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Abstract

In this paper, we propose a non-parametric
conditional factor regression (NCFR) model
for domains with multi-dimensional input
and response. NCFR enhances linear re-
gression in two ways: a) introducing low-
dimensional latent factors leading to dimen-
sionality reduction and b) integrating the In-
dian Buffet Process as prior for the latent
layer to dynamically derive an optimal num-
ber of sparse factors. Thanks to IBP’s en-
hancements to the latent factors, NCFR can
significantly avoid over-fitting even in the
case of a very small sample size compared to
the dimensionality. Experimental results on
three diverse datasets comparing NCRF to a
few baseline alternatives give evidence of its
robust learning, remarkable predictive per-
formance, good mixing and computational ef-
ficiency.

1 Introduction

With the exponential growth in data generation,
multi-variate problems with high-dimensional input
and output are becoming more common. Volatil-
ity matrix estimation and price forecasting in finance
(Wang and Zou, 2010), as well as action prediction,
view-to-view recognition (Kusakunniran et al., 2010)
and pose estimation (Bo and Sminchisescu, 2009) in
computer vision are examples of such problems. Linear
regression has been a long-standing, simple yet effec-
tive prediction tool for many domains. However, many
of the existing solutions focus on uncorrelated one-
dimensional response, leaving a visible gap for multi-
variate cases. In this paper, we propose an elaborate
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regression model to cater for multi-variate prediction
contexts, while modelling the correlations among re-
sponse variables. Empirical results on three diverse
datasets prove significant accuracy and good mixing.
The proposed model also exhibits considerable robust-
ness, regardless of diverse ratios between the number of
available samples and dimensions across the datasets.

Let us begin with the multi-dimensional classic re-
gression model Y = RX + E, where Y is the Dq-
dimensional response over N observations (Dq × N)
and X is the Dp×N input, regressed by R and added
with diagonal Gaussian noise, E. For large Dp and
Dq, R would be a large matrix, likely to overfit and
imposing matrix multiplications of order O(DqDpN),
that are computationally costly.

As a step forward, we can improve the model by in-
troducing a latent factor, Z(K×N ), not only bridg-
ing X and Y , but jointly reducing their ranks to
K � Dp, Dq: Y = QZ + Ey, Z = PX + Ez. Such
latent factors also improve the noise model by decou-
pling it for input and response into separate Ez and
Ey (West, 2003). Let us call this parametric model
conditional factor regression (CFR). Variants of such
models are studied in (West, 2003), (Carvalho et al.,
2008), (Teh et al., 2005) and (Bo and Sminchisescu,
2009), all being subject to a prior decision making on
the optimal latent dimensionality (K) through trial
and error or domain knowledge.

To improve on this, we propose a ‘non-parametric’
conditional factor regression (NCFR) model: a novel
Bayesian non-parametric treatment to multi-variate
linear regression, enhanced by (a) introducing latent
factors with integrated dimensionality reduction mech-
anisms and (b) finding the optimal reduced dimensions
(K) by exploiting an Indian Buffet Process (IBP) prior
(Griffiths and Ghahramani, 2006), thereby avoiding
overfitting through sparse latent factors. The mar-
riage of these properties makes the resulting NCFR
resilient to noise and effective in the presence of lim-
ited sample size in real-life problems. Empirical results
on three diverse datasets give evidence to this claim.
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In section 2, we explore the background research on
similar models, followed by an articulate description
of NCFR model parameters and inference in sections 3
and 4. Through experiments in section 5, we evaluate
and compare the above-mentioned models, following
with the Conclusion.

2 Background

There are numerous studies in the regression and
Bayesian non-parametric literatures. Here, we tend to
confine the focus on latent factor analysis/regression
models and similar alternatives, concluding with a
brief summary of the Indian Buffet Process. The no-
tion of latent factor regression has been introduced
with varying terminology and design. The Bayesian
factor regression model (West, 2003) represents a re-
gression model particularly suited for large input size
and small observation number. It uses a latent fac-
tor between input and response, assuming them both
dependent on the latent factor. On the contrary,
the spectral latent variable model proposed in (Bo
and Sminchisescu, 2009) shares the same design as
our model, creating a transitive dependency of re-
sponse over the latent factor, in turn conditioned over
the input (fig. 1). The dependencies between high-
dimensional inputs and responses are channelled via
a low-dimensional latent manifold using mixtures of
Relevance Vector Machines (RVM).

Both the above models require a parametric choice
of K (dimensionality of the latent layer). Caron and
Doucet have remedied this through proposing a class
of priors based on scale mixture of Gaussians over
the regressor (Caron and Doucet, 2008). Their sparse
Bayesian non-parametric model is essentially an in-
finite sparse regressor, correlating an infinite dimen-
sional input to a single dimensional response through
Levy processes. This solution, however, is not com-
putationally efficient for high-dimensional regression.
In the context of factor analysis, Bhattacharya and
Dunson (2011) use a multiplicative Gamma process
shrinkage prior on the factor loading matrix to permit
infinite number of factors. Similarly, Montagna et al.
(2012) induce the basis selection by choosing a shrink-
age prior that allows many of the loadings to be close
to zero. Alternatively, one can utilise an IBP prior to
select the relevant factors for each observation. Infinite
sparse factor models exploit this property of IBP to
enhance factor analysis, through sparsifying either the
factors (Knowles and Ghahramani, 2007) or the factor
loading matrix (Knowles and Ghahramani, 2011), (Rai
and Daumé III, 2009). The choice of which parameter
to sparsify depends on the problem domain and cannot
be used interchangeably. In cases where each response
variable is identically applied to all samples, the latter

approach is used. However, in our model each sample
has its own sparse latent factors common to all dimen-
sions. Hence we impose sparsity over the latent factors
(Z), yet cascading conditional dependence of Y on Z
and transitively over X.

2.1 Indian Buffet Process: the binary mask

The art of an Indian buffet process is that of con-
structing an infinite sparse binary matrix, S, with
features in the rows and samples as columns. Grif-
fith and Ghahramani (2006) initially introduce a finite
case for S consisting of K features and further extend
it to the asymptotic infinite version where K → ∞.
Each feature k is active with a Binomial likelihood
parametrised by πk, integrated out for convenience.
The resulting density for S is a normalised Poisson
distribution:

P (S|α) =

αK∏
h>0Kh!

exp(−αHN )

K∏
k=1

(N −mk)!(mk − 1)!

N !

(1)

where α is the strength parameter and mk =∑N
n=1 sk,n is the number of data points for which the

kth feature is active. HN =
∑N
j=1

1
j is the N -th har-

monic number and Kh is the number of rows in which
the numerical value of the sequence of binary digits is
equivalent to the decimal number h.

Using the above distribution, the Indian buffet anal-
ogy is phrased as a buffet with an infinite number
of dishes allowing customers to try unlimited options.
The probability of choosing each dish is driven by pre-
vious customers’ choices; with the exception of untried
dishes, the number of which is drawn from a Poisson
prior. In other words, each customer i will select an
already tried dish with probability mk

i , and decide to
try a new dish with probability Poisson(αi ). Thanks
to exchangeability, each customer i could be treated as
the last; thus, informing each decision with all other
choices (s−ki):

P (ski = 1|s−ki) =
mk,−i

N
, mk,−i =

∑
n 6=i

skn (2)

3 The model

The proposed Non-parametric Conditional Factor Re-
gression (NCFR) consists of two linear Gaussian trans-
forms, linked through a sparse latent layer. To main-
tain reasonable generality, we have assumed diagonal
covariance matrices for the noise, reserving the option
for isotropic variances in simpler models. As men-
tioned earlier, an important challenge remains that of
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selecting the optimal dimensionality for the latent fac-
tor, yielding the best regression and dimensionality re-
duction performance. In conventional cases, this is a
rigid decision. However, by adding an IBP prior to the
model, we have derived an infinite sparse Z to best fit
the data. Please note that the term non-parametric
in the title NCFR is merely to indicate the usage of
a non-parametric Bayesian prior, IBP1. The model is
defined as follows:

p(Y |Z) = N (Y |Q(S � Z),Ψy)

p(Z|X) = N (Z|PX,Ψz) ,
(3)

assuming X, Y and Z consist of N independent ob-
servations. S is the IBP binary mask applied to Z,
determining whether or not each dimension is active
for each sample. The weight of each active feature in
S is specified via its respective entry in Z.

Ultimately, each of the Dp-dimensional input vectors,
xn inXDp×N , is regressed into a respective yn response
vector of Dq dimensions, via a sparse K-dimensional
zn that is masked by a relevant binary sn through
element-wise Hadamard product (sn � zn)K×N . The
result is added with Gaussian noise terms, εyn and
εzn, with diagonal covariances Ψy and Ψz. The noise
terms collectively form Ey(Dq×N) and Ez(K×N). Q
and P are factor loading matrices, comprised of in-
dependent Gaussian vectors, Q = {q:k}k=1..K and
P = {pk:}k=1..K , with diagonal covariances Ψq and
Ψp. q:k and pk: are later noted as qk and pk for
simplicity. The individual variances on the diago-
nal of the above covariance matrices are noted as σ
with the relevant subscripts and indices, for instance
Ψy = diag(σy1 , ..., σyDq

). The binary mask matrix S is
sampled from an IBP prior with Gamma-distributed
α. Figure 1 illustrates the proposed graphical model,
the priors of which are defined below.

εy ∼ N (0,Ψy), σyi ∼ IG(a, b), i = 1..Dq

εz ∼ N (0,Ψz), σzk ∼ IG(a, b), k = 1..K

pk: ∼ N (0,Ψp), σpj ∼ IG(c, d), j = 1..Dp

q:k ∼ N (0,Ψq), σqi ∼ IG(c, d), i = 1..Dq

S ∼ IBP (α), α ∼ G(e, f)

(4)

4 Inference

Given the input and response observations X and Y ,
we infer model’s random parameters jointly in a pos-
terior probability, using Gibbs sampling. Additional

1The model could be considered semi-parametric in that
it combines a linear regression structure with a nonpara-
metric process for selecting the sparsity in the parameter
space

Figure 1: NCFR Graphical model. The node labeled
as s � z is deterministic, illustrated with double-ring
oval notation (Koller and Friedman, 2009). The plate
notation is used to clarify the dimensions of matrices
introduced with capital letters in the model.

Metropolis-Hastings (MH) steps are utilised particu-
larly for deriving the newly activated features in S
(Knowles and Ghahramani, 2007). This section briefly
introduces the inference steps for all random variables
in Equation 4. The NCFR inference algorithm is
shown in Algorithm 1.

4.1 Binary mask

Complying with the definition of IBP and similar in-
finite processes, SK×N is a matrix with an infinite
number of sparse rows, sk:. For simplicity and mem-
ory efficiency, we only consider the active features
( ∀ k | ∃skn = 1) and sample their related weights.
Thus, S could extend or shrink in each iteration, due
to customers’ choices. In this section, we begin with
sampling the existing active features and proceed with
adding new ones. To sample the binary elements of S,
we form the ratio of posteriors for active vs inactive
skn elements. Thanks to this technique, normaliza-
tion factors are cancelled out and a uniform random
draw can determine whether or not skn is active. The
posterior ratio is decomposed into separate ratios for
likelihood and prior (rl and rp), as in Equation 5.

r =
P (skn = 1|yn, s−kn, z−kn, Q,Ψy)

P (skn = 0|yn, s−kn, z−kn, Q,Ψy)
,

rl =
Nl
Dl

=
P (yn|skn = 1, s−kn, z−kn, Q,Ψy)

P (yn|skn = 0, s−kn, z−kn, Q,Ψy)
,

rp =
P (skn = 1|s−kn)

P (skn = 0|s−kn)
, r = rl.rp

(5)

Before attempting to derive this ratio, the likelihood
terms are marginalised with respect to zkn, the la-
tent factor weight of the k-th feature in the n-th ob-
servation. However, such weights are later sampled
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for all active skn. Following Gaussian linear trans-
formation properties, the resulting marginal density
is Gaussian with known parameters, provided that
the likelihood mean, Qzn, is represented as a linear
transformation over zkn. Using ordinary matrix al-
gebra, we have decomposed the mean Qzn into two
terms, Qzn = qkzkn + [Qzn]zkn=0. The former in-
cludes the parameter of interest zkn, whereas the latter
(residue term) excludes zkn through a reduced prod-
uct [Qzn]zkn=0 with one fewer element in zn. Yet, to
maintain the dimensional compatibility, we have kept
the k-th element and made it equal to zero. Hence, the
marginal likelihood for the active case is distributed as
in Equation 6. As can be seen in Nl, the conditional
probability P (yn|xn) models the correlations among
response variables (y1n to yDqn) thanks to the full co-
variance matrix, Ψy + qkσzk

−1qTk . In case of inactive
skn, the Hadamard product skn � zkn is inevitably
zero for every zkn. Therefore, the prior probability for
marginalisation is no longer informative, resulting in
the Dl below. The likelihood ratio (rl) can be obtained
from the Nl/Dl ratio.

Nl =

∫
N (yn|Qzn,Ψy)N (zkn|pkxn, σzk)dzkn

= N (yn|qkpkxn + [Qzn]zkn=0,Ψy + qkσzk
−1qTk )

Dl = N (yn|[Qzn]zkn=0,Ψy)

(6)

The prior ratio (rp) is derived below, following Equa-
tion 2. Note that the i-th observation is not counted
for in the ratio, which justifies the −1 in the denom-
inator. Having derived rl and rp (eqs. 6 and 7), the
posterior ratio for existing features may be derived as
a uniform draw over r

r+1 .

rp =
mk,−i

N − 1−mk,−i
(7)

Next, we should decide the number of new features
(κn) added for the current observation. IBP implies
that κn is a priori distributed as Poisson(αn ). Yet,
there have been different approaches for sampling κn
from its posterior. In (Griffiths and Ghahramani,
2011) κn is sampled through a MAP estimate of var-
ious values for κn, ranging from zero to an upper
bound. However, (Knowles and Ghahramani, 2011)
proposes a Metropolis-Hastings step to some random
κn and evaluates the acceptance through posterior ra-
tios. Each MH jump from ξ → ξ∗ is done with a
probability J(ξ∗|ξ) with varying underlying assump-
tions. A basic approach considers the prior on ξ∗ as

candidate function, i.e. J(ξ∗|ξ) = P (ξ)P (ξ∗).

rξ→ξ∗ =
P (ξ∗|yn, )P (ξ∗)P (ξ)

P (ξ|yn, )P (ξ)P (ξ∗)

=
N (yn|q′kp′kxn + [Q∗zn]z′kn=0,Ψy + q′kσzk

−1q′
T

k )

N (yn|[Qzn]z′kn=0,Ψy)

(8)

In the equations above, denotes the remaining pa-
rameters and * superscripts indicate extended param-
eters with κn new features. The jump is ultimately
accepted with probability min(1, rξ→ξ∗). In order to
add κn new features, we need to add an equal num-
ber of new columns and rows to Q and P , respectively.
These new vectors are denoted with prime notations as
in ξ∗ = {κn, q′, p′}. Please note that along with acti-
vating κn new features, an equivalent number of weight
elements (z′) is needed. Such weights are marginalised
for simplicity.

4.2 Factor loading matrices and latent factor
weights

Inference of factor loading matrices can be uniformly
described for new and existing features, through sam-
pling K independent vectors in Q and P . Following
the graphical model (fig. 1), the factor loading matri-
ces are independent from each other through Z. Thus,
their posterior probabilities can be independently de-
rived. We thus infer column vectors qk through sam-
pling individual elements, P (qk|Y,Q−k, Z,Ψy,Ψq) =∏Dq

i=1N (qik|µik,Σik),∀qik : i ∈ [1, Dq]. Following a
similar approach, we derive the posterior for pk.

N (qik|µqik , σqik) ∝
N (yi:|qikzk + [qi:Z]qik=0, σyi)N (qik|0, σqi) :

σqik =
σqiσyi

σyi + σqizkzTk
, µqik =

σqi(yi: − [qi:Z]qik=0)zTk
σyi + σqizkzTk

N (pk|µpk ,Σpk) ∝ N (zk|pkX,σzk)N (pk|0, σpjIDp) :

Σpk = σpjIDp
+ σzk(XXT )−1, µTpk = Σpk

XzTk
σzk

(9)

Each active feature skn is assigned a weight zkn, the
element-wise product of which forms the rank-deficient
sparse latent layer between the high dimensional input
X and response Y . The posterior on each zkn can be
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derived as follows.

N(zkn|µzkn
, σzkn

) ∝
N (yn|qkzkn + [Qzn]zkn=0,Ψy)N (zkn|pkxn, σzk) :

σzkn
= (

1

σzk
+ qTk Ψ−1y qk)−1,

µzkn
= σzkn

[qTk Ψ−1y (yn − [Qzn]zkn=0) +
pkxn
σzk

]

(10)

4.3 Noise and factor loading covariances and
IBP parameters

NCFR adopts diagonal noise models, Ψy and Ψz. The
factor loading covariances, Ψq and Ψp, are also diago-
nal. Following (Knowles and Ghahramani, 2011), we
sample elements on the main diagonal of the above co-
variance matrices through Inverse Gamma priors. For
simpler models the diagonal variances can be simpli-
fied into an isotropic model. Finally, IBP parameter
α is sampled through a conjugate Gamma(e, f) prior,
as follows. The distribution for P (S|α) and other no-
tations are introduced in section 2.1.

IG(σyi|a+
N

2
, b+ tr(ET

yiEyi)) ∝ N (Eyi|0, σyi)IG(σyi|a, b)

IG(σzk|a+
mk

2
, b+ tr(ET

zkEzk)) ∝ N (Ezk|0, σzk)IG(σzk|a, b)

IG(σqi|c+
Dq

2
, d+ tr(qkq

T
k )) ∝ N (qk|0, σqi)IG(σqi|c, d)

IG(σpj |c+
Dp

2
, d+ tr(pTk pk)) ∝ N (pk|0, σpj)IG(σpj |c, d)

G(α|K + e, f +HN ) ∝ Poisson(S|α)G(α|e, f)
(11)

5 Experiments

Following the blueprint set forth in sections 1 and 4.1,
we compare the models listed in Table 1. Each col-
umn represents a model category and its related vari-
ants. The abbreviations in italics are used for easier
referencing. For comparison, we have implemented a
baseline EM solution for conditional factor regression
(EM-CFR), with unit noise and loading variances (for
details, refer to the supplementary material). This so-
lution is indicated as a baseline, along with a slightly
more complex MCMC implementation with diagonal
noise and loading covariances. Since the number of di-
mensions in the low-rank latent layer needs to be pre-
defined, we have tried them with three different Ks,
according to the optimal value for each experiment.
Under the third column, the variants of our proposed
model (NCFR) are listed, pivoted arount the generic
solution as specified in the model section. Thanks to
the IBP, we have initialised K0 in the first iteration
with a random IBP-generated value instead of having

Algorithm 1: NCFR posterior sampling algo-
rithm

Input: α0, X, Y
Output: P (Φ|Y,X) :

Φ = {Q,P, S, Z,Ψy,Ψz,Ψq,Ψp, α },
ΦMAP for prediction

Initialize: All variables by their priors,
including S with K0 factors derived by IBP(α)
for iteration = 1 to ConvergenceMax do

forall the sk,n ∈ S do
// sample sk,n, if active also sample zk,n
Sample s and z (k,n) // Equations

5-8,10

end
forall the q:k ∈ Q do

Sample qk (k) // Equation 9
end
forall the pk: ∈ P do

Sample pk (k) // Equation 9
end
Sample Ψy,Ψz,Ψq,Ψp, α // Equation 11

end
return P (Φ|Y,X) and ΦMAP for prediction

to choose an arbitrary number. All experiments are
run over 10 trials with α0 = 0.01 The code for NCFR
and related models is inspired by (Knowles, Accessed
2013) and consists of configuration tools to run most
of the following models, soon to be available online.

Similarly to projection/factor loading matrices in
PPCA and factor analysis (Tipping and Bishop, 1999),
the loading matrices of our proposed model are not
fully identifiable. Unidentifiability is avoided in some
studies by constraining the loading matrices to be
lower triangular (West, 2003). However, such treat-
ments are not necessary for prediction purposes (Bhat-
tacharya and Dunson, 2011) and usually used for pa-
rameter comparison. Instead, we have utilised pre-
diction likelihood and normalised prediction error for
performance measurement. Overfitting is monitored
by auditing K, mixing efficiency is examined for the
MCMC sampler and a final study on computational
speed proves the viability of our solution.

5.1 Synthetic data

As an attempt to evaluate the models above, we have
synthetically generated X and Y through an IBP-like
process, since following the exact IBP steps would cre-
ate bias towards the model. The synthetic data use a
5D latent layer to link a 70D input and 50D response,
which are realistic values in computer vision problems
(see for instance Tenorth et al., 2009). Z is calculated
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Table 1: Models and variants exploited and compared in the experiments. Variants are denoted with their italic
abbreviations.

Classic Linear Regression Conditional Factor Regression Non-parametric CFR

Full-rank linear regression (FRR) EM, large K (EMCFRl) Generic (Gen)
EM, medium K (EMCFRm) Fixed α (Fixα)
EM, small K (EMCFRs) Isotropic noise (IsoN)
MCMC, large K (CFRl) Isotropic loading (IsoL)
MCMC, medium K (CFRm)
MCMC, small K (CFRs)

Figure 2: IsoN NCFR performance on synthetic data: (a) Heat map for visual comparison of real Y(Dq×Ntest)

matrix vs. predicted Y . (b) Scatter plot of real Y vs. predicted Y with all dimensions superimposed on the same
plot. The plot includes Dq×Ntest points all aligned around y = x, depicting a significant predictive performance
over all dimensions. The figure is best viewed in colour.

as the product of a standard Gaussian random X and
zero-mean diagonal Gaussian P with added Gaussian
noise. It is then masked by a binomially-distributed S.
The resulting sparse Z is utilised to generate Y , along
with Q and diagonal Gaussian noise Ψy (eq. 3). We
train the models with 70 percent of observations and
use the remaining unseen data for test. The trained
parameters (Q and P ) are obtained from the sample
with highest likelihood amongst the last 100. Hence,
prediction can be efficiently performed using a single
linear transformation Y = QPX. The prediction re-
sults (ε =‖ yn − ỹn ‖ / ‖ yn ‖) are reported in Ta-
ble 2, showing noticeably lower errors in the generic
and isotropic NCFR. Removing the IBP prior, CFR
variants with diagonal noise perform better than the
EM alternatives with unit spherical variance. Yet, the
classic linear regression model is largely inefficient due
to drastic overfitting and error. We further visualise
the accuracy in IsoN variant via heat maps and scat-
ter plots of predicted Y vs. real Y (fig. 2). The
scatter plot also shows significant accuracy, aligning
the points along the line y = x (fig. 2(b)). NCFR
tends to slightly overfit, converging to larger K than
the original dimensionality of the latent layer. The
IsoN NCFR reported above converges to 7 active fea-

tures. However, we found that the active features were
clearly clustered into two groups in terms of S spar-
sity rates: 5 fully dense features and the other 2 highly
sparse. These results along with the accuracy perfor-
mance reported above prove that IsoN and Gen NCFR
can efficiently fit the synthetic data.

5.2 Human pose prediction

We have used the TUM Assistive Kitchen dataset
(Tenorth et al., 2009), containing motion capture se-
quences of 9 complex everyday activities in a kitchen
with the common scenario of collecting utensils from
cupboards and laying a table. Each frame is de-
scribed by an 81D feature vector of body joint coordi-
nates. Our target is to predict the next frame’s pose
given the current pose within an activity in an auto-
regressive manner, maximising the predictive proba-
bility P (yn|yn−1, Q, P,Ψy,Ψz). In other words, we
regress yn against xn = yn−1 preserving independence
through the Markov assumption. A possible use of this
posterior is to avoid the costly task of pose data ex-
traction in every frame, by computing them for only
a few samples and predicting the rest with minimal
computation. We have trained the models with 6 oc-
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Table 2: Prediction error percentage (ε = 100× ‖ yn − ỹn ‖ / ‖ yn ‖) for synthetic prediction.

Classic Linear Regression Conditional Factor Regression Non-parametric CFR

FRR 370.52 ± 259.34 CFRl 6.68 ± 2.90 Gen 6.50 ± 2.83
CFRm 6.64 ± 2.90 Fixα 88.55 ± 18.32
CFRs 89.23 ± 14.57 IsoN 6.60 ± 2.76

IsoL 6.73 ± 2.88

Figure 3: Boxplot of prediction performance on TUM kitchen data, sequence 1-2: (a) Normalised prediction
errors are presented over 148 frames of Y and sorted across the 3 categories of models. The top 6 variants are
magnified in the plot on the right (b), showing noticeably better performance for NCFR variants appearing on
the first 3 boxes.

curences of the action “Carrying while walking” and
tested it over an unseen occurence, using sequences
performed by Subject1: 1-1 to 1-5.

Figure 3(a) illustrates the normalised prediction error
for the generic sequence 1-2 across the models. All
variants of our proposed model exhibit an average er-
ror of approximately 7%, slightly favoring isotropic
noise and factor loading variance over the generic
model. Utilizing IBP in NCFR has noticeably lever-
aged performance and model selection compared to the
next best models (MCMC-CFR variants), thanks to
sparsity and adaptive inference of the optimal dimen-
sionality in the latent layer. Full-rank linear regression
and the EM-CFR with unit variance produced con-
siderably more error due to overfitting and inefficient
noise modeling. The performance trend is roughly sim-
ilar across different sequences with a minimum average
error of 4% for sequence 1-3. It is worth noting that
action dynamics are occasionally very non-linear, mak-
ing pose prediction more challenging for those frames.
This explains the few outlier errors in Figure 3.

5.3 Natural gas consumption prediction

We have also tested the proposed models in a consid-
erably different domain: energy supply/consumption
forecast. The US Energy Information Administration
(EIA) publishes reports on various sources of energy,
including natural gas. We have exploited 25 variables

on natural gas monthly reports on supply, consump-
tion and inventories in 2009-2012 (48 months). Our
target is to forecast the supply and consumption in
2011-12 given the data for 2009-10, each including 24
samples. Natural gas usage exhibits seasonal trends,
allowing us to forecast each month independently, ac-
cording to the respective month sample in previous
years. The shapes of X(25×24) and Y(25×24) matri-
ces for this dataset are considerably square-like and
smaller compared to the previous two, as the number
of samples is even less than the dimensions. Prediction
in such contexts is considerably more challenging, due
to high risks of overfitting (West, 2003). The forecast
results are reported in Table 3, achieving the lowest er-
ror in NCFR with isotropic noise (IsoN). In agreement
with the previous experiments, the isotropic variants
of NCFR perform the best, followed by the simpler
MCMC-CFR models. Due to the challenges of this
dataset the MCMC sampler has taken a longer burn-
in process (totally 3000 iterations, as opposed to 500
iterations with the synthetic data and 1000 for the
kitchen experiment) to ensure convergence. Yet, the
small number of samples permits much faster train-
ing, as reported in section 5.4. Computing the co-
variance on Y and its eigenvalues, we have attained
a rough estimate of the significant dimensions in the
data. According to the eigenvalues, there are 7 main
factors with different levels of significance (4 strong
and 3 weak). NCFR has activated 8 dimensions for
the latent layer with high sparsity rate of around 60%.
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Table 3: Prediction error percentage (ε = 100× ‖ yn − ỹn ‖ / ‖ yn ‖) for gas consumption forecast.

Classic Linear Regression Conditional Factor Regression Non-parametric CFR

FRR 83.96 ± 9.51 CFRl 19.33 ± 2.28 Gen 21.44 ± 1.53
CFRm 18.57 ± 2.49 Fixα 21.00 ± 0.90
CFRs 16.51 ± 2.87 IsoN 10.68 ± 2.65

IsoL 17.70 ± 4.58

Figure 4: Sampling efficiency and computational cost: (a) Log likelihood plot of NCFR gas results with the
last 200 iterations magnified, showing convergence and well mixing. (b) Inference time per iteration for TUM
kitchen pose prediction (c) Inference time per iteration per active feature for the same kitchen experiment. Please
note that CPU time has been divided by K × Sdensity to provide a precise metric with respect to number of
active features and their average sparsity. Combined analysis of (b) and (c) creates a thorough understanding
of inference speed.

5.4 Sampling efficiency and computational
costs

We next examine the Gibbs sampler’s mixing rate
and execution time for the experiments on real data,
kitchen and gas. Figure 4(a) visualises the log like-
lihood mixing for gas dataset, in the last 200 itera-
tions. Since all the sampled variables are utilised in
log likelihood calculation, the well mixed results indi-
cate general mixing efficiency in the model. The other
two experiments exhibit very similar mixing patterns,
not visualised due to lack of space.

Finally, we consider the computational costs to ex-
plore viability. Figures 4(b, c) illustrate CPU time in
the kitchen experiment, run on a basic machine with
an Intel i5 (3.10 GHz) processor and 4GB memory.
Exploring CPU time per iteration allows us to com-
pare the overall inference time, given 1000 iterations
for kitchen data and 3000 for gas. Among the variants
with best predictive accuracy, the generic and isotropic
NCFR perform more efficiently, while MCMC-CFR
variants show a clear correlation between the size of
latent layer (K) and elapsed time. In order to au-
dit computation time independently from K, we have
further divided CPU time per iteration by an average
metric for active features’ density (K × Sdensity). Re-
moving the impact of K, the top NCFR variants (IsoN

and Gen) perform equally efficiently as MCMC-CFR,
yet providing sparse and adaptive modeling and con-
siderably better accuracy. Experiments on gas data
run 100 times faster on average, yet exhibiting very
similar trends amongst the variants. The considerable
speed compared to the kitchen dataset is attributed
to the lower number of samples and dimensions. It is
important to acknowledge that FFR and the EM-CFR
variants are much faster than NCFR and MCMC-CFR
variants since their models are simpler. However, their
simplicity, poor noise model and strict linearity result
in dramatic overfitting and poor performance.

6 Conclusion

In this paper we have proposed a novel solution for
multivariate factor regression. The proposed model
offers two improvements over classic linear regression.
Through exploiting a latent space of lower dimension-
ality, NCFR reduces the degrees of freedom and mol-
lifies overfitting. By integrating an IBP prior in the
latent factor inference, it generates factors which are
both sparse and adaptive in number. Experimental
results on a synthetic model and two real datasets
prove that NCFR achieves remarkable prediction ac-
curacy while maintaining acceptable computational
costs. More importantly, despite the diverse attributes

84



Ava Bargia, Richard Yi Da Xua, Zoubin Ghahramanib, Massimo Piccardia

of the three datasets in terms of sample size per dimen-
sion, NCFR shows significant resiliance and adaptabil-
ity against noise and overfitting.

References

Energy information administration (eia) of the united
states: Natural gas monthly archive. http://www.

eia.gov/naturalgas/monthly/?src=Natural-f3.
Accessed: 2013-09-20.

A. Bhattacharya and D. B. Dunson. Sparse bayesian
infinite factor models. Biometrika, 98(2):291–
306, 2011. doi: 10.1093/biomet/asr013. URL
http://biomet.oxfordjournals.org/content/98/

2/291.abstract.

L. Bo and C. Sminchisescu. Supervised spectral latent
variable models. In International Conference on Arti-
ficial Intelligence and Statistics, volume 246, page 248,
2009.

F. Caron and A. Doucet. Sparse bayesian nonparamet-
ric regression. In Proceedings of the 25th international
conference on Machine learning, pages 88–95. ACM,
2008.

C. M. Carvalho, J. Chang, J. E. Lucas, J. R.
Nevins, Q. Wang, and M. West. High-dimensional
sparse factor modeling: Applications in gene
expression genomics. Journal of the Ameri-
can Statistical Association, 103(484):1438–1456,
2008. doi: 10.1198/016214508000000869. URL
http://amstat.tandfonline.com/doi/abs/10.

1198/016214508000000869.

T. Griffiths and Z. Ghahramani. Infinite latent feature
models and the indian buffet process. In Y. Weiss,
B. Schölkopf, and J. Platt, editors, Advances in Neu-
ral Information Processing Systems 18, pages 475–482.
MIT Press, Cambridge, MA, 2006.

T. L. Griffiths and Z. Ghahramani. The Indian buf-
fet process: An introduction and review. J. Mach.
Learn. Res., 999999:1185–1224, July 2011. ISSN 1532-
4435. URL http://dl.acm.org/citation.cfm?id=

2021026.2021039.

D. Knowles. Infinite sparse factor regression. http://
mlg.eng.cam.ac.uk/dave/isfa.zip, Accessed 2013.
Accessed: 2013-05-31.

D. Knowles and Z. Ghahramani. Infinite sparse factor
analysis and infinite independent components analy-
sis. In Proceedings of the 7th international confer-
ence on Independent component analysis and signal
separation, ICA’07, pages 381–388, Berlin, Heidelberg,

2007. Springer-Verlag. ISBN 3-540-74493-2, 978-3-540-
74493-1. URL http://dl.acm.org/citation.cfm?

id=1776684.1776735.

D. Knowles and Z. Ghahramani. Nonparametric
Bayesian sparse factor models with application to gene
expression modeling. The Annals of Applied Statistics,
5(2B):1534–1552, 2011.

D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles and Techniques. MIT Press, 2009.

W. Kusakunniran, Q. Wu, J. Zhang, and H. Li.
Support vector regression for multi-view gait recog-
nition based on local motion feature selection. In
Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 974–981, 2010. doi:
10.1109/CVPR.2010.5540113.

S. Montagna, S. T. Tokdar, B. Neelon, and D. B.
Dunson. Bayesian latent factor regression for func-
tional and longitudinal data. Biometrics, 68(4):1064–
1073, 2012. ISSN 1541-0420. doi: 10.1111/j.1541-0420.
2012.01788.x. URL http://dx.doi.org/10.1111/j.

1541-0420.2012.01788.x.
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