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A Proofs for Section 3

A.l £k* and K are well-defined

Lemma A.1. The maximum operation in the definition of k* and K is well-defined, that
is, the outside supremum is attained at at least one point.

We prove the statement for

k¥ = max inf
n o Cec:F.(C)>0 Fl,(C)

The argument for  is similar. Denote G () = x*(Fo|Fp.) = infoec.r, (0)>0 %
the maximum proportion of the mixture £, in the distribution Fy.

We argue that GG is an upper semicontinuous function. To see this, define for each
C' € C the function g¢ : Sy — [0, 0] as

Fo@ i F,(C) > 0;

_ | F©
g(k) {+oo if F,(C) = 0.

Then fc is an upper semicontinuous function: if g € Sy is such that F,(C) > 0,
then fc is continuous at point p. Otherwise, fo(p) = oo and fc is trivially upper
semicontinuous at point p. Clearly, one has G(u) = infoee fo(p) ; as an infimum of
upper semicontinuous functions, it is itself upper semicontinuous, and therefore attains
its maximum on the compact set Sy;.

A.2  Proof of Proposition 2

Point (a): We apply condition P1 for all k, i with 6 ; = ¢d;/k*. By the union bound,

with probability at least 1 — Zf\io d;, it holds simultaneously for all £ > 1 and i =
0,..., M that

Vk>1, Vie{o,...,M}: sup |F;(C) — F;(C)| < ¥ (ed:k72)  (S.1)
CeCy



Fo(C)

Recall the notation (from the proof of Lemma A.1) G(p) = infoec.r, ()0 %

and introduce

N o) k -2
G(p) :=inf inf — Fo(C) + e(cook™)
¢ (Fu(C) = s vieh (cdik2))
+

Observe that when (S.1) is satisfied, this implies that for all i € Sy, one has G(pu) <
G (). Taking the maximum over p yields the first point.

Point (b): let € > 0 be an arbitrary positive constant. For any u € Sy, let Cp, € C
with F,(C) > 0 be such that £2(E2 < k* + ¢/4.

By continuity of the function p — F),(C') for any fixed C, there exists for each
p € Sy an open neighborhood IV, of p for which both of the following conditions
are realized for all p” € N ,:

FO(CH) * E
Fu(Cy =" T (52
1
and £y (C) > 5 Fu(C): (S3)

(For the second condition, we have used the fact that F,(C},) > 0). By compactness
of Sy, there exists a finite subset S§,; of Sy such that (N, “) pess, Covers Sis.

Denote F;, := 3 mingegs, F},(Cy) ; itis a positive quantity since F},(Cy) > 0
for any p, and S, is finite. For each o € Sy, denote () an arbitrary element of the
finite net S§; such that p € N¢(,,). By property (S.2), we have

Ey(C F
sup M < max sup ﬁ < k"4 E, (S.4)
HESM Fu(cc(u)) HESY ueN,, FM'(CH) 2
and by property (S.3):
inf Fu,(Cepy) > min  inf  F.(Cp) > Fyyn. (S.5)

HESM neSS, WEN,

Denote C. := {C,,, p € S, }. Letn € (0,FS;,

/2) be another arbitrary positive
constant. Consider the distribution () = ﬁ Ziﬂio F;, to which we apply condition

P2. This entails that for each individual C' € C there exists a k¢ and Ce Cr with

~ n
Q(CA0) < 377

S

implying for all 7 € {0,..., M}:

F(C) = K(C)] < F(CAC) < (M + 1)Q(CAC) <1,

and then also for all u € Sy;:

F,(C) - F(C)| <.

‘&@%Eﬂw<ﬁm



In what follows we use the shortened notation e¥ = €¥(cd;k~2), and further define
e(e,n) = max; maxcec, 7. For fixed (e,7), the quantity £(e, 7) is defined as a

maximum of a finite number of functions decreasing to 0 as n — oo, and therefore
¢ also decreases to zero. Below, we assume that all components of n are chosen big
enough so that ¢, . — 1 — 2¢(e,n) > 0. It holds with probability 1 — Zgo 0; that

min

F 2k
Rk < sup inf inf 0(C) + 25 -
pesy k CeCy (FM(C) - 221 :u’iei)+

Fo(C) + 2eke
< sup inf ~0(C)+ %o
nesu O (B, (C) = 25, wiek®)
+
F, 2k
< sup inf 0(C) +n+ 25
20,8 (0 — -, )
+
Fo(Ceuy) +n+ 25:?0““)
< sup o P
BESM (F#«(CC(M)> —n— 221‘ Iuigi’cc(u)>
+
sup Fo(Cepy) +n+ 2e(e,n)
HESM (FM(CC(H)) -n- 2§(67 77))+
F,(C Fo(C + 1+ 2¢e(e,
<[ sup 1(Cew) sup 0(Ce(w) + 1+ 2e(e,m)
HESM (FM(CC(/.L)) /. 2§(67 77))+ HESM FH(CC(H))
Fe. Fy(C 2
< <( min >(Sup 0(Cew) o 1F 6(6#7))

anin —-n- 2§(€7 77))+ HESNM FH(CC(;L)) HESNM FH(CC(M))

S Fmin (/i* =+ E) + 77+2§(€777) ,
(Frenin -—n- 2§(67 77))+ 2 (Fr;in -n- 2§(€a 77))+

where we have used (S.4) and (S.5) for the last inequality. By choosing first 1 small

enough, then all components of 1y big enough, the r.h.s. of the above inequality can

be made smaller than x* + ¢, for all n > mg (> indicates the inequality holds for

all components). Since Zi\io 0; — 0 as p — 0, this implies the second part of the

proposition.

For the last point of the proposition, consider an arbitrary open set () containing
the set B*. Then Q¢ := Sy \ Q is a compact set; therefore, the function G(u) :=
infeee, mL(0)>0 %, being upper semicontinuous (see proof of Lemma A.1), attains
its supremum k on Q€. Observe that kK > x* must hold, otherwise we would have a
contradiction with the definition of B*. Finally, we have:

Plag 0 <P[agGH) < G@)] +P 6@ > Gl
M
<PR>F+Y 4

=1



where we have used that K = @( 1) by definition, and the argument used in the proof
of point (a). By point (b), the first probability converges to 0 as 4 — oco. Thus, the
probability that 1 € €2 must converge to 1 as n — oo. This applies in particular to any
open set of the form 2 := {u : d(p, B*) < €}, hence the conclusion.

B Proofs for Section 4

B.1 Proof of Lemma 1

Suppose the first condition does not hold, so that

ZEiPi =« (Z €lH> + (1 — a)H.

icl i¢l

Then ), v;P; = H, where ; = %= fori € I, and ; = —1L fori ¢ I. Since
Zi¢ ;€ = 1, atleast one 7; < 0, so the second condition is violated.

Now suppose the second condition is violated, say ) . v; P; = H. Let I = {i|~; >
0}, which has fewer than K elements by assumption. Since Zl 7v; = 1, we also know
1 < |I] and further thatI" := 3, -, v; > 1. A violation of the first condition is obtained
bye; =~;/I'fori € I,e; = —v;/(I' = 1) fori ¢ I (noting that 3, ;(—v;) =T — 1),
and o = (I' — 1)/T.

B.2 Proof of Lemma 2

(a) = (b): Follows immediately from the definition of the residue.
(b) = (c): By assumption, there exists £ > 0 such that w; = ke; + (1 — K)n,
where 177 = Zf:z wim;, with p; > 0, for all 2 < ¢ < L. Thus,

L

1—
el =r 1w — Z ( x) Wi T 5
K
i=2

a similar relation holds for all rows. This implies that II is invertible and allows to
identify (for instance) the first row of II=! as (k1 7@#2, ey f@p@). This
implies (c).

(c) = (a): Without loss of generality, consider £ = 1 and the problem of identifying
k*(m1](7;)2<i<1), and the associated residue (if it exists). According to characteriza-
tion (9), this corresponds to the optimization problem

L

IB%XZI/Z' st wm = (1- Zl/i)’y—f— Zl/iﬂ'm

i=2 i>2 i>2

over v € Srandv = (VQ,.. -7VL) eAp_1= {(V27~-~>VL)|V1' > 0;25:2 v; < 1}



We now reformulate this problem. First, note that the constraint implies that admis-
sible v are such that Zi>2 v; < 1, otherwise we would have a linear relation between
the m;, contradicting invertibility of II.

Then for an admissible v, denote (v) := (1 — > o, 1) (1, —va, ..., —vL).
Observe that the constraint of the optimization problem is equivalent to II”n = ~, or
n = (IT")~'~. The inverse mapping of i to v is v(n) = n; * (=12, . .., —n1), so that
the objective of the optimization can be rewritten as

Som_ Mmyg 1 !
efn efn ein el (")~

where 1 denotes a L-dimensional vector with all coordinates equal to 1. So finding the
point of maximum of the above problem is equivalent to the program

max el (7)1 s.t. v((IT) 1y) € Ap,
YESL

The above objective function has the form aT'y, where a is the first column of TT~1
which, by assumption, has its first coordinate positive and the others nonpositive.
Therefore, the unconstrainted maximum over v € S); is attained uniquely for v =
e;. We now check that this value also satisfies the required constraint. Observe
that (I17)~'e; is the (transpose of) the first row of II~1, denote this vector as b =
(b1,...,br). We want to ensure that v(b) = by *(=ba,...,—br) € Az_;. By as-
sumption, b has its first coordinate positive and the others nonpositive, ensuring all
components of v/(b) are nonnegative. Furthermore, the sum of the components of v (b)
is

b; L, 1
‘ b1 b1 b

the last equality is because the rows of II~! sum to 1 (since II is a stochastic matrix,
so is its inverse). It follows that v((IT7)~'e;) € Ar_;. Thus, the unique maximum
of the optimization problem is attained for v = ey, establishing (a).

B.3 Proof of Proposition 3

We start with the following Lemma:

Lemma B.1. [f1lis recoverable, then 7, . ..,y are linearly independent. If Py, . .., Py,
are jointly irreducible, then they are linearly independent. If 71, ..., are linearly
independent and P, ..., Py, are linearly independent, then Py, ..., Py are linearly
independent.

Proof of the lemma: The first statement follows from characterization (c) of Lemma 2:
if II is recoverable, it is invertible and thus has full rank.

For the second statement, suppose » . 3; P; = 0 is a nontrivial linear relation. Let
Jj be any index such that 3; > 0. Then ), v, P; = P;, where v; = 3; if ¢ # j, and
v = B + 1. Since at least one 3; < 0, 7 # j, joint irreducibility is violated.



For the third part, suppose 3, a; P; = 0. Since P; = w} P, this implies 3", o w! P =
0, which implies ), a;7r; = 0, which implies o; = 0.

Proof of Proposition 3: Consider ¢ = 1, the other cases being similar. Suppose G
is such that ~ ~
Pi=(01-Y"v))G+> vP;. (S.6)
Jj=2 Jj=2
Note that Py, . .., Py, are linearly independent by Lemma B.1. This implies > j>2Vi <
1, because otherwise P; = > o v; P;.
Therefore, any G satisfying (S.6) has the form Zle ~; P;. The weights ~; clearly

sum to one, and by joint irreducibility, they are nonnegative. Thatis, v := [y1,...,75]T
is a discrete distribution. Thus, Eqn. (S.6) is equivalent to
7l P=(1- Z vy P+ Z Vj7roP.
§>2 j>2
By linear independence of P4, ..., Pr, (see Lemma B.1) and taking the transpose, this
gives
™, = (1 — Zl/j)’)’ + Zyjﬂ’j.
Jj=2 Jj=2

Therefore x*(Py|{P;,j # 1}) = w*(m|{m;,j # 1}) < 1, and there is a one-to-
one correspondence between feasible G in the definition of x*(P;|{P;,j # 1}) and
feasible «y in the definition of k*(71|{7;,j # 1}). Since II is recoverable, the residue
of 7wy wrt. {m;,j # 1} is v = ey, and so the residue of P, wrt. {ﬁj,j # 1} is
G = G{P = P1.

To see uniqueness of the maximizing v;, suppose

P =(01-k)G+ Zyjf’j =(1-r"G+ Zvépj.
Jj=2 Jj=2

Lemma B.1 implies v; = v/.

B.4 Proof of Proposition 4

For brevity we at times omit the dependence of the errors and their estimates on f. For
any f,

o~

R(@ - Z]#Z VZjRj[ RZ@ - Z]#Z I//\[JRJK
1- Re 1-— Eg

[Re(f) — Re(f)| =

Ree =0, 20veiRje  Roe — 30, 4,00 Ry
1-— Ky 1-— Ky

IN

o~ o~

Roe =320V Rje  Rue =340Vt R
1-— Ky 1-— Eg




- |Roe — Rl + 32524 [vej Rie — D Rjo| N ‘ 1 1

1— Ky 1_52_1_22

|Ree — Reel + 344 (\Wjéje — Vg Rjo + e Rye — %RM)

o 1-— Ry
1 1
1-— Ry 1-— 7%@

|Ree — Reel + 344 (\Vej — Uj| + | Rye —Rjd) 1 1
< - .
- 1—ry ‘ 1— Ky 1— &y

The VC inequality [1] implies that for any € > 0, SUD e 7, ) |Rie(f) —ﬁw(f)\ <e
with probability tending to 1, since (12) holds, and by our convention for multiclass
VC dimension. Noting that k; < 1 by Proposition 3, the other terms tend to zero in
probability by consistency of % and the 7g;. This completes the proof.

B.5 Proof of Theorem 1

Consider the decomposition into estimation and approximation errors,

~

R() =R =R(f) = it R()+ ipf R(f)- R

The approximation error converges to zero by P3 and since k(n) — oo. To analyze
the estimation error, let ¢ > 0. For each positive integer k, let f; € Fj, such that
R(f}) <infycr, R(f)+ §. Then

R() ~ , Jnf ()= R(fm) — | inf R(f)

< R(J?lc(n)) — R(fin)) +

< R(fum) = R(fim) + 5

(with probability tending to 0, by Proposition 4)

[

€
< Ti(n) + 5

<e

where the last step holds for n sufficiently large. The result now follows.
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