@))

where h is the classifier corresponding to a solution w
of (2) and where & = max(0,~ — y'(@ - 2*)). We can
then use our bound from Theorem 2 to obtain a bound
analogous to Theorem 4.

C L,norm Regularization and
Multiple Kernel Learning

Here we give some details of the relationship between
Lg-norm regularized loss minimization and L,-norm
multiple kernel learning (MKL). Throughout the fol-
lowing, we will use the notational conventions from our
work on L4L, margins: p will index a norm on the in-
stance space X and ¢ will index a norm on the weight
vector space. We will also use r to index a norm on the
weights of the kernel combination, which corresponds
to the ¢ used by Kloft and Blanchard (2012). The p
used by Kloft and Blanchard (2012) corresponds to the
q used here.

C.1 Multiple Kernel Learning

L.-norm MKL attempts to learn a nonnegative com-
bination of M base kernels ki,...,kp; subject to an
L,-norm penalty (for 1 <7 < o) on the combination
weights 61,...,60,. Specifically, L,.-norm MKL is an
empirical risk minimization problem over the class of
linear functions

{x = w-gp(x):

(where the transformation ¢ and norm |||, are those
of the RKHS defined by the combined kernel k) and
over the class of kernels

[wll, < D}

M
{k=> 0iki:6>0, 6], <1}.
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This problem is known to be equivalent to empirical

risk minimization over the class of linear functions
Hepm ={z— wo(z) :w= (w(l), . ,w(M)

where ¢(z) = (¢1(z),...,0m(x)) (a representation
of z in the product RKHS of the base kernels) and

g = [[ (I, o @O, )|, with1 < g =
f_[l < 2. Because of this equivalence, many risk

bounds for MKL make use of the latter class which
is easier to deal with theoretically.

C.2 Lg;-norm Regularization as L,-norm
MKL

If we want to perform ERM over the Lg-norm regular-
ized linear class

H={z—w-z:|w|, <D}

in R, we can phrase this as an L, MKL problem as
follows. Use M = d base kernels ki,...,k; where
ki(x,2") = x;a}, the product of the i-th coordinates of
the argument vectors. Then ¢;(x) = x; is a valid ker-
nel mapping for each ¢ because each kernel is then the
inner product in the corresponding space. Then the
mapping ¢(x) in the definition of Hy p ar is the iden-
tity mapping, so the weight vector w in its definition
is the same as that of H. It only remains to verify that
the norms are the same. The RKHS norm |[|-[|, can
be expressed as ||z|, = Vbi(@) - ¢i(x) = Vi, z)
i o Tt ol = oy i the
two function classes are the same.

Proposition 2 of Kloft and Blanchard (2012) upper
bounds the global empirical Rademacher complexity
of Hq.p, M aS

Ryp0) < Y2 fir (D, w(Kan)l,
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where tr(K;) is the trace of the kernel matrix formed
by k;(z7,2%) for each pair 27, 2% in the data set'. In
our specific setting, tr(K;) = >_7_, (27)* so the bound
becomes

1/p
D/p d /2
R(Hqp) < — = (; |tr(K;)[P

J p/2 1/p
DI [y
-2V (@)
n i=1 \j=1
D./p
= Xy,

where X is the d x n data matrix with one example in
each column.

Note that in this setting, the rank of each base ker-
nel is 1 (because the dimension of the ¢-space of each
kernel is 1). This means each kernel k; will have one
eigenvalue equal to Ex2, and this setting satisfies the

eigenvalue decay rate assumption /\Y) < d;j~% with
d; = Ez? and arbitrarily large «;.
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