
Learning Optimal Bounded Treewidth Bayesian Networks
via Maximum Satisfiability

Jeremias Berg and Matti Järvisalo and Brandon Malone
HIIT & Department of Computer Science, University of Helsinki, Finland

Abstract

Bayesian network structure learning is the
well-known computationally hard problem
of finding a directed acyclic graph struc-
ture that optimally describes given data.
A learned structure can then be used for
probabilistic inference. While exact infer-
ence in Bayesian networks is in general
NP-hard, it is tractable in networks with
low treewidth. This provides good motiva-
tions for developing algorithms for the NP-
hard problem of learning optimal bounded
treewidth Bayesian networks (BTW-BNSL).
In this work, we develop a novel score-based
approach to BTW-BNSL, based on casting
BTW-BNSL as weighted partial Maximum
satisfiability. We demonstrate empirically
that the approach scales notably better than
a recent exact dynamic programming algo-
rithm for BTW-BNSL.

1 INTRODUCTION

Bayesian networks are an important and widely-used
class of probabilistic graphical models for representing
joint probability distributions, i.e., probabilistic rela-
tionships among a set of variables of interest (Pearl,
1988). A Bayesian network consists of a network struc-
ture, represented as an acyclic directed graph (DAG),
and the parameters associated with each node (i.e.,
variable) in the DAG. Most often, a Bayesian network
that represents given data well is not known a priori,
and hence needs to be learned from data. Given a
network structure and complete data, determining the
parameters of the variables is simple, whereas learn-
ing the DAG structure, i.e., the Bayesian network

Appearing in Proceedings of the 17th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2014, Reykjavik, Iceland. JMLR: W&CP volume 33. Copy-
right 2014 by the authors.

structure learning problem (BNSL), is computation-
ally challenging.

In this work we focus on the BNSL problem within
the widely studied score-based framework, in which
a score is assigned to each DAG structure, and the
goal is to find a best-scoring network. The structure
learning problem is NP-complete in general (Chick-
ering, 1996), which justified the fact that most early
work on BNSL focused on local search algorithms, such
as greedy hill climbing in the space of DAGs (Hecker-
man, 1998), equivalence classes of DAGs (Chickering,
2002), or over variable orderings (Teyssier and Koller,
2005), and local searching over constraint optimization
formulations of BNSL (Cussens, 2008).

After learning a Bayesian network, the network is typ-
ically used for probabilistic inference tasks, such as
determining the most likely joint assignments of a set
of variables under given evidence. In order to accu-
rately answer such queries, it is important to learn a
network that explains the input data well. Through-
out the last decade, there has been increasing interest
in developing algorithms for optimally solving BNSL,
and a variety of algorithms which are guaranteed to
find a network structure with optimal score have been
proposed (Ott and Miyano, 2003; Koivisto and Sood,
2004; Silander and Myllymäki, 2006; Cussens, 2011;
Yuan and Malone, 2013).

While exact Bayesian inference is in general NP-
hard (Cooper, 1990), for bounded (fixed) treewidth net-
works exact inference becomes tractable (Lauritzen
and Spiegelhalter, 1988). This motivates the study
of algorithms for the problem of learning optimal
bounded treewidth Bayesian networks (BTW-BNSL).
Despite the recent progress in practical algorithms
for optimally solving BNSL without treewidth con-
straints, very few practical algorithms have been pro-
posed for learning network structures under restric-
tions on the treewidth of the networks (Elidan and
Gould, 2008; Korhonen and Parviainen, 2013); the
only approach learning optimal bounded treewidth
network structures is the recent exact dynamic pro-
gramming algorithm of Korhonen and Parviainen

86

Learning Bounded Treewidth Bayesian Networks via MaxSAT

(2013).

Much like the general BNSL problem, BTW-BNSL is
NP-hard (Korhonen and Parviainen, 2013): more pre-
cisely, BTW-BNSL(W), the problem of finding an op-
timal Bayesian network structure of treewidth at most
W , is NP-hard for any fixed W ≥ 2 (DAGs withW = 1
being trees). Indeed, the restriction on the treewidth
of the DAG structures is a non-trivial additional con-
straint over the general BNSL problem, which poses
challenges for developing algorithms for BTW-BNSL.

In this work, we develop a novel score-based approach
to learning optimal bounded treewidth Bayesian net-
work structures. Our approach is based on casting
BTW-BNSL for a given bound W on the treewidth
of the DAG structures of interest as an abstract
combinatorial optimization problem. More precisely,
we present an intricate encoding of BTW-BNSL as
weighted partial Maximum Satisfiability (MaxSAT in
short). The encoding ensures that the optimal solu-
tions of the MaxSAT instance encoding an arbitrary
instance of BTW-BNSL(W) correspond to optimal
DAG structures wrt a given scoring function. For find-
ing optimal structures using the MaxSAT encoding, we
employ a state-of-the-art MaxSAT solver extended to
real-valued costs for exactly encoding the local scores.
We demonstrate empirically that our approach scales
notably better than the recent exact dynamic pro-
gramming algorithm for BTW-BNSL (Korhonen and
Parviainen, 2013) on standard BNSL benchmarks and
for different values ofW . Furthermore, in view of prac-
tical efficiency, our approach can benefit from foresee-
able future improvements in state-of-the-art MaxSAT
solver technology. The approach is applicable un-
der any decomposable scoring function (Heckerman,
1998), i.e., scoring functions in which the score for
an entire network is the sum of the local scores for
the chosen parent sets for the individual variables in
the network, including e.g. the commonly used scoring
functions MDL (Lam and Bacchus, 1994), BD (Cooper
and Herskovits, 1992; Heckerman et al., 1995), and
fNML (Silander et al., 2008).

2 PRELIMINARIES

In order to formally define the problem of learning op-
timal bounded treewidth Bayesian network structures,
we first define necessary concepts related to treewidth
and tree-decompositions. We also give necessary back-
ground on MaxSAT.

2.1 Treewidth

The treewidth of an undirected graph G is defined in
terms of the tree-decompositions of G.

Definition 1 A tree-decomposition of an undirected
graph G = (V,E) is a tree T over a set {V1, . . . , Vm}
of nodes, where Vi ⊆ V , with the following properties.

1. ∪mi=1Vi = V .

2. If {u, v} ∈ E, then u, v ∈ Vi for some i ∈
{1, . . . ,m}.

3. For all i, j, k ∈ {1, . . . ,m}, the following holds:
if Vj is on the (unique) path from Vi to Vk in T ,
then Vi ∩ Vk ⊆ Vj.

The width of a tree-decomposition is maxmi=1 |Vi| − 1.

Definition 2 The treewidth tw(G) of an undirected
graph G = (V,E) is the minimum width over all tree-
decompositions of G.

It is well-known that, for any undirected graph G =
(V,E), any linear ordering of the nodes V of G defines
a tree-decomposition of G, and that there is always
an “optimal” linear ordering of V defining an optimal
tree-decomposition, i.e., a tree-decomposition of width
tw(G) (Dechter, 1999; Bodlaender, 2005). Further-
more, without needing to explicitly construct the cor-
responding optimal tree-decomposition, the treewidth
of G can be determined based on an optimal linear
ordering ≺ of V . A node vi ∈ V is a predecessor of
vj ∈ V under ≺ if i ≺ j and {vi, vj} ∈ E; vi is a suc-
cessor of vj under ≺ if j ≺ i and {vi, vj} ∈ E. Given
a linear ordering ≺ of V , the width of the correspond-
ing tree-decomposition is determined by applying the
following triangulation procedure on G under ≺: For
each pair vi, vj of nodes in V , add the edge {vi, vj} to
E if vi and vj have a common predecessor. Repeat this
as long as new edges can be added to E. We denote
the resulting edge-relation by ∆(E,≺), defining the
triangulation ∆(G,≺) = (V,∆(E,≺)) of G under ≺.
Orienting the edges of ∆(G,≺) according to ≺ gives
the directed edge-relation

~∆(E,≺) = {(vi, vj) | {vi, vj} ∈ ∆(E,≺), i ≺ j}

defining the ordered graph ~∆(G,≺) = (V, ~∆(E,≺)) of
G under ≺. Now, the width of the tree-decomposition
defined by ≺ is

max
vi∈V

|{(vi, vj) ∈ ~∆(E,≺)}|, (1)

i.e., the maximum number of successors over all nodes
in ∆(E,≺). The treewidth tw(G) of G is then

min
≺

max
vi∈V

|{(vi, vj) ∈ ~∆(E,≺)}|, (2)

over all linear orderings ≺ of the nodes V of G.

Before a concrete example of triangulation and ordered
graphs, we proceed by defining the treewidth for the
DAG structures of Bayesian networks.

87

Jeremias Berg, Matti Järvisalo, Brandon Malone

X4

X2

X1

X3

X5

X6

(a)

X2

X4 X5

X6

X3

X1

(b)

X1

X2

X4 X5

X3

X6

(c)

X2

X1

X3

X5X4

X6

(d)

Figure 1: Example: (a) a DAG G = (X = {X1, . . . , X6}, E); (b) the moralized graph Moral(G) = (X,M(E))
of G; (c) the triangulation ∆(Moral(G),≺) of the moralized graph under the linear ordering X6 ≺ X2 ≺ X4 ≺
X1 ≺ X3 ≺ X5; (d) the ordered graph ~∆(Moral(G),≺).

2.2 Bounded Treewidth Bayesian Network
Structure Learning

Given a set X = {X1, . . . , XN} of nodes (representing
random variables), an element of Pi = 2X\{Xi} is a
candidate parent set of Xi. For a given DAG G =
(X,E), the parent set of node Xi is {Xj | (Xj , Xi) ∈
E}, i.e., consists of the parents of Xi in G. Picking
a single Pi ∈ Pi for each Xi gives rise to the (not
necessarily acyclic) graph in which, for each Xi, there
is an edge (Xj , Xi) iff Xj ∈ Pi.

The treewidth of a Bayesian network structure is de-
fined as the treewidth of the moralized graph induced
by the DAG structure of the network. This is moti-
vated by the fact that Bayesian inference is tractable
in structures whose moralized graph has bounded
treewidth, forming the basis for exact join-tree infer-
ence algorithms (Lauritzen and Spiegelhalter, 1988).

Definition 3 Given a DAG G = (X,E), the moral-
ized graph Moral(G) = (X,M(E)) induced by G is
an undirected graph defined by the edge relation

M(E) = {{Xi, Xj} | (Xi, Xj) ∈ E} ∪
{{Xi, Xj} | ∃k s.t. (Xi, Xk), (Xj , Xk) ∈ E}.

In words, the moralized graph contains an undirected
version of each edge in the DAG, and an edge between
every pair of nodes which have a common child in the
DAG.

The treewidth of the DAG structure G of any Bayesian
network can be determined by finding a linear order-
ing ≺ that minimizes Eq. 1 for the ordered graph
~∆(Moral(G),≺) of the moralization Moral(G) of
G under ≺. We denote by tw(W) the class of DAGs
having treewidth at most W .

As an example, Figure 1 illustrates for (a) a given DAG
G = (X,E) (b) the moralized graph Moral(G), and,

for a given linear ordering ≺ of the nodes X, (c) the
triangulation ∆(Moral(G),≺) and (d) the ordered

graph ~∆(Moral(G),≺). For this ordering ≺, Eq. 1
evaluates to 2, and hence G ∈ tw(2). In fact, it
can be checked that this ≺ defines an optimal tree-
decomposition of G, minimizing Eq. 2, which implies
that tw(G) = 2.

With these definitions, we can formally state the
bounded treewidth Bayesian network structure learn-
ing problem (BTW-BNSL) as follows1.

The BTW-BNSL Problem

Input: A set X = {X1, . . . , XN} of nodes, an
integer W , and for each Xi a non-negative
local score (cost) si(Pi) for each Pi ∈ Pi.

Task: Find a DAG G∗ such that

G∗ ∈ arg min
G∈tw(W)

N∑
i=1

si(Pi), (3)

where Pi is the parent set of Xi in G.

Note that the Pis can be assumed to contain only par-
ent sets Pi with |Pi| ≤ W , since the treewidth of any
DAG containing a node having more than W parents
is greater than W . However, the opposite does not
hold, i.e., the treewidth of a DAG with at most W
parents for each node can still be greater than W .

2.3 Maximum Satisfiability

We shortly review necessary background on Maximum
satisfiability (Li and Manyà, 2009).

For a Boolean variable x, there are two literals, x and

1The problem can equivalently be defined as a maxi-
mization problem under non-positive local scores.

88

Learning Bounded Treewidth Bayesian Networks via MaxSAT

¬x. A clause is a disjunction (∨, logical OR) of lit-
erals. A truth assignment is a function from Boolean
variables to {0, 1}. A clause C is satisfied by a truth
assignment τ (τ(C) = 1) if τ(x) = 1 for a literal x
in C, or τ(x) = 0 for a literal ¬x in C. A set F of
clauses is satisfiable if there is an assignment τ sat-
isfying all clauses in F (τ(F) = 1), and unsatisfiable
(τ(F) = 0 for any assignment τ) otherwise. An in-
stance F = (Fh, Fs, c) of the weighted partial MaxSAT
problem consists of two sets of clauses, a set Fh of
hard clauses and a set Fs of soft clauses, and a func-
tion c : Fs → R+ that associates a non-negative cost
with each of the soft clauses.2 Any truth assignment
τ that satisfies Fh is a solution to F . The cost of a
solution τ to F is

cost(F, τ) =
∑
C∈Fs:
τ(C)=0

c(C),

i.e., as the sum of the costs of the soft clauses not sat-
isfied by τ . A solution τ is (globally) optimal for F if
cost(F, τ) ≤ cost(F, τ ′) holds for any solution τ ′ to
F . The cost of the optimal solutions of F is denoted
by opt(F). Given a weighted partial MaxSAT in-
stance F , the weighted partial MaxSAT problem asks
to find an optimal solution to F . From here on, we
refer to weighted partial MaxSAT instances simply as
MaxSAT instances.

Due to recent advances in MaxSAT solvers, i.e., al-
gorithms for (optimally) solving MaxSAT, MaxSAT
is a viable approach to finding globally optimal so-
lutions to various optimization problems. In general,
the MaxSAT-based approach has two steps. First, a
MaxSAT encoding of the problem is developed. For
any instance I of the problem, the encoding produces
a MaxSAT instance FI such that any optimal solu-
tion to FI can be mapped to an optimal solution of I.
Then, an off-the-shelf MaxSAT solver is used to find
an optimal solution to the MaxSAT instance. As SAT
solvers continue improving, larger and larger problems
can be solved in practice (Järvisalo et al., 2012).

3 BTW-BNSL as MaxSAT

We will now describe an encoding of BTW-BNSL as
(weighted partial) MaxSAT.

For the following, we assume an arbitrary input in-
stance of BTW-BNSL, consisting of a set X =
{X1, . . . , XN} of nodes, a treewidth bound W , and

2Our definition for the function c is more general than
the more standard c : Fs → N+, which restricts the costs
of soft clauses to be integral. However, in this work we
employ a recent MaxSAT solver which allows for assigning
real-valued costs to soft clauses.

for each Xi a non-negative local score (cost) si(Pi) for
each Pi ∈ Pi with |Pi| ≤ W . Given (X,W, {si}Ni=1),
our encoding will produce a weighted partial MaxSAT
instance F (X,W, {si}Ni=1) = (Fh, Fs, c) such that any
optimal solution to F corresponds to a DAG G∗

that is an optimal solution the BTW-BNSL instance
(X,W, {si}Ni=1), and vice versa.

3.1 Overview

In order to exactly represent the BTW-BNSL instance
as a weighted partial MaxSAT instance, we will encode
the following constraints:

1. For each Xi, exactly one parent set Pi ∈ Pi is
chosen.

2. The graph G∗, corresponding to the choice of a
parent set Pi for each i, is acyclic.

3. The moralized graph Moral(G∗) of G∗ has
treewidth tw(Moral(G∗)) ≤W .

4. G∗ is an optimal solution of the BTW-BNSL in-
stance, i.e., G∗ ∈ arg minG∈tw(W)

∑N
i=1 si(Pi).

Constraints 1 and 2 together enforce that any choice of
a single parent set Pi for each variable Xi corresponds
to a DAG G∗. Constraint 3 is the most intricate one,
and enforces that G∗ has treewidth at most W . Con-
straint 4 represents the objective function (Eq. 3) of
BTW-BNSL.

The main variables used in the encoding are summa-
rized in Table 1.

• The variables PSi represent for each node Xi the
chosen parent set S ∈ Pi.
• The variables Mij represent the edges in the mor-

alized graph Moral(G∗) of G∗.

• The variables ordij represent a linear ordering ord
of the nodes of G∗.

• The variables Oij represent the successors Xj of
node Xi in the ordered graph of Moral(G∗) un-
der ord.

3.2 Details

We will now detail the MaxSAT encoding of Con-
straints 1–4, i.e., our MaxSAT encoding of BTW-
BNSL. For clarity, we present the various parts of the
encoding using propositional logic, instead of directly
presenting the corresponding individual clauses.

1: Enforcing Exactly One Parent Set. For each
node Xi, exactly one parent set from Pi must be cho-
sen. This is enforced by introducing for each node Xi

the cardinality constraint∑
S∈Pi

PSi = 1. (4)

89

Jeremias Berg, Matti Järvisalo, Brandon Malone

Table 1: The main variables used in the MaxSAT encoding of the BTW-BNSL problem.
Boolean variables Interpretation Indices

PS
i represent the parent set of each node in G∗:

PS
i = 1 iff S is the parent set of node Xi in G∗ for all i = 1..N and S ∈ Pi

Mij represent the moralized graph of G∗:
Mij = 1 iff Moral(G∗) contains the edge {Xi, Xj} for all i, j = 1..N such that i < j

ordij represent a linear ordering ord of the nodes of G∗:
ordij = 1 iff node Xi is a predecessor of node Xj for all i, j = 1..N such that i < j

in the linear ordering

Oij represent the ordered graph ~∆(Moral(G∗), ord) :
Oij = 1 iff the ordered graph of Moral(G∗) under ord for all i, j = 1..N such that i 6= j

contains the edge (Xi, Xj)

Many different ways of representing such special types
of cardinality constraints, often called exactly-one con-
straints, as (hard) clauses have been proposed in the
literature. Here we use the so-called improved sequen-
tial counter encoding for representing Eq.(4) as a set
of hard clauses; for details on the improved sequential
counted encoding, see (Samer and Veith, 2009).

2: Enforcing Acyclicity. For ruling out cyclic
graphs, i.e., for ensuring that any solution to the
MaxSAT encoding corresponds to a DAG, we apply
the idea of associating a unique, pair-wise different
level number from {1, . . . , N} with each node Xi, and
enforce that, given that a parent set S ∈ Pi is chosen
for Xi, the level number of Xi is greater than the level
number of each Xj ∈ S.3

We use a binary encoding of the level numbers of
the nodes. For each node Xi, log2N Boolean vari-

ables b1i , . . . , b
log2N
i form the binary representation

b
log2N
i . . . b1i of the level number of Xi. For a com-

pact encoding, we also use auxiliary variables EQkij
and GT kij , with the interpretations that EQkij = 1 iff

bki = bkj , and GT kij = 1 iff bik = 1, bjk = 0, and EQk
′

ij = 1
for all k′ > k (i.e., the kth bit is the most significant
bit in which the level numbers of Xi and Xj differ, and
the level number of Xi is greater than that of Xj). Us-
ing these variables, the unique level numbers for the
nodes are enforced as follows.

The fact that each node gets a different level number
from {1, . . . , N} is enforced by stating that for each
pair of distinct nodes Xi, Xj , the level number of Xi

is different from that of Xj . This is enforced by

log2N∨
k=1

¬EQkij , (5)

i.e., there is a bit-position k in which the binary rep-
resentations of the level numbers of Xi and Xj differ.

3Variations of the same idea have been applied for en-
forcing acyclicity with linear integer constraints in differ-
ent contexts, under e.g. the terms level rankings (Niemelä,
2008) and generation numbers (Cussens et al., 2013).

Furthermore, if parent set S ∈ Pi \ {∅} is chosen for
node Xi, then for each Xj ∈ S, there is a bit position
k which is the most significant bit in which the level
numbers of Xi and Xj differ, and the level number of
Xi is greater than that of Xj :

PSi →
log2N∨
k=1

GT kij for all j s.t. Xj ∈ S. (6)

The semantics of the variables GT kij and EQkij are en-
coded as

GT kij ↔ bki ∧ ¬bkj ∧
log2N∧
k′=k+1

EQk
′

ij , (7)

EQkij ↔
(
bki ↔ bkj

)
. (8)

While Eqs. 5–8 together with Eq. 4 ensure that any
solution corresponds to a DAG, we also include a single
additional redundant clause, stating the fact that a
DAG has at least one root node, i.e., a node Xi with
the empty parent set ∅:

N∨
i=1

P ∅i . (9)

While this clause is redundant in that it does not
change the set of solutions, it turned out that in prac-
tice adding this clause speeds up MaxSAT solving.

3: Enforcing the Treewidth Bound. The most
intricate part of the MaxSAT encoding deals with
mapping parent sets to the moralized graph of a DAG
G∗ corresponding to the parent sets, and then enforc-
ing that the moralized graph Moral(G∗) of G∗ has
treewidth tw(Moral(G∗)) ≤W .

(i) From Parent Sets to the Moralized Graph. We di-
rectly connect the choices of parent sets, represented
by the PSi variables, with the edges in the correspond-
ing moralized graph, represented by the variables Mij .
The encoding follows closely the definition of moral-
ized graphs (Def. 3). Eq. 10 enforces that, if a partic-
ular parent set S ∈ Pi is chosen, then in the moral-
ized graph there is (i) an edge between Xi and each

90

Learning Bounded Treewidth Bayesian Networks via MaxSAT

Xj ∈ S, and (ii) an edge between each pair of distinct
nodes Xj , Xk ∈ S.

PSi →
∧
Xj∈S

Mij ∧
∧

Xj ,Xk∈S
Mjk. (10)

The opposite direction is encoded as Eq. 11: if there is
an edge in the moralized graph between nodes Xi and
Xj , it must hold that: (i) Xj is in the parent set of Xi,
(ii) Xi is in the parent set of Xj , or (iii) both Xi and
Xj are in the parent set of some Xk ∈ X \ {Xi, Xj}.

Mij →
∨

S:Xj∈S
PSi ∨

∨
S:Xi∈S

PSj ∨
∨

Xk∈X\{Xi,Xj}
S:Xi,Xj∈S

PSk (11)

Notice that, with this encoding, we do not need to
introduce explicit Boolean variables for explicitly rep-
resenting the actual edges of the DAG corresponding
to the choice of parent sets.

(ii) Encoding Linear Orderings. For enforcing
the treewidth bound on the moralized graphs, we
follow—with minor modifications—a SAT encoding of
treewidth in undirected graphs presented in (Samer
and Veith, 2009). Following Samer and Veith
(2009), we do not encode the construction of a tree-
decomposition of Moral(G∗) explicitly. Instead, our
encoding enforces the condition that for any G∗, there
needs to be a linear ordering ord of X under which the
maximum number of successors over all nodes in the
ordered graph of Moral(G∗) is at most W .

The choice of a linear ordering of X is represented by
the ordij variables. For notational convenience, let

ord∗ij =

{
ordij if i < j

¬ordji else
.

Transitivity of linear orderings is enforced in the en-
coding by stating for all distinct i, j, k = 1..N

ord∗ij ∧ ord∗jk → ord∗ik. (12)

(iii) Bounding Treewidth via Triangulation. Recall
that the treewidth of the tree-decomposition corre-
sponding to a linear ordering ≺ is maxvi∈V |{{vi, vj} ∈
E : i ≺ j}|, where E is the edge-relation of the trian-
gulated moralized graph; and that the variableOij rep-
resents the fact that the ordered graph of Moral(G∗)
under the linear ordering ≺ (represented by the ordij
variables) contains the edge (Xi, Xj). It follows that
enforcing the cardinality constraint∑

j 6=i

Oij ≤W (13)

for each i = 1..N is equivalent to the requirement
maxvi∈V |{{vi, vj} ∈ E | i ≺ j}| ≤ W . Again, dif-
ferent ways of representing such general cardinality
constraints as clauses have been proposed in the lit-
erature. Since here the interesting cases are when W
takes values greater than one, we use a compact encod-
ing based on so-called cardinality networks (Aśın et al.,
2011; Ab́ıo et al., 2013) for representing the constraints
as hard clauses.

What remains is the definition of the Oij variables,
i.e., encoding of the ordered graph induced by a linear
ordering.

–If the moralized graph contains an edge {Xi, Xj},
then the triangulation of the moralized graph also con-
tains the edge {Xi, Xj}, and hence the ordered graph
contains either the edge (Xi, Xj) or the edge (Xj , Xi).
This is enforced by

Mij → (Oij ∨Oji) for all i < j. (14)

–If nodes Xi and Xj have a common predecessor in the
moralized graph, then the triangulation of the mor-
alized graph contains the edge {Xi, Xj}, and hence
the ordered graph contains either the edge (Xi, Xj)
or the edge (Xj , Xi). This is enforced for all distinct
i, j, k = 1..N by

(Oki ∧Okj)→ (Oij ∨Oji). (15)

Finally, in both Eqs. 14 and 15, the choice of which
of the edges (Xi, Xj) or (Xj , Xi) occur in the ordered
graph depends on the linear ordering ord. Essentially,
Oij must be consistent with ordij in that, if i comes
before j in ord, then the edge (Xj , Xi) does not occur
in the ordered graph under ord:

ord∗ij → ¬Oji. (16)

4: Encoding the Objective Function. We en-
code the BTW-BNSL objective function (Eq. 3) using
soft clauses. Accordingly, choosing a specific parent
set S ∈ Pi for node Xi should incur a cost equal to
the local score si(S). Thus, we introduce for each Xi

and each S ∈ Pi the soft clause

(¬PSi) (17)

and associate the local score si(S) as the weight of this
soft clause by defining

c((¬PSi)) = si(S). (18)

3.3 Summary of the Encoding

Assume an arbitrary instance (X,W, {si}Ni=1) of BTW-
BNSL, consisting of a set X = {X1, . . . , XN} of

91

Jeremias Berg, Matti Järvisalo, Brandon Malone

nodes, a treewidth bound W , and for each Xi a non-
negative local score (cost) si(Pi) for each Pi ∈ Pi
with |Pi| ≤ W . The weighted partial MaxSAT in-
stance F (X,W, {si}Ni=1) = (Fh, Fs, c) consists of the
hard clauses corresponding to Eqs. 4–16 and the soft
clauses corresponding to Eq. 17 with weights assigned
according to Eq. 18.

Given an arbitrary solution τ to F (X,W, {si}Ni=1), the
choice of the parent set S for each node Xi is given
by the Boolean variable PSi for which τ(PSi) = 1. We
denote by Gτ the DAG corresponding to this choice S
of a parent set for each node Xi.

Theorem 1 For any solution τ to F (X,W, {si}Ni=1)
= (Fh, Fs, c), let Gτ be the DAG corresponding to τ . It
holds that τ is an optimal solution to F (X,W, {si}Ni=1)
if and only if Gτ is an optimal solution the BTW-
BNSL instance (X,W, {si}Ni=1).

Proof. (sketch) Eq. 4 ensures that for each node Xi,
τ(PSi) = 1 for exactly one parent set S ∈ Pi, i.e., a
single parent set for Xi is chosen. Eqs. 5–8 ensure that
Gτ is a DAG. Eqs. 10–11 ensure that the Mij variables
with τ(Mij) correspond exactly to the moralization of
Gτ . Eq. 12 ensures that any assignment to the ordij
variables corresponds to the linear ordering ord over X
for which i comes before j iff τ(ordij) = 1. Eqs. 14–15
encode exactly the conditions for an edge to be present
in the triangulation of Gτ under ord, and Eq. 16 en-
forces the edge-directions of the triangulation accord-
ing to ord, corresponding exactly to the ordered graph
(consisting of the edges (Xi, Xj) for which τ(Oij) = 1)
of Gτ under ord. Eq. 13 is satisfied iff there is a lin-
ear ordering ord, i.e., an assignment over the variables
ordij , such that the maximum number of successors
in the ordered graph represented by the Oij variables
is at most W . Finally, Eqs. 17–18 encode exactly the
objective function of BTW-BNSL. �

4 EXPERIMENTS

We present results on the efficiency of optimally solv-
ing the BTW-BNSL problem via our MaxSAT en-
coding using a state-of-the-art MaxSAT solver. As
the MaxSAT solver we used MaxHS (Davies and Bac-
chus, 2013)4. For comparing to the recent exact ap-
proach to BTW-BNSL based on dynamic program-
ming, we used the best-w-tree implementation avail-
able from the authors at http://www.cs.helsinki.

fi/u/jazkorho/aistats-2013/.

The experiments were performed on a cluster of 2.8-
GHz Intel Xeon quad core machines with 32-GB mem-

4The developers of MaxHS provided a version which
allows for assigning real-values as costs on soft clauses.

ory and Ubuntu Linux 10.04. A timeout of 8 h (28 800
seconds) and a memory limit of 30 GB were enforced
on the solvers on the individual benchmark instances.

As benchmark data, we used a set of well-known UCI
dataset with 9–29 variables. We used the MDL scor-
ing function (Lam and Bacchus, 1994) for computing
the local scores of parent sets from the datasets. Fur-
thermore, we included as benchmarks the two datasets
(Adult, Housing) made available by Korhonen and
Parviainen (2013) with pre-computed local scores, giv-
ing a total of 10 datasets. As treewidth bounds, we
used the values W = 2, 3, 4, resulting in a total of
30 benchmark instances. We pruned candidate par-
ent sets using the following well-known pruning rule
that maintains the set of optimal solutions: Given two
parent sets S, S′ ∈ Pi, if S′ ⊂ S and si(S

′) ≤ si(S),
then S can be pruned away from consideration. We
observed that applying this pruning rule had a posi-
tive effect on the running times of both the MaxSAT
solver and the dynamic programming approach. The
pruning of a particular candidate parent set S ∈ Pi is
reflected in the MaxSAT encoding by the fact that the
corresponding Boolean variable PSi is not introduced.

Results are presented in Table 2 under treewidth
bounds W = 2, 3, 4. For each bound, the best run-
ning time to find an optimal solution is highlighted in
boldface.

We observe that the dynamic programming approach
(DP) is competitive with our MaxSAT-approach only
for the smallest dataset with 9 variables. Apart from
the multiple timeouts (“> 28 800”), we observe that
DP most often runs out of memory (“mo”) on the
datasets with more variables, especially for treewidth
bounds greater than 2; memoryouts can be consid-
ered more critical than timeouts since they imply that
the algorithm cannot give a solution however much
time it is given. In contrast, the MaxSAT-approach
(MS) timeouts on only two instances, and, especially,
does not suffer from memouts. For a clear 2/3 ma-
jority of the instances, MS produces an optimal solu-
tion within half-an-hour; and for half of the instances
within around 10 minutes.

5 RELATED WORK

Cussens (2008) formulated BNSL without treewidth
restrictions as MaxSAT. Our encoding is more in-
volved: we enforce a strict treewidth bound, and apply
a more intricate encoding of the acyclicity constraint.
Cussens used at-the-time state-of-the-art local search
MaxSAT solvers, and was hence unable to find optimal
networks, and also used integer-rounded local scores
for candidate parent sets; in contrast we use a current
state-of-the-art complete MaxSAT solver which pro-

92

Learning Bounded Treewidth Bayesian Networks via MaxSAT

Table 2: Running times in seconds of our MaxSAT-based approach (MS) and the dynamic programming (DP)
approach (Korhonen and Parviainen, 2013) for different UCI datasets and treewidth bounds W = 2, 3, 4. Expla-
nations: “mo” denotes a memory out; N denotes the number of variables (nodes); #fails denotes the number
of times the memory or time limit was exceeded.

treewidth ≤ 2 treewidth ≤ 3 treewidth ≤ 4 #fails
Dataset N MS (s) DP (s) MS (s) DP (s) MS (s) DP (s) MS DP

Abalone 9 64 7 166 57 215 536 0 0
Housing 14 2 226 6 927 2 329 > 28 800 2 991 mo 0 2
Wine 14 27 6 924 22 > 28 800 171 mo 0 2
Adult 15 998 > 28 800 1 623 > 28 800 1 782 mo 0 3
Voting 17 22 909 > 28 800 26 419 mo > 28 800 mo 1 3
Zoo 17 410 > 28 800 412 mo 105 mo 0 3
Hepatitis 20 315 mo 100 mo 1 164 mo 0 3
Heart 23 1 198 mo 2 186 mo 41 mo 0 3
Horse 28 192 mo > 28 800 mo 544 mo 1 3
Flag 29 1 418 mo 11 148 mo 1 356 mo 0 3

#fails: 0 7 1 9 1 9 2 25

vides provably optimal solutions, and use the actual
(non-integer) local scores without rounding.

Korhonen and Parviainen (2013) proposed an exact al-
gorithm for BTW-BNSL based on dynamic program-
ming. Their algorithm is also to our best knowledge
the only approach for learning guaranteed-optimal
bounded treewidth Bayesian network structures. We
provide in this paper an empirical comparison: our
MaxSAT-based approach scales both to larger num-
bers of variables and larger treewidth bounds than the
dynamic programming approach.

Elidan and Gould (2008) proposed a greedy search
strategy for learning Bayesian networks under
treewidth constraints. Their algorithm relies on a
search operator which is guaranteed to increase the
treewidth of the current solution by at most one.
Their approximation algorithm is polynomial-time in
the number of variables and treewidth. However, due
to the local search strategy, no bounds on the quality
of the learned network can be guaranteed.

Ordyniak and Szeider (2013) consider the problem of
learning and optimal network structure given a super-
structure of bounded treewidth, and show that this
problem is fixed parameter tractable in the treewidth
of the super-structure. The treewidth of the super-
structure does not, in general, bound the treewidth of
the network, and hence does not ensure efficient exact
inference after learning the network.

Integer-linear programming (ILP) provides another
constrained optimization approach to BNSL, as stud-
ied by Jaakkola et al. (2010); Studený et al. (2010);
Cussens (2011); Bartlett and Cussens (2013).

Finally, algorithms for learning undirected graph-
ical models, especially, classes of Markov net-
works (Malvestuto, 1991; Bach and Jordan, 2001;
Karger and Srebro, 2001; Srebro, 2003; Narasimhan

and Bilmes, 2004; Chechetka and Guestrin, 2007;
Gogate et al., 2010; Szántai and Kovács, 2012; Ku-
mar and Bach, 2013) which enable fast inference by
e.g., bounding the treewidth of the underlying tree-
decompositions (often referred to as junction trees)
have been developed. To our understanding, none of
these algorithms guarantee to learn globally optimal
structures.

6 CONCLUSIONS

Exact inference in low-treewidth Bayesian networks is
tractable, which motivates the development of prac-
tical approaches to learning bounded treewidth net-
works. However, few practical algorithms have been
proposed for learning networks under treewidth con-
straints. In this paper, we presented an approach to
learning bounded treewidth Bayesian network struc-
tures that is guaranteed to provide optimal structures.
Our approach is based on encoding the structure learn-
ing problem as weighted partial Maximum satisfiabil-
ity, and then using a state-of-the-art MaxSAT solver
for solving the resulting MaxSAT instances, i.e., for
finding optimal bounded treewidth Bayesian network
structures. We showed that our non-trivial MaxSAT
encoding results in notably better performance com-
pared to an implementation of a recently proposed
dynamic programming algorithm for optimal bounded
treewidth Bayesian network structure learning.

Acknowledgements

Work supported by Academy of Finland (COIN Cen-
tre of Excellence in Computational Inference Research,
grant #251170) and Finnish Funding Agency for Tech-
nology and Innovation (project D2I). The authors
thank Jessica Davies for providing the MaxHS version
used in the experiments.

93

Jeremias Berg, Matti Järvisalo, Brandon Malone

References

Ignasi Ab́ıo, Robert Nieuwenhuis, Albert Oliveras, and
Enric Rodŕıguez-Carbonell. A parametric approach
for smaller and better encodings of cardinality con-
straints. In Proc. CP, volume 8124 of LNCS, pages
80–96. Springer, 2013.

Roberto Aśın, Robert Nieuwenhuis, Albert Oliveras,
and Enric Rodŕıguez-Carbonell. Cardinality net-
works: a theoretical and empirical study. Con-
straints, 16(2):195–221, 2011.

Francis Bach and Michael Jordan. Thin junction trees.
In Proc. NIPS, pages 569–576. MIT Press, 2001.

Mark Bartlett and James Cussens. Advances in
Bayesian network learning using integer program-
ming. In Proc. UAI, pages 182–191. UAUI Press,
2013.

Hans L. Bodlaender. Discovering treewidth. In
Proc. SOFSEM, volume 3381 of LNCS, pages 1–16.
Springer, 2005.

Anton Chechetka and Carlos Guestrin. Efficient prin-
cipled learning of thin junction trees. In Proc. NIPS,
pages 273–280. MIT Press, 2007.

David Maxwell Chickering. Learning Bayesian net-
works is NP-complete. In Learning from Data: Ar-
tificial Intelligence and Statistics V, pages 121–130.
Springer-Verlag, 1996.

David Maxwell Chickering. Learning equivalence
classes of Bayesian-network structures. Journal of
Machine Learning Research, 2:445–498, 2002.

Gregory F. Cooper. The computational complexity
of probabilistic inference using Bayesian belief net-
works. Artificial Intelligence, 42(2-3):393 – 405,
1990.

Gregory F. Cooper and Edward Herskovits. A
Bayesian method for the induction of probabilistic
networks from data. Machine Learning, 9:309–347,
1992.

James Cussens. Bayesian network learning by com-
piling to weighted MAX-SAT. In Proc. UAI, pages
105–112. AUAI Press, 2008.

James Cussens. Bayesian network learning with cut-
ting planes. In Proc. UAI, pages 153–160. AUAI
Press, 2011.

James Cussens, Mark Bartlett, Elinor M. Jones, and
Nuala A. Sheehan. Maximum likelihood pedigree re-
construction using integer linear programming. Ge-
netic Epidemiology, 37(1):69–83, 2013.

Jessica Davies and Fahiem Bacchus. Exploiting the
power of MIP solvers in Maxsat. In Proc. SAT, vol-
ume 7962 of LNCS, pages 166–181. Springer, 2013.

Rina Dechter. Bucket elimination: A unifying frame-
work for reasoning. Artificial Intelligence, 113(1-2):
41–85, 1999.

Gal Elidan and Stephen Gould. Learning bounded
treewidth bayesian networks. Journal of Machine
Learning Research, 9:2699–2731, 2008.

Vibhav Gogate, William Webb, and Pedro Domingos.
Learning efficient Markov networks. In Proc. NIPS,
pages 748–756. MIT Press, 2010.

David Heckerman. A tutorial on learning with
Bayesian networks. In Learning in Graphical Mod-
els, volume 89 of NATO ASI Series, pages 301–354.
Springer, 1998.

David Heckerman, Dan Geiger, and David M. Chicker-
ing. Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learn-
ing, 20:197–243, 1995.

Tommi Jaakkola, David Sontag, Amir Globerson, and
Marina Meila. Learning Bayesian network structure
using LP relaxations. In Proc. AISTATS, 2010.

Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and
Laurent Simon. The international SAT solver com-
petitions. AI Magazine, 33(1):89–92, 2012.

David Karger and Nathan Srebro. Learning Markov
networks: maximum bounded tree-width graphs. In
Proc. SODA, pages 392–401. SIAM, 2001.

Mikko Koivisto and Kismat Sood. Exact Bayesian
structure discovery in Bayesian networks. Journal
of Machine Learning Research, pages 549–573, 2004.

Janne H. Korhonen and Pekka Parviainen. Exact
learning of bounded tree-width Bayesian networks.
In Proc. AISTATS, pages 370–378, 2013.

K. S. Sesh Kumar and Francis Bach. Convex re-
laxations for learning bounded-treewidth decompos-
able graphs. In Proc. ICML, pages 525–533, 2013.

Wai Lam and Fahiem Bacchus. Learning Bayesian be-
lief networks: An approach based on the MDL prin-
ciple. Computational Intelligence, 10:269–293, 1994.

Steffen L. Lauritzen and David J. Spiegelhalter. Lo-
cal computations with probabilities on graphical
structures and their application to expert systems.
Journal of the Royal Statistical Society. Series B
(Methodological), 50(2):157–224, 1988.

Chu Min Li and Felip Manyà. MaxSAT, hard and
soft constraints. In Handbook of Satisfiability, vol-
ume 185 of Frontiers in Artificial Intelligence and
Applications, chapter 19, pages 613–631. IOS Press,
2009.

Francesco M. Malvestuto. Approximating discrete
probability distributions with decomposable mod-
els. IEEE Transactions on Systems, Man, and Cy-
bernetics, 21(5), 1991.

94

Learning Bounded Treewidth Bayesian Networks via MaxSAT

Mukund Narasimhan and Jeff Bilmes. PAC-learning
bounded tree-width graphical models. In Proc. UAI,
pages 410–417. AUAI Press, 2004.

Ilkka Niemelä. Stable models and difference logic. An-
nals of Mathematics and Artificial Intelligence, 53
(1-4):313–329, 2008.

Sebastian Ordyniak and Stefan Szeider. Parameter-
ized complexity results for exact Bayesian network
structure learning. Journal of Artificial Intelligence
Research, 46:263–302, 2013.

Sascha Ott and Satoru Miyano. Finding optimal gene
networks using biological constraints. Genome In-
formatics, 14:124–133, 2003.

Judea Pearl. Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. Morgan Kauf-
mann Publishers Inc., 1988.

Marko Samer and Helmut Veith. Encoding treewidth
into SAT. In Proc. SAT, volume 5584 of LNCS,
pages 45–50. Springer, 2009.

Tomi Silander and Petri Myllymäki. A simple ap-
proach for finding the globally optimal Bayesian net-
work structure. In Proc. UAI, pages 445–452. AUAI
Press, 2006.

Tomi Silander, Teemu Roos, Petri Kontkanen, and
Petri Myllymaki. Factorized normalized maximum
likelihood criterion for learning Bayesian network
structures. In Proc. PGM, pages 257–272, 2008.

Nathan Srebro. Maximum likelihood bounded tree-
width Markov networks. Artificial Intelligence, 143
(1):123 – 138, 2003.

Milan Studený, Jiŕı Vomlel, and Raymond Hemmecke.
A geometric view on learning bayesian network
structures. International Journal of Approximate
Reasoning, 51(5):573–586, 2010.

Tamás Szántai and Edith Kovács. Hypergraphs as a
mean of discovering the dependence structure of a
discrete multivariate probability distribution. An-
nals of Operations Research, 193(1), 2012.

Marc Teyssier and Daphne Koller. Ordering-based
search: A simple and effective algorithm for learning
Bayesian networks. In Proc. UAI, pages 584–590.
AUAI Press, 2005.

Changhe Yuan and Brandon Malone. Learning opti-
mal Bayesian networks: A shortest path perspec-
tive. Journal of Artificial Intelligence Research, 48:
23–65, 2013.

95

