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Abstract

We propose a PAC-Bayesian analysis of the
transductive learning setting, introduced by
Vapnik [1998], by proposing a family of new
bounds on the generalization error. Some of
them are derived from their counterpart in
the inductive setting, and others are new. We
also compare their behavior.

1 INTRODUCTION

In classification, most learning algorithms are designed
for what is defined as the inductive learning set-
ting, that corresponds to the following experiment: A
learner is given a finite sample of examples (the train-
ing set), generated independently and identically dis-
tributed (i.i.d.) from an unknown distribution D, and
is asked to produce a classifier having a low probability
of misclassifying an example drawn from D (i.e., a low
generalization risk). It is important to point out that
some learning tasks cannot be satisfactorily modelized
by this framework. The i.i.d. setting implies namely
that there is no correlation between the entries, which
is a strong assumption. For example, consider the ex-
periment where one collects a finite set of examples Z
(possibly non-i.i.d.), asks an expert to label a subset
S of examples drawn from Z (without replacement),
runs a learning algorithm on Z (on labeled S and unla-
beled Z \S), and finally uses the obtained classifier to
label remaining examples Z \S. The transductive set-
ting introduced by Vapnik [1998] proposes a paradigm
in which one can obtain a generalization guarantee in
such non-i.i.d. situations.

Since its introduction by McAllester [1999], the PAC-
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Bayesian theory succeeds to provide tight generaliza-
tion guarantees for the inductive setting. It has been
extended to the transductive setting, namely by Der-
beko et al. [2004]. In this paper, we continue their
pioneer work by giving tighter bounds. Our proposed
bounds do not suffer of the major drawback of Der-
beko’s bound, which is the fact that its value diverges
to infinity as the number of unlabeled examples grows.
Also, inspired from Germain et al. [2009], we propose
a general transductive PAC-Bayesian theorem that is
a tool to derive various bounds by choosing a con-
vex function D. Interestingly, unlike in the inductive
setting, our general transductive theorem has no real
limitation in the choice of D. Thus, we derive a family
of transductive PAC-Bayesian bounds, and compare
their behavior on empirical data. We also propose a
bound that takes into account the unlabeled part of
the data, while usual transductive bounds only con-
sider the number of unlabeled examples.

1.1 Inductive versus Transductive Learning

We consider binary classification problems with an ar-
bitrary input space X and output space Y = {−1, 1}.
An example (x, y) ∈ X ×Y is an input-output pair,
where x is a description, and y is a label.

In inductive learning, we consider that each ex-
ample (x, y) is drawn i.i.d. from a fixed, but
unknown, probability distribution D on X × Y.
The training set of m examples is denoted by
S = {(x1, y1), (x2, y2), . . . , (xm, ym)} ∼ Dm. The task
of an inductive learner is to, given the training set S,
learn a classifier h : X 7→ Y that will be capable of
classifying new examples drawn according to distribu-
tion D. We can now define the risk of a classifier h
on a distribution D′ by being the probability that h
misclassifies an example generated by D′,

RD′(h)
def
= E

(x,y)∼D′
I
[
h(x) 6= y

]
,

where I(a) = 1 if predicate a is true and 0 otherwise.
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If we calculate a risk on a discrete set S′ instead of a
probability distribution, we consider the uniform dis-
tribution on S′, thus calculating the mean :

RS′(h) =
1

|S′|
∑

(x,y)∈S′
I
[
h(x) 6= y

]
.

In transductive learning, we consider a set Z of N
examples, Z = {(x1, y1), (x2, y2), . . . , (xN , yN )}, of-
ten named the full sample, which contains all ex-
amples of interest.1 We then obtain a training set
S by drawing m examples from Z without replace-
ment. The remaining examples from Z form a set
U of N −m examples. In the transductive setting,
a learning algorithm is given the training set S, and
UX = {xm+1, xm+2, . . . , xN}, the set of unlabeled ex-
amples of U . The task of a transductive learner is to
learn a classifier h : ZX 7→ Y that correctly classifies
the unlabeled examples of the set U .2 Thus, the goal
is to minimize the risk of the classifier on U .

We also define RZ(h) and RS(h) similarly. Note that
one can recover RZ(h) from RS(h) and RU (h), as

RZ(h) =
1

N

(
mRS(h) + (N−m)RU (h)

)
. (1)

In both inductive and transductive learning, the goal
is to find the classifier with the lowest possible risk on
a distribution or a set that is not completely known
to the learner : the data-generating distribution D
in inductive learning, and the set U in transductive
learning, from which the learner does not know the
labels. Fortunately, PAC-Bayesian theorems will allow
us to upper bound these risks by using their empirical
counterpart plus some complexity term.

1.2 Inductive PAC-Bayesian Theory

Consider a training set S of m examples drawn i.i.d.
from a data-generating distribution D, a hypothesis
space H of classifiers, a prior distribution P on H, and
a posterior distribution Q on H. The prior encodes
some knowledge about the problem (before exploiting
the information contained in S), while the posterior is
obtained by running a learning algorithm on S. The
PAC-Bayesian theory studies the Gibbs classifier GQ
which, given a distribution Q on H, classifies an exam-
ple x by drawing at random a classifier h according to
Q, and returns h(x). Thus, GQ is a stochastic classifier

1In the transductive “Setting 1” of Vapnik [1998], the
full sample is drawn i.i.d. from an unknown distribution
on X × Y. This assumption is not needed here.

2In Vapnik [1998], the transductive classifier is defined
using UX as an input space, i.e., h : UX 7→ Y. However,
PAC-Bayesian bounds need the classifier to be defined on S
as well, as they require the computation of RS(h).

whose risk on a set S′ is given by

RS′(GQ) =
1

|S′|
∑

(x,y)∈S′
E
h∼Q

I
[
h(x) 6= y

]
. (2)

As discussed in Section 2.5, the Gibbs classifier’s risk
is closely related to the risk of the Q-weighted deter-
ministic majority vote classifier.

Inductive PAC-Bayesian bounds give guarantees on
the generalization risk RD(GQ), that corresponds to
the probability that GQ makes an error on an exam-
ple generated by D. Typically, these bounds rely on
the empirical risk RS(GQ) and the Kullback-Leibler
divergence between the prior and posterior distribu-
tions. The following PAC-Bayesian theorem originally
comes from Germain et al. [2009], but is presented in a
slightly different form to ease the comparison with the
transductive bounds of Section 2. Given any convex
function D : [0, 1]×[0, 1]→ R, often named D-function
in this paper, Theorem 1 allows one to obtain an in-
terval in which lies the risk RD(GQ) with high proba-
bility. Thus, the extremities of this interval give both
a lower bound and an upper bound of RD(GQ).

Theorem 1. For any distribution D, for any set H
of classifiers, for any prior distribution P on H, for
any δ ∈ (0, 1], and for any convex function D : [0, 1]×
[0, 1]→ R, with probability at least 1−δ over the choice
of S ∼ Dm, we have

∀Q on H :

D
(
RS(GQ), RD(GQ)

)
≤ 1

m

[
KL(Q‖P ) + ln

ID(m)

δ

]
,

where ID(m)
def
= sup
r∈[0,1]

[
m∑
k=0

(
m
k

)
rk(1−r)m−kemD( km , r)

]
,

and where KL(Q‖P )
def
= Eh∼Q ln Q(h)

P (h) .

Proof. We start from Theorem 2.1 of Germain et al.
[2009], that is, with probability at least 1−δ over the
choice of S ∼ Dm, for all distributions Q on H,

D(RS(GQ), RD(GQ))

≤ 1

m

[
KL(Q‖P ) + ln

1

δ
E

S∼Dm
E

h∼P
emD(RS(h),RD(h))

]
.

Because the choice of P is independent of S, and given
that the number of errors mRS(h) follows a binomial
distribution with parameters m and RD(h), we have

E
S∼Dm

E
h∼P

emD(RS(h),RD(h))

= E
h∼P

m∑
k=0

Pr
S∼Dm

(
RS(h) = k

m

)
emD( km , RD(h))

= E
h∼P

m∑
k=0

(
m
k

)(
RD(h)

)k(
1−RD(h)

)m−k
emD( km , RD(h))

≤ ID(m) .
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As discussed in Germain et al. [2009], Theorem 1 is a
generic tool to derive various inductive PAC-Bayesian
bounds, as D can be any convex function. However,
one needs to calculate (or upper bound) the value
of ID(m) to express a computable bound. A common
choice is D = DKL, the Kullback-Leibler divergence
between two Bernoulli distributions of probability of
success p and q, defined by

DKL(q, p)
def
= q ln q

p + (1− q) ln 1−q
1−p . (3)

We can rewriteDKL(q, p) = H(q, p)−H(q), using usual
definitions of entropy and cross-entropy,

H(q)
def
= −q ln q − (1−q) ln(1−q) , (4)

H(q, p)
def
= −q ln p− (1−q) ln(1−p) .

With these definitions, it is easy to see that the r’s
cancel out in each term of the inner sum of IDKL

(m),
giving the following simplification:

IDKL
(m) = sup

r∈[0,1]

[
m∑
k=0

(
m
k

)
e−mH( km )

]
=

m∑
k=0

α(k,m) ,

(5)

where α(a, b)
def
=
(
b
a

) (
a
b

)a (
1− a

b

)b−a
.

Furthermore, when one wants to avoid the computa-
tional burden needed to compute the sum of Equa-
tion (5), it is also possible to upper bound the value of
IDKL

(m) by simpler expressions, using bounds on the
function α(·, ·), expressed by Lemmas 2 and 3 below.

Lemma 2. Given any integers a, b such that 0≤a≤b,

1

b+ 1
≤ α(a, b) ≤ 1 .

Proof. α(a, b) corresponds to the probability mass
function of a Bernoulli trial of b experiments with prob-
ability of success a

b , evaluated at point a (the most
probable event among b+ 1 possible outcomes).

From Lemma 2, we trivially obtain that
IDKL

(m) ≤ m+ 1. However, Maurer [2004] shows
that IDKL

(m) ≤ 2
√
m is a tight upper-bound.

Lemma 3 presents one key step of the proof leading
to this result. We reuse this lemma to obtain new
transductive guarantees in the next section.

Lemma 3. Given any integers a, b such that 0<a<b,√
b

2πa(b−a)e
− 1

12a−
1

12(b−a) < α(a, b) <
√

b
2πa(b−a)e

1
12b .

Proof. The result follows from straightforward cal-
culations using Stirling bounds of the factorial, i.e.,√

2πn
(
n
e

)n
< n! <

√
2πn

(
n
e

)n
e

1
12n .

We conclude this section by stating two induc-
tive PAC-Bayesian bounds in Corollary 4, below.
Bound (a) is similar to the bound of Seeger [2002], and
Bound (b) is similar to the one of McAllester [2003a].
Note that Bound (a) is tighter than Bound (b), but
the latter is easier to compute since it has an explicit
form.

Corollary 4. For any distribution D, for any set H
of classifiers, for any prior distribution P on H, for
any δ ∈ (0, 1], with probability at least 1−δ over the
choice of S ∼ Dm, we have

∀Q on H :

a)DKL

(
RS(GQ), RD(GQ)

)
≤ 1

m

[
KL(Q‖P ) + ln 2

√
m
δ

]
,

b)RD(GQ) ≤ RS(GQ) +

√
1

2m

[
KL(Q‖P ) + ln 2

√
m
δ

]
.

Proof. Bound (a) is obtained from Theorem 1, with
D(q, p) = DKL(q, p), and IDKL(m) ≤ 2

√
m [Maurer,

2004]. Bound (b) is obtained from Bound (a), using
Pinsker’s inequality: DKL(q, p) ≥ 2(q − p)2.

2 TRANSDUCTIVE
PAC-BAYESIAN THEORY

2.1 Transductive General Theorem

In the inductive setting, an important assumption used
to derive PAC-Bayesian guarantees is that the m ex-
amples of the training set S are drawn i.i.d. from the
data-generating distribution D. In the proof of The-
orem 1, we use this fact to express the probability
of misclassifying k among m examples as a binomial
distribution. This assumption does not hold in the
transductive setting. Indeed, in the transductive set-
ting, the set of labeled examples S is a subset of a
finite set Z. Therefore, the number of errors observed
in S follows a hypergeometric distribution, as S con-
tains m draws without replacement from Z. This idea
is exploited in the proof of Theorem 5, below.

Theorem 5. For any set Z of N examples, for any
set H of classifiers, for any prior distribution P on
H, for any δ ∈ (0, 1], and for any convex function
D : [0, 1] × [0, 1] → R, with probability at least 1−δ
over the choice S of m examples among Z, we have

∀Q on H :

D
(
RS(GQ), RZ(GQ)

)
≤ 1

m

[
KL(Q‖P ) + ln

TD(m,N)

δ

]
,

where

TD(m,N)
def
= max

K=0...N

[ ∑
k∈KmNK

(Kk)(N−Km−k)
(Nm)

emD( km ,
K
N )

]
, (6)

and KmNK def
= {max[0,K+m−N ], . . . ,min[m,K]}.
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Proof. Let denote [Z]m the uniform distribution over
all subsets of Z of size m. Consider the non-negative
random variable Eh∼P e

mD(RS(h),RZ(h)). Markov’s in-
equality gives that, with probability at least 1−δ over
the choice of m examples among Z,

E
h∼P

emD(RS(h),RZ(h)) ≤ 1

δ
E

S∼[Z]m
E
h∼P

emD(RS(h),RZ(h)).

By taking the logarithm on each side of the above
equation, and applying the change of measure inequal-
ity Ef∼Q[f ] ≤ KL(Q‖P ) + ln(Ef∼P [ef ]) [Donsker and
Varadhan, 1975] we obtain that, for all choices of Q,

E
h∼Q
D
(
RS(h), RZ(h)

)
≤ 1

m

[
KL(Q‖P ) + ln

1

δ
E

S∼[Z]m
E

h∼P
emD(RS(h),RZ(h))

]
.

By Jensen’s inequality on convex function D, we have
Eh∼QD

(
RS(h), RZ(h)

)
≥ D

(
RS(GQ), RZ(GQ)

)
.

Because the choice of P is independent of S, and given
that the number of errors mRS(h) follows a hypergeo-
metric distribution of m draws among a population of
size N containing NRZ(h) successes, we have

E
S∼[Z]m

E
h∼P

emD(RS(h),RZ(h))

= E
h∼P

m∑
k=0

Pr
S∼[Z]m

(
RS(h) = k

m

)
emD( km , RZ(h))

= E
h∼P

min[m,NRZ(h)]∑
k=max[0,NRZ(h)−N+m]

(NRZ (h)
k )(N−NRZ (h)

m−k )
(Nm)

emD( km , RZ(h))

≤ TD(m,N) .

There is a correspondence between the expression
ID(m) in Theorem 1 (inductive case) and the ex-
pression TD(m,N) in Theorem 5 (transductive case).
However, to compute the value ID(m), one needs to
find the supremum value of a possibly neither con-
vex nor concave expression over a continuous variable
r ∈ [0, 1]. Instead, the value of TD(m,N) is given by a
maximum value of the inner sum over a discrete vari-
able K ∈ {0, 1, 2, . . . , N}. This value can be computed
directly for any D-function (i.e., any convex function
defined on [0, 1] × [0, 1]), provided that m and N are
not unreasonably large. It opens the way to the use of
many D-functions.

For instance, a natural choice of D-function is the di-
vergence DKL(q, p), as it leads to one of the best known
bound in the inductive setting. By Equations (3)
and (6), we obtain

TDKL(m,N) = (7)

max
K=0...N

[ ∑
k∈KmNK

(Kk)(N−Km−k)
(Nm)

(
k/m
K/N

)k(
1−k/m
1−K/N

)m−k]
.

Unfortunately, the obtained expression does not sim-
plify itself as in the inductive case (see Equation (5)).
Hence, the time needed to compute the value of
TDKL

(m,N) depends on the magnitude of N . To over-
come this issue, we design a D-function tailored for the
transductive setting in the following section.

2.2 A D-function for the Transductive Case

In the inductive setting, we express IDKL(m) by a sum
of terms α(k,m) that can be bounded using either
Lemma 2 or 3. To recover the same phenomenon in the
transductive setting, we suggest to use the following
D-function that pairs each of the three binomial coef-
ficients of TD(m,N) (defined by Equation (6)) with an
appropriate entropy term (defined by Equation (4)).

D?β(q, p)
def
=

H(β)− pH(β qp )− (1−p)H(β 1−q
1−p )

β
. (8)

The β parameter will typically be set to m
N . As shown

by Lemma S93, Equation (8) can be rewritten as

D?β(q, p) = DKL(q, p) + 1−β
β DKL

(
p−βq
1−β , p

)
. (9)

The latter equation highlights that, when N →∞ and
m is finite, D?m/N (q, p) converges to DKL(q, p). That is,
we recover the KL-divergence used in inductive learn-
ing whereas the full sample cardinality is infinite.

Interestingly, the formulation of D?β(q, p) of Equa-
tion (9) appears in the proof of the transductive theo-
rem of Derbeko et al. [2004]. However, as we discuss in
Section 2.4, tighter bounds can be derived using this
same D-function. Indeed, when we introduce Equa-
tion (8) in Equation (6), with β = m

N , we have

TD?
m/N

(m,N) = max
K=0...N

[ ∑
k∈KmNK

α(k,K)α(m−k,N−K)
α(m,N)

]
. (10)

By Lemma 2, we trivially obtain that

TD?
m/N

(m,N) ≤ max
K=0...N

m∑
k=0

N+1 = (m+1)(N+1) . (11)

However, this upper-bound on TD?
m/N

(m,N) is far from

being tight, as shown by the next theorem.

Theorem 6. Let m and N be any integers such that
20 ≤ m ≤ N−20, we have

TD?
m/N

(m,N) ≤ t(m,N)
def
= 3 ln(m)

√
m(1−m

N ) . (12)

3Throughout the paper, a lemma prefixed by ‘S’ refers
to a result whose proof is in the supplementary material.
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Proof. Given fixed m,N,K, let k−=max[0,K+m−N ],
k+ = min[m,K], K∗mNK = KmNK \ {k−, k+}, and

F (k) =
α(k,K)α(m−k,N−K)

α(m,N)
.

Lemma S10 shows that

F (k−) + F (k+) ≤ 2 e
1

6×20

√
2πm(1− m

N ) .

Moreover, using Lemma 3 and algebraic manipula-
tions, we obtain for any k ∈ K∗mNK ,

F (k) <
γ√
2π

√
m(1− m

N
)
(
1
k

+ 1
K−k

)(
1

m−k + 1
N−K−m+k

)
,

where γ = e
1
12[

1
K+ 1

N−K+ 1
m+ 1

N−m] ≤ e
1
12 [2+ 2

20 ] as m ≥ 20
and N−m ≥ 20. Furthermore, Lemma S11 shows that∑
k∈K∗mNK

√(
1
k+ 1

K−k

)(
1

m−k+ 1
N−K−m+k

)
≤ 2[1 + ln(m)].

Then,
∑

k∈KmNK

F (k) ≤
√
m(1− m

N )× C(m) , (13)

where C(m) = 2 e
1

6×20

√
2π + γ√

2π
2[1 + ln(m)]. For

m ≥ 20, we have C(m) ≤ 3 ln(m). Since Equation (13)
is independent of K, we are done.

From Theorem 6, we conclude TDKL(m,N)≤ t(m,N).
Indeed, Eq. (6) and (9) give DKL(q, p) ≤ D?β(q, p), and
then TDKL

(m,N) ≤ TD?β (m,N). However, one should
not conclude from latter inequality that the bounds
obtained from Theorem 5 are tighter using DKL in-
stead of D?β as D-function, as the choice of D impacts
both sides of the inequality of Theorem 5.

2.3 New Explicit PAC-Bayesian Bounds

The next result presents two transductive bounds de-
rived from Theorems 5 and 6. Bound (a) is the tight-
est, while Bound (b) has an explicit form.

Corollary 7. For any set Z of N ≥ 40 examples, for
any set H of classifiers, for any prior distribution P
on H, for any δ ∈ (0, 1], with probability at least 1−δ
over the choice S of m examples among Z (such that
20 ≤ m ≤ N−20), we have

∀Q on H :

a)D?m/N
(
RS(GQ), RZ(GQ)

)
≤ 1
m

[
KL(Q‖P )+ln t(m,N)

δ

]
,

b)RZ(GQ)≤RS(GQ)+

√
1−mN
2m

[
KL(Q‖P )+ln t(m,N)

δ

]
,

where t(m,N) is defined by Equation (12).

Proof. Bound (a) is obtained from Theorem 5, with
D(q, p) = D?m/N (q, p), and from Theorem 6. From

Bound (a), using Equation (9) and Pinsker’s inequality
(DKL(q, p) ≥ 2(q − p)2) twice, we get

D?m/N
(
RS , RZ

)
(14)

≥ 2(RS −RZ)2 + 2(Nm − 1)
(
RZ−

m
N RS

1−mN
−RZ

)2

= 2(RS−RZ)2

1−mN
,

and Bound (b) is then obtained by isolating RZ in

2(RS −RZ)2 ≤ (1− m
N ) 1

m

[
KL(Q‖P ) + ln t(m,N)

δ

]
.

The two bounds presented by Corollary 7 are analo-
gous to the inductive bounds of Corollary 4. More-
over, these transductive bounds converge toward their
inductive counterpart as N → ∞ (up to a small
factor due to the term ln(t(m,N)) which tends to
ln(3 ln(m)

√
m) instead of ln(2

√
m), but this has a little

effect since divided by m). More precisely, Bound (a)
can be regarded as a generalization of the bound
of Seeger [2002]. Indeed, as shown by Equation (9),
D?m/N (RS(GQ), RZ(GQ)) ' DKL(RS(GQ), RZ(GQ))

whereas N � m (that is, the ratio m
N tends to 0).

Also, Bound (b) generalizes the PAC-Bayesian bound

of McAllester [2003a], as the multiplicative factor
1−mN
2m

reduces to 1
2m whereas N � m.

2.4 Relation with Previous Works

The transductive bounds presented in this paper can
be seen as an improvement of the prior work of Der-
beko et al. [2004]. First, let us reveal a small error
in the proof of Theorem 18 of Derbeko et al. At
the end of their proof, to obtain an explicit bound,
they lower bound the divergence D?m/N (RS , RZ), ap-

plying the inequality DKL(q, p) ≥ (q−p)2
2p twice (see

Equation (17) of Derbeko et al.). However, as stated
in McAllester [2003b], this inequality only holds when
q < p, and therefore cannot be applied on the term
DKL

(RZ−mN RS

1−m
N

, RZ

)
when RS < RZ , because we neces-

sarily have RZ−
m
N
RS

1−m
N

≥ RZ . The error can be fixed by us-

ing Pinsker’s inequality instead, like in Equation (14)
of the current paper. We present the fixed result, and
a detailed proof, in the supplementary material (see
Theorem S12). The obtained (fixed) bound states that
an upper bound on RZ(GQ) is given by

RS(GQ)+

√
1−mN

2(m−1)

[
KL(Q‖P )+lnmδ +7 ln(N+1)

]
. (15)

Hence, the major difference between Bound (b) of
Corollary 7 and the expression of Equation (15) is that
the complexity term ln(m) + 7 ln(N + 1) of the latter
replaces the term ln(t(m,N)) of the former.
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Our result therefore leads to much tighter bounds. In-
deed, we already obtain a tighter bound if we loosely
upper bound ln(t(m,N)) by ln((m + 1)(N + 1)), us-
ing Equation (11) instead of using the much tighter
Equation (12) of Theorem 6. The major drawback the
expression of Derbeko et al. [2004] is that the bound’s
value (both in its original and fixed versions) diverge
to infinity as N grows, unless m, the number of la-
beled examples also goes to infinity. This is clearly an
unwanted behavior. Conversely, as discussed in sec-
tion 2.3, both bounds of Corollary 7 converge to their
inductive counterpart as the ratio m

N tends to 0.

2.5 Bounds on the Risk of Majority Votes

Many machine learning algorithms, like Ensemble
Methods, construct a posterior distribution Q over a
hypothesis classH. However, the Gibbs classifier is not
commonly used, as we generally prefer the determinis-
tic behavior of the Q-weighted majority vote classifier
(also called the Bayes classifier) defined as

BQ(x)
def
= argmax

c∈Y

[
E
h∼Q

I(h(x) = c)
]
.

Nevertheless, the output of the majority vote classi-
fier is closely related to the output of the stochas-
tic Gibbs classifier GQ. Any upper-bound for the
Gibbs classifier’s risk RS′(GQ) can straightforwardly
be turned into a bound of the majority vote classi-
fier’s risk RS′(BQ), as RS′(BQ) ≤ 2RS′(GQ) [Lang-
ford and Shawe-Taylor, 2002]. This factor-of-two law
can be misleading, since in many situations, for a same
posterior distribution Q, RS′(GQ) is greater RS′(BQ).
To capture more effectively the community effect of
the majority vote, Lacasse et al. [2006] suggested to
exploit the relation exposed by Theorem 8, below.

Theorem 8 (Lacasse et al. [2006]). For any distribu-
tion Q on H and any dataset S′, if RS′(GQ) ≤ 1

2 , then

RS′(BQ) ≤ CS′Q
def
= 1− (1− 2RS′(GQ))

2

1− 2 dS′Q
, (16)

where dS′Q is the expected disagreement:

dS′Q
def
=

1

|S′|
∑
x∈S′X

E
h1∼Q

E
h2∼Q

I
[
h1(x) 6= h2(x)

]
. (17)

Note that the value CS′Q is a better bound on RS′(BQ)
than the factor-of-two law if and only if the expected
disagreement is greater than the Gibbs classifier’s risk.
(i.e., RS′(GQ) < dS′Q ⇔ CS′Q < 2RS′(GQ)). As this
situation often occurs when learning from empirical
data, Lacasse et al. [2006] suggested PAC-Bayesian
bounds giving a generalization guarantee on CDQ (that

is, an upper bound on the risk of the Q-weighted
majority vote on the data-generating distribution D)
from an empirical estimate CSQ (computed on a train-
ing set S). Unfortunately, the quotient in Equa-
tion (16) causes a rapid degradation of the bound
of CDQ when one bounds simultaneously the values of
RD(GQ) and dDQ. This degradation problem is avoided
in the transductive setting, since we have access to the
exact value of the expected disagreement on the full
sample dZQ. Indeed, as we see in Equation (17), the
labels are not required to compute the value of the
expected disagreement. Hence, an upper bound on
RZ(GQ) can be directly converted to an upper bound
on CZQ, and therefore on RZ(BQ). By using the ex-
pected disagreement on the full sample, these bounds
extract more information about the learning problem.
Theorem 8 then becomes a powerful tool to derive
transductive risk bounds on majority vote classifiers.4

3 EMPIRICAL STUDY

In this section, we conduct two different experiments.5

Section 3.1 explores how the choice of a D-function in
Theorem 5 impacts the value of the bound. Section 3.2
shows bound values on multiple real-world datasets.

3.1 Exploiting different D-functions

An interesting aspect of Theorem 5 is the possibil-
ity to use any D-function to compute a transductive
PAC-Bayesian bound. The choice of a D-function
leads to more or less accurate bounds according to the
other bounds parameters: the training risk RS(GQ),
the divergence between the posterior and the prior
KL(Q‖P ), the training set size m, the full sample
size N , and (less importantly) the confidence value δ.

In this section, we conduct experiments with five
D-functions. The first two have been presented earlier.
These are the KL-divergence between two Bernoulli
distributions of Equation (3), and the D?β-function of
Equation (8). We also experimented many other can-
didates of D-functions. We choose to present three of
those, that are simple and have an interesting behav-
ior. These are the variation distance DV , the quadratic
distance DV 2 , and the triangular discrimination DM,
defined as

DV (q, p)
def
= 2 |q − p| , DV 2(q, p)

def
= 2 (q − p)2 ,

DM(q, p)
def
= (q−p)2

q+p + (q−p)2
2−q−p .

Note that the above are three well-known divergences

4Laviolette et al. [2011] presented a similar bound, but
in an asymptotic form, making it unusable in practice.

5The code to reproduce these experiments is available
at: http://graal.ift.ulaval.ca/aistats2014
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Luc Bégin, Pascal Germain, François Laviolette, Jean-Francis Roy

in the literature (e.g., Topsøe [2000]). Note also
that the quadratic distance leads to the PAC-Bayesian
bound of McAllester [2003a] by the Pinsker’s inequal-
ity, i.e., DKL(q, p) ≥ DV 2(q, p).

Figure 1 compares the above-mentioned D-functions
(DKL, D?m/N , DV 2 , DV , and DM), with a fixed train-

ing set risk of RS(GQ) = 0.2, a fixed divergence of
KL(Q‖P )=5 and a fixed confidence value of δ = 0.05,
when varying the full sample size N and the ratio m

N
of training set size over full sample size. More pre-
cisely, we consider nine possible pairs (N,m) where
N ∈ {200, 500, 500} and m ∈ { 1

10N,
1
2N,

9
10N}. For

each set of parameters, an upper bound of the full
sample risk RZ(GQ) is computed according to Theo-
rem 5, by finding the value of r ≥RS(GQ) such that

D
(
RS(GQ), r

)
= 1

m

[
KL(Q‖P ) + lnTD(m,N)

δ

]
, (18)

where the exact value of TD(m,N) is computed accord-
ing to Equation (6) for all D-functions. For instance,
TDKL

(m,N) and TD?
m/N

(m,N) are respectively given

by Equations (7) and (10). Figure 1 highlights that,
once the D-function is chosen, the risk bound relies on
a trade-off between the growing rate of D

(
RS(GQ), r

)
and the value of the right-hand side of Equation (18),
influenced by the amplitude of TD(m,N).

Quite surprisingly, the KL-divergence DKL, giving the
best known PAC-Bayesian bounds on the inductive
setting, is often less accurate than other D-functions
in the transductive setting. The bounds given by DKL,
DV 2 and DM are similar on Figure 1. The variation dis-
tance DV gives the lowest bounds on small datasets,
but loses its edge as N grows. The function D?m/N
shows good accuracies when m is the half of N (i.e.,
the sizes of training set and unlabeled set are the
same), and is especially tight when m is close to N
(i.e., there is a small amount of unlabeled examples).
This phenomenon is related to the fact that D?m/N is
the only function that adjusts itself to the ratio m

N .
Thereby, its value is always inside the interval of real-
izable risks, deduced from Equation (1) (provided that
0 ≤ RU (GQ) ≤ 1):

m
NRS(GQ) ≤ RZ(GQ) ≤ m

NRS(GQ) + N−m
N . (19)

In the supplementary material, we present analogous
experimentations for other training set risks RS(GQ).

3.2 Bound Values on Natural Data

We now compare bound values on reasonably large
binary classification datasets, coming from the UCI
Machine Learning Repository [Blake and Merz, 1998].
For each dataset of N examples, we draw at random

(without replacement) a training set of m examples,
for ratios m/N of 0.1 and 0.5. To obtain a poste-
rior distribution Q on a set of classifiers, we run the
AdaBoost algorithm [Schapire and Singer, 1999], using
decision stumps as weak classifiers, for 200 rounds.

In Table 1, for each dataset and m/N ratio, we com-
pute the risk of the Gibbs classifier on the full sam-
ple Z and the training set S. We compute explicit
bounds of Corollary 7-(b) and Equation (15) (stated
as “Derbeko”). We also compute bounds from Theo-
rem 5, using D = DKL and D = D?m/N , as they are the

most interesting choices in this setting (see the discus-
sion of Section 3.1). Finally, we compute the risks of
the majority vote classifier on S and Z, a bound of
RZ(BQ) using twice the bound from Theorem 5 with
D = D?m/N , and that same bound converted to a bound

on CZQ using Theorem 8. Recall that any bound on
the Gibbs classifier’s risk can be converted to a bound
on CZQ. All bounds were calculated with δ = 0.05.

Table 1 confirms that the explicit bound of Corollary 7
outperforms the bound of Derbeko et al. [2004]. It also
corroborates observations from Figure 1, as the bound
from Theorem 5 with D = DKL performs well when
m/N is low, and the version with D = D?m/N performs

well when m/N is high. Finally, we see that when a
non-trivial bound on CZQ can be calculated (i.e., when
twice the Gibbs classifier’s risk bound is lower than 1),
the resulting bound on the risk of the majority vote
classifier is most of the time much tighter than twice
the bound on the Gibbs classifier’s risk.

4 CONCLUSION

We have presented a transductive general PAC-
Bayesian theorem that allows one to use any convex
function D of the risk on the training set and the risk
on the full sample. Each choice of D-function leads to
a new transductive bound, and all such bounds can be
calculated, but possibly at a computational price if the
full sample size N is big. For the bound obtained with
the D?β-function of Equation (8), we derived a tight
closed form that can easily be calculated for any N .

In our analysis of the behavior of different proposed
bounds, we noticed that the KL-divergence DKL does
not always give rise to the tightest bound. This is in
opposition with the inductive case. We also proposed
a way to use the expected disagreement over the full
sample to obtain much tighter bounds. These bounds
really take into account the unlabeled examples.
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Figure 1: Study of the behavior of bounds obtained by Theorem 5. All graphics consider RS(GQ) = 0.2,
KL(Q‖P ) = 5 and δ = 0.05. The three graphics of each column share a particular D-function, and the five
graphics of each line share a particular ratio m

N . One graphic is interpreted as follows. The two vertical dotted
lines show the minimum and the maximum value of RZ(GQ) (see Equation (19)). The blue curve corresponds to

the function D(0.2, r). Each dashed horizontal line corresponds to the value given by 1
m

[
KL(Q‖P ) + lnTD(m,N)

δ

]
for three values of N : N = 200 (green line), N = 500 (red line), and N = 5000 (cyan line). On each of these lines,
the location of the dot points out the bound value (i.e., the r solving Equation (18)). Finally, this bound value
is reported on the graphic legend. A star replaces the dot if the bound is the lowest obtained for all D-functions.

Dataset information
Gibbs Classifier Majority Vote Classifier

Observed Risk Bounds of RZ(GQ) Observed Risk Bounds of RZ(BQ)
Dataset N m/N RS(GQ) RZ(GQ) Cor 7-(b) Derbeko Thm 5-DKL Thm 5-D?m/N RS(BQ) RZ(BQ) D?m/N C-D?m/N
car 1728 0.1 0.193 0.194 0.555 0.793 0.527 0.546 0.105 0.159 1.092 -
car 1728 0.5 0.179 0.181 0.418 0.496 0.418 0.415 0.115 0.125 0.830 0.819
letter AB 1555 0.1 0.146 0.149 0.469 0.718 0.437 0.457 0.000 0.017 0.914 0.961
letter AB 1555 0.5 0.171 0.171 0.402 0.485 0.401 0.399 0.000 0.001 0.797 0.626
mushroom 8124 0.1 0.202 0.202 0.486 0.609 0.471 0.482 0.000 0.000 0.964 0.966
mushroom 8124 0.5 0.205 0.205 0.439 0.479 0.438 0.438 0.000 0.000 0.875 0.546
nursery 12959 0.1 0.169 0.168 0.404 0.504 0.389 0.399 0.009 0.016 0.798 0.692
nursery 12959 0.5 0.167 0.168 0.357 0.391 0.356 0.356 0.010 0.012 0.711 0.379
optdigits 3823 0.1 0.208 0.213 0.533 0.703 0.513 0.527 0.000 0.077 1.055 -
optdigits 3823 0.5 0.210 0.211 0.460 0.516 0.460 0.458 0.026 0.042 0.917 0.793
pageblock 5473 0.1 0.199 0.201 0.495 0.642 0.476 0.490 0.048 0.063 0.979 0.992
pageblock 5473 0.5 0.208 0.208 0.448 0.497 0.448 0.447 0.057 0.059 0.894 0.697
pendigits 7494 0.1 0.209 0.210 0.499 0.629 0.481 0.495 0.023 0.051 0.989 0.997
pendigits 7494 0.5 0.215 0.215 0.457 0.500 0.455 0.456 0.041 0.045 0.912 0.706
segment 2310 0.1 0.206 0.207 0.558 0.769 0.533 0.550 0.000 0.059 1.101 -
segment 2310 0.5 0.206 0.206 0.462 0.532 0.462 0.460 0.014 0.016 0.920 0.834
spambase 4601 0.1 0.222 0.227 0.553 0.708 0.535 0.548 0.115 0.161 1.096 -
spambase 4601 0.5 0.225 0.226 0.488 0.539 0.489 0.486 0.137 0.143 0.973 0.961

Table 1: Comparison of multiple bounds on the risks of the Gibbs classifier and the majority vote classifier.
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