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Supplementary material
A Proof of Lemma 1

First, to get rid of the absolute value in Eq. (3), we can expand the constraint |w · x
t

� y
t

|  ✏ into two as
follows:

w
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w2R

m
+

1

2
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t

k2
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 ✏
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t
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t

 ✏.

(16)

The Lagrangian of this optimization problem is:

L(w, ✓,,µ) =
1

2
kw �w

t

k2 + ✓(w · x
t

� y
t

� ✏) + (�w · x
t

+ y
t

� ✏)� µ

T
w,

where ✓ 2 R+,  2 R+ and µ 2 Rm

+ are Lagrange multipliers. Di↵erentiating the Lagrangian with respect to
w

j

and solving for zero gives the optimality condition:

w⇤
j

= w
t,j

� (✓⇤ � ⇤)x
t,j

+ µ⇤
j

8j.

Additionally, the KKT complementary slackness conditions require that:

w⇤
j

µ⇤
j

= 0 8j (17)

✓⇤(w⇤ · x
t

� y
t

� ✏) = 0 (18)

⇤(�w⇤ · x
t

+ y
t

� ✏) = 0. (19)

If w⇤
j

> 0, Eq. (17) implies that µ⇤
j

= 0. Therefore, w⇤
j

= w
t,j

+ (✓⇤ � ⇤)x
t,j

. To update the model, at least
one weight must be changed. Therefore, ✓⇤ 6= ⇤. Using Eq. (18) and (19), this implies that either ✓⇤ or ⇤ is
non-zero, but not both.

If w⇤
j

= 0, we must have w
t,j

� (✓⇤ � ⇤)x
t,j

+ µ⇤
j

= 0. Next, we assume that x
t,j

> 0 and w
t,j

> 0 as otherwise
the optimal solution is clearly w⇤

j

= w
t,j

. Using these assumptions together with µ⇤
j

� 0, we obtain that ✓⇤ > ⇤.
Assume for a moment that ⇤ > 0. Using the fact that the right-hand side of Eq. (19) must be zero, we obtain
that w⇤ ·x

t

= y
t

� ✏. Injecting that in the right-hand side of Eq. (18), we obtain �2✏. This implies that ✓⇤ = 0,
which contradicts ✓⇤ > ⇤. Therefore, ⇤ = 0. Thus, a non-negativity constraint (i.e., µ⇤

j

> 0) can only be
e↵ective if ✓⇤ > 0.

If ✓⇤ > 0, w⇤ needs to satisfy w

⇤ · x
t

� y
t

 ✏, which implies that w
t

· x
t

> y
t

+ ✏ � y
t

. If ⇤ > 0, w⇤ needs to
satisfy �w⇤ · x

t

+ y
t

 ✏, which implies that w
t

· x
t

< y
t

� ✏  y
t

.

Note that Eq. (5) and Eq. (6) contain equality constraints. This is because minimizing the loss 1
2kw � w

t

k2
can obviously be achieved by satisfying the inequality constraints in Eq. (16) at their boundary. Lemma 1 is
illustrated in Figure 3.

B Proof of Lemma 3

When ŷ
t

> y
t

, we need to solve:

w

t+1, ⇠
⇤ = argmin

w2R

m
+ ,⇠2R+

1

2
kw �w

t

k2 + C⇠

subject to w · x
t

= y
t

+ ✏+ ⇠

(20)

After rearranging terms, the Lagrangian of the optimization problem in Eq. (20) is:

L(w, ✓,�,µ) =
1

2
kw �w

t

k2 + ✓(w · x
t

� y
t

� ✏) + ⇠(C � ✓ � �)� µ

T
w, (21)
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Figure 3: Illustration of Lemma 1. Given the true target y
t

, we consider three points ŷ1, ŷ2 and ŷ3, corresponding
to three possible scenarios. In the first scenario, ŷ1 is between y

t

� ✏ and y
t

+ ✏ and satisfies |ŷ1 � y
t

|  ✏. The
model thus does not need to be updated. In the second scenario, ŷ2 < y

t

� ✏  y
t

. The smallest model change
can be achieved by respecting the constraint at the boundary. This can only be done by making some model
coe�cients bigger and thus the non-negativity can be ignored. In the third scenario, ŷ3 > y

t

+ ✏ � y
t

. Again,
the smallest model change can be achieved by respecting the constraint at the boundary. However, this time,
some model coe�cients must be made smaller and thus the non-negativity must be respected.

where ✓ 2 R+, � 2 R+ and µ 2 Rm

+ . In the following, we denote the primal optimal point by (w⇤, ⇠⇤) and the
dual optimal point by (✓⇤,�⇤,µ⇤). We denote the root of f

t

by ✓
f

. Di↵erentiating Eq. (21) with respect to ⇠ and
setting the result to zero gives C � ✓⇤ � �⇤ = 0. Using �⇤ � 0, we obtain ✓⇤  C. Assume that y

t

+ ✏ > 0 (when
y
t

+ ✏ = 0, it can easily be shown that ✓⇤ = min(C, ✓
u

)). We know that f
t

is strictly negative in (✓
f

,+1) and
strictly positive in (�1, ✓

f

). Thus, if f
t

(C) < 0, then ✓
f

< C. We can thus readily choose ✓⇤ = ✓
f

. On the other
hand, if f

t

(C) > 0, then ✓
f

> C. Using our previous result ✓⇤  C, we thus get ✓⇤ < ✓
f

, and therefore f
t

(✓⇤) > 0.
We know from the equality constraint in Eq. (20) that w⇤ ·x

t

= max(w
t

�✓⇤x
t

, 0)·x
t

= y
t

+✏+⇠⇤ , f
t

(✓⇤) = ⇠⇤.
Therefore, ⇠⇤ > 0. Following the KKT complementary slackness condition ⇠⇤�⇤ = 0, we obtain �⇤ = 0. Finally,
using C � ✓⇤ � �⇤ = 0, we obtain ✓⇤ = C. When f

t

(C) = 0, clearly ✓⇤ = C. In summary, if f
t

(C) � 0 then
✓⇤ = C, otherwise ✓⇤ = ✓

f

.

C Proof of Theorem 1

To prove regret bounds for our algorithms, we adopt a primal-dual view of online learning [Shalev-Shwartz
and Singer, 2007]. In this view, we define an optimization problem and we cast online learning as the task of
incrementally increasing the dual objective function. The amount by which the dual increases serves as the
notion of progress. In this paper, we consider the following optimization problem

minimize
w2R

m
+

P(w) = C
lX
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i

, y
i

)) +R(w),

where `✏ is defined in Eq. (4) and R(w) = 1
2kwk

2. The dual of this problem is
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where R⇤ is the Fenchel conjugate of the function R, as defined as follows

R⇤(u) = sup
w2R

m
+

w · u�R(w)

=
1

2
kmax(u, 0)k2.

Let t

i

and ✓t
i

be the dual variables on round t. The primal-dual relationship is given by

w

t

= argmax
w2R

m
+

w · u
t

�R(w)

= rR⇤(u
t

)
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t
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(22)

where rR⇤ is the gradient of R⇤ and u

t

=
P

l

i=1(
t

i

� ✓t
i

)x
i

. rR⇤(·) is sometimes called link function. Let P⇤

be the primal optimal objective value. From the weak duality theorem, we immediately obtain the lower bound
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8t D(t,✓t)  P⇤, that is

8t 8w 2 Rm
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lX
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i

, y
i

)) +R(w). (23)

Let �
t

= D(t+1,✓t+1)�D(t,✓t). Assuming that 1 = 0 and ✓

1 = 0, we have D(1,✓1) = 0. Thus, we obtain
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lX

t=1

�
t

, (24)

since
P

l

t=1 �t

is a telescoping sum. Next, we first prove a lower-bound on �
t

for a simplified version of NN-

PA-I, which sets either t

i
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i

to min( `

✏
t
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Next, we make use of the quadratic bound lemma [Mangasarian, 2002], which states that if f has a Lipschitz
continuous gradient rf with constant K, then

f(v)� f(s)�rf(s) · (v � s)  K

2
kv � sk2.

It is easy to verify that R⇤ has Lipschitz continuous gradient rR⇤ with constant 1. By using v = u
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Plugging the result in Eq. (25), we obtain
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where in the third line we used Eq. (22). Following Shalev-Shwartz and Singer [2007, Section 5], we define a
“mitigating” function µ

⇢

µ
⇢

(`) =
1

C

✓
min(

`

⇢
, C)`� 1

2
min(

`

⇢
, C)2⇢

◆

=
1

C⇢
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✓
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2
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◆
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If we choose ⇢ = max
i

kx
i

k2, we obtain

�
t

� Cµ
⇢

(`✏(w
t

; (x
t

, y
t

))) . (26)

The rest of the proof follows almost exactly Shalev-Shwartz and Singer [2007, Section 5] and is given for com-
pleteness. Combining Eq. (23), Eq. (24) and Eq. (26), we get

lX
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C
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By dividing both sides by l and using the fact that µ
⇢

is convex, we obtain

µ
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Since µ�1
⇢

(`) is defined and monotonically increasing when ` � 0, we can apply it on both sides. Moreover, it

can be verified that µ�1
⇢

(`)  `+ C⇢

2 . After rearranging terms, we thus obtain

8w 2 Rm

+
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))�
lX
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`✏(w; (x
t
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C
+

lC⇢

2
.

This concludes the proof for the approximate version of NN-PA-I. For the regular version, we note that the dual
increase must be by definition at least as large as for the approximate version. Therefore, its regret bound must
be at least as good.

D Solving problem (6) exactly by pivot algorithm

When x

t

is a vector of all ones and y
t

+ ✏ = 1, the optimization problem defined in Eq. (6) reduces to the
well-known problem of Euclidean projection onto the standard simplex. This problem was well-studied in the
literature; for example, Duchi et al. [2008] adapt the randomized pivot algorithm for median finding [Cormen
et al., 2001] to this problem. We now derive a similar pivot algorithm for solving the optimization problem (6).
Our algorithm includes Duchi et al.’s algorithm as a special case and has expected O(m) complexity.

First, we extend lemmas 2 and 3 of Shalev-Shwartz and Singer [2006] to the more general problem of Eq. (6).
The two lemmas below show that we can easily solve (6) if we sort the elements of w

t

= [w
t,1, . . . , wt,m

] and
x

t

= [x
t,1, . . . , xt,m

].

Lemma 4 Let w⇤ = [w⇤
1 , . . . , w

⇤
m

] be the optimal solution to the minimization problem in Eq. (6). Let s and j
be two indices such that

wt,s

xt,s
>

wt,j

xt,j
. If w⇤

s

= 0, then w⇤
j

must be zero as well.

Proof of Lemma 4 is most similar to the proof of Lemma 2 of Shalev-Shwartz and Singer [2006], and is thus
omitted. Let I be the sequence of indices such that

wt,I1
xt,I1

� wt,I2
xt,I2

� · · · � wt,Im
xt,Im

. Let w̄t and x̄

t be the vectors

w

t

and x

t

sorted by I. Lemma 4 implies that there exists a positive number ⇢⇤ such that:

w

⇤ · x
t

=
mX

j=1

max(w
t,j

� ✓⇤x
t,j

, 0)x
t,j

=
⇢

⇤X

j=1

(w̄
t,j

� ✓⇤x̄
t,j

)x̄
t,j

= z
t

,

where z
t

= y
t

+ ✏. From the above, we easily obtain ✓⇤ = ✓(⇢⇤), where

✓(⇢) =
(
P

⇢

j=1 w̄t,j

x̄
t,j

)� z
tP

⇢

j=1(x̄t,j

)2
. (27)

Therefore, the problem of finding ✓⇤ reduces to the problem of finding ⇢⇤. The next lemma o↵ers a simple
solution.

Lemma 5 Let w⇤ be the optimal solution to the minimization problem in Eq. (6). Let w̄
t

and x̄

t

be the vectors
w

t

and x

t

sorted by I. Then the number of strictly positive elements in w

⇤ is

⇢⇤ = max
j

{j : w̄
t,j

� ✓(j)x̄
t,j

> 0}.
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Algorithm 3 Randomized pivot algorithm for solving Eq. (6)

Input: w

t

, x
t

, y
t

, ✏
Initialize U  {j : x

t,j

> 0}, s 0, �  0
Set z

t

= y
t

+ ✏
while U 6= ; do
Pick k 2 U at random
Partition U :
G {j 2 U : wt,j

xt,j
� wt,k

xt,k
}

L {j 2 U : wt,j

xt,j
<

wt,k

xt,k
}

Compute:
�s =

P
j2G

w
t,j

x
t,j

�� =
P

j2G

(x
t,j

)2

✓ = s+�s�zt
�+��

if w
t,k

� ✓x
t,k

> 0 then
Update s s+�s, �  � +��
Set U  L

else
Set U  G \ {k}

end if
end while
Output: ✓

Lemma 5 shows that finding ⇢⇤ (and therefore, ✓⇤) can easily be done provided that w̄

t and x̄

t are available.
However, this requires obtaining I (i.e., sorting wt,j

xt,j
8x

t,j

> 0), which unfortunately takes O(m logm) time

complexity.

Building upon Lemma 4 and Lemma 5, we can extend Duchi et al.’s e�cient pivot algorithm. The procedure is
outlined in Algorithm 3. The algorithm identifies ⇢⇤ and the pivot value w̄

t,⇢

⇤ without sorting w

t

and x

t

thanks
to a divide and conquer procedure which at each iteration eliminates elements shown to be strictly smaller than
w̄

t,⇢

⇤ . While doing so, it also accumulates the sums s (numerator) and � (denominator) needed to compute ✓⇤

from Eq. (27). The algorithm has expected linear time complexity with respect to m.


