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Abstract

Stochastic Gradient Descent (SGD) is a pop-
ular online algorithm for large-scale ma-
trix factorization. However, SGD can of-
ten be difficult to use for practitioners, be-
cause its performance is very sensitive to the
choice of the learning rate parameter. In
this paper, we present non-negative passive-
aggressive (NN-PA), a family of online al-
gorithms for non-negative matrix factoriza-
tion (NMF). Our algorithms are scalable,
easy to implement and do not require the
tedious tuning of a learning rate parameter.
We demonstrate the effectiveness of our al-
gorithms on three large-scale matrix comple-
tion problems and analyze them in the regret
bound model.

1 Introduction

Matrix completion is the fundamental task of recon-
structing a partially observed matrix. The archetypal
application of matrix completion is collaborative fil-
tering, in which the matrix contains ratings given by
users to some items. Naturally, since users tend to
rate a limited number of items (e.g., movies), only a
very small subset of the matrix is typically observed.
Completing the missing matrix entries amounts to re-
covering unknown ratings and can thus be used to rec-
ommend new items to users. Matrix completion is also
an important pre-processing step in machine learning
workflows, since many algorithms or implementations
cannot directly handle missing values. Popularized by
recommendation systems, matrix factorization based
approaches to matrix completion have been among the
most successful, as witnessed by the Netflix challenge
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[Koren et al., 2009]. Although Stochastic Gradient De-
scent (SGD) is often associated with slow convergence,
its low computational complexity, combined with other
trade-offs in statistical learning theory [Bottou and
Bousquet, 2008], still makes it a candidate of choice
for solving large-scale matrix factorization problems
[Takdcs et al., 2009]. However, SGD can often be
frustrating to use for practitioners, because its per-
formance is very sensitive to the choice of the learning
rate parameter.

In this paper, we propose non-negative passive-
aggressive (NN-PA), a family of online algorithms for
non-negative matrix factorization (NMF). Our algo-
rithms are scalable, easy to implement and do not
require the tedious tuning of a learning rate param-
eter. Imposing non-negativity in the matrix factoriza-
tion can reduce prediction error in the case of non-
negative matrices compared to conventional methods
such as Singular Value Decomposition (SVD) [Zhang
et al., 2006] and leads to interpretable and sparse de-
compositions [Lee and Seung, 1999)].

Let R be a non-negative matrix of size nxd. We denote
its entries by r, ;. For instance, in a recommendation
system, 7,; may correspond to the rating given by
user u to item i. Let P and @ be two non-negative
matrices of size n x m and m X d, respectively, where
m < min(n, d) denotes a user-defined rank. We denote
the rows of P by p, € R' and the columns of Q by
q; € R'. In this paper, we cast non-negative matrix
factorization as an online learning problem. On each
round ¢, a matrix entry 7y, ;, is revealed. The goal of
NN-PA is to update p,, € R and q;, € R} such that
Tuyi, = Py, - 4;,- Let pl, be p, on round ¢t. NN-PA
then finds p!"! by solving the following optimization
problem:

t+1 __

pLt 12

s.t. |p- qgt — Tuyi| = 0.

(1)
Intuitively, the above optimization problem captures
the fact that we want to find the smallest possible
change in p, so as to predict 7y, ;,. Similarly, let qt

.1 +
argmin _||p — py,
peR™ 2
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be g; on round t. NN-PA then finds qul by solving
the same optimization problem as above except that
the roles of p, and g}, are swapped:

t+1 _

q;, §,|‘2

argmin %Ilq —q;,|” st Py, @ = 1wl =0.
geRT

(2)
The updates in Eq. (1) and Eq. (2) are called passive-
aggressive [Crammer et al., 2006] because they may
result in rounds that update P or @) “aggressively”, or

in “passive” rounds that leave P and ) unchanged.

In practice, NN-PA can also be used in a batch setting.
Let the set of observed entries in R be 2. In our exper-
iments, we update P by Eq. (1) for all (u,7) €  then
Q by Eq. (2) for all (u,i) € Q and repeat this process
several times. Alternating minimization is a popular
approach in the NMF literature (c.f. [Lin, 2007] and
references therein) because it essentially allows to re-
duce learning the NMF to a sequence of non-negative
regression problems.

A complete pass over all observed entries (u,?) € € of
R requires NN-PA to solve the optimization problem
in Eq. (1) or Eq. (2) || times. In the following, we
will present algorithms that can solve Eq. (1) or Eq.
(2) in O(m) time. Therefore, a complete pass over
all observed entries in R takes O(m/|(2|) time. This is
the same complexity as SGD but NN-PA does not re-
quire the tedious tuning of a learning-rate parameter.
In real-world applications, where the matrices P and
() must be retrained or updated frequently, this is a
major advantage of NN-PA in practice.

2 Solving the optimization problem

In this section, we describe how to solve the optimiza-
tion problem at the core of NN-PA, Eq. (1) and Eq.
(2). To simplify our notation, we define

w = p or g (variable)

Wit pitt or git' (solution)

wy pl, or gq;  (current iterate)
©, = q or pl  (input)

Ye o = Tugg (target)

and rewrite the optimization problem as follows

o1
wier = argmin | w—w,|? st w -z, -l <. (3)
weRY

where for more flexibility we introduced a precision
parameter e. We assume w; = [wy,1,...,Wem] € R,
xy = [T41,...,%,m) € RT and y, € Ry. Let us intro-
duce the e-insensitive loss function:

(w; (x,y)) = max(|w - & — y| — ¢,0).

(4)
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It is easy to see that satisfying the constraint |w -
x: — Y| < e in Eq. (3) is equivalent to satisfying
the constraint ¢¢(w; (x¢,y:)) = 0. When € = 0, Eq.
(4) reduces to the absolute loss |w - — y|. Without
the non-negativity constraint, Eq. (3) requires solving
the same optimization problem as passive-aggressive
regression and enjoys a closed-form solution [Cram-
mer et al., 2006, Section 5]. However, with the non-
negativity constraint, Eq. (3) does not enjoy a gen-
eral closed-form solution anymore. Since Eq. (3) is a
quadratic program (QP), one may use any numerical
QP solver to solve it. However, as we emphasized pre-
viously, a complete pass over the observed entries of R
requires solving Eq. (3) || times. As an example, on
the Yahoo-Music dataset, || is equal to 252,800, 275.
Therefore, it is crucial to solve the optimization prob-
lem efficiently. In the following, we derive an O(m)
time procedure.

For convenience, let us introduce the shorthands ¢; =
w; - @y and £ = max(|gr — y¢| — €,0). If |§: — yi] <€,
that is, if w; readily predicts y; with loss ¢§ = 0, then,
assuming that w, is a feasible solution, we can clearly
choose w1 = wy, i.e., wy is not updated (hence, the
name passive). When £ > 0, the following lemma is a
key tool for solving Eq. (3).

Lemma 1 Assume ¢; > 0. If g, < y., then solving
Eq. (3) is equivalent to solving

1

wiy1 = argmin_ ||w — wy||? st. w-z; =y —e. (5)
weR™ 2

If Gy > yi, then solving Eq. (3) is equivalent to solving

1
wiy1 = argmin= ||w — wy||? st. w-x; =y +e (6)
weRT 2

Notice that there is a non-negativity constraint in Eq.
(6) but not in Eq. (5). For Eq. (5), there is therefore
a closed-form solution, which is the same as that of
the original PA:

4

Wiy = wy + K 'z where K* = ——. (7)
el

Unfortunately, due to the additional non-negativity
constraint, such a closed-form solution does not exist

for Eq. (6). Its Lagrangian is:
1 2 T
£(w,01) = o Jw —wil]> + 0w -~y — ) — ",

where 0 € Ry and p € RY are Lagrange multipli-
ers. The optimization problem in Eq. (6) has a con-
vex objective function and feasible affine constraints.
These are sufficient conditions for Slater’s condition to
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hold. Therefore, satisfying the Karush-Kuhn-Tucker
(KKT) conditions is a necessary and sufficient condi-
tion for optimality. Let w* and (6*, u*) be the primal
and dual optimal points, where w* [wi,...,wk]
and p* = [pf, ...

, ui]. Differentiating the Lagrangian
with respect to w and solving for zero gives:

w' =wy — 0wy + p.

The KKT complementary slackness conditions require
that wips = 0Vy. It follows that if w} > 0, then pj =
0 and thus w;-‘ = wy,j — 0"z ;. Otherwise, the non-
negativity constraint implies that w} = 0. Wrapping
up the two cases, we obtain the following update

(8)

where the max operator is taken element-wise. In-
tuitively, the update in Eq. (8) is parameterized by
a single scalar value 6* € R,. Additionally, we see
that it leads to sparse solutions. The following lemma
shows that finding 6* can be cast as a root finding
problem.

w1 = w' = max(wy — 0" xy, 0),

Lemma 2 Assume ¢y > y;. Then, the optimal solu-
tion of Eq. (6) is wyy1 = max(w; — 0*x, 0), where
0* is a root of:

f+(0) = max(w; — 04, 0) - @ — yr — €. 9)

Moreover, if y, + € > 0, then 0* is unique.

Proof. The proof technique is similar to Liu and Ye’s
(2009), who proved a similar result for the problem of
Euclidean projection on an ¢; ball. First, following Eq.
(8), we must clearly have 6* > 0, since otherwise w; is
not updated. It follows from the KKT complementary
slackness condition 6*(w* - ¢ — y; — €) = 0 that w* -
x;—y; —e = 0. Injecting Eq. (8) in w*-x;—y1—e=0
gives Eq. (9). Next, we need two scalars 6, and 6,
such that f:(6;) > 0 and f;(6,) < 0, respectively. We
can choose 6; = 0, since we clearly have f;(0) = w; -
xy —y —e =L; > 0. For §,, it is easy to verify that

W, j . .-
0, = max — satisfies the condition. We also know
jixe ;>0 T,j

that f; is continuous and strictly decreasing in [6;, 6,,].
Following the Intermediate Value Theorem, f; has a
root in this interval. If y; 4+ ¢ > 0, then f;(6,) < 0 and
the root is unique. O

In the special case when y; + ¢ = 0 (which can only
happen if y; = € = 0), solving the above root finding
problem is trivial, since f;(6) = 0 V8 > 6,. There-
fore, * = 6, is a solution. When y; + ¢ > 0, we
choose to solve the root finding problem by bisection,
which has worst-case linear-time complexity and can
handle the non-differentiable function f;. Bisection
works by repeatedly halving an interval and selecting
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the subinterval in which the root must lie. We summa-

rize the procedure in Algorithm 2. Note that we used
Lfe(0)]
Yite
tor is intended to normalize the error |f;(6)].

< 7 as stopping criterion, where the denomina-

We summarize the entire NN-PA procedure for solving
Eq. (3) in Algorithm 1. We used the fact that Eq. (7)
and Eq. (8) can be combined into Eq. (11) if we set
k™ and 0* as follows

. &
EXE

k=0

0" =0

if gy <
Yt < Yt (10)

0" = f7H0) i G >y,

where we used f;*(0) to denote any root of f;.

3 Regularized and approximate
updates

Unfortunately, NN-PA updates w; as much as needed
to satisfy the constraint imposed by the current train-
ing instance. In real-life problems, this behavior might
be undesirable, especially in the presence of noise or
outliers. To prevent overfitting, soft formulations of
support vector machines introduce slack variables in
the optimization problem. Similarly, in NN-PA, we
can introduce a non-negative slack variable £ into the
optimization problem:

argmin
weRT, (ER

y 1
w1, = §|‘w*wt||2+c§

(12)

st |lw-xy —y| < e+,

where C' > 0 is a parameter which controls the
trade-off between being conservative (do not change
the model too much) and corrective (satisfy the con-
straint). Following the naming convention of Cram-
mer et al. [2006], we call this variant NN-PA-I. Again,
similarly to Lemma 1, we can consider the ¢: < y;
and g > y; cases separately. When ¢, < y;, the non-
negativity constraint can be ignored and the closed-
form solution is the same as that of the original PA-I
[Crammer et al., 2006, Appendix A]: we can set x*
to min(C, ﬁ), i.e., the step size is clipped to C.
When gy > y;, we can use a similar step size clipping.
However, this requires computing the step size by bi-
section beforehand. The following lemma provides a
much more efficient approach.

Lemma 3 Assume §; > y;. Then, the optimal solu-
tion of Eq. (12) is w1 = max(w; — 0*xy, 0), where
0* = C if f;(C) >0 and 6* = f7*(0) otherwise.

Lemma 3 is remarkable in that we can completely
avoid finding f;1(0) if f;(C) > 0. It is easy to see
that the smaller C' (the more regularized), the more
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Algorithm 1 NN-PA algorithms

Algorithm 2 Root finding by bisection

Input: w,, @y, yi, C, €
Compute prediction g, = wy - x;
Suffer loss £ = max(|§; — y:| — €,0)
if /; =0 then
Wiyl = Wy
else
Compute «* and 6* by
Eq. (10) for NN-PA
Eq. (13) for NN-PA-I
Eq. (14) for NN-PA-II

Wyq] = mMax (wt + (K* — 0"y, 0) (11)

end if
Output: w1

likely this condition will hold. Therefore, the smaller
O, the more likely we will not need to find f;*(0) at
all. To summarize, NN-PA-I sets «* and 6* in Eq. (11)
as follows

K=a; 60°=0 if g <y
K*=0 0" =C if g > y¢ and f:(C) >0
KY=0 0" = f,1(0) if g >y and f,(C) <0,

(13)
. I
where oy = min(C, W)

We also introduce a NN-PA-II variant, which replaces
C¢ in Eq. (12) by C&2, ie., we penalize constraint
violations quadratically instead of linearly. NN-PA-
IT (derivation omitted) sets x* and 6* in Eq. (11) as
follows

K'=p/ 6"=0 if g <y
¢ - At t (14)
=0 60"=f"(0) if g >,
where 3; = ”mt“% and f71(0) denotes any root of
2C

the “regularized” function f,(6) = f,(0) — %.

NN-PA-I is fundamentally more efficient than NN-
PA-TI, because, thanks to Lemma 3, we can com-
pletely avoid solving the root finding problem when-
ever fi(C) > 0. However, it can still be computa-
tionally expensive when f;(C) < 0. To alleviate the
need to solve a root finding problem, both in NN-
PA-I and NN-PA-II, we propose to replace f; '(0)
in Eq. (13) and f7%(0) in Eq. (14) by oy and i,
respectively. The resulting updates are exact when
7+ < y¢ but may only be approximate when g; > ;.
Indeed, in the latter case, the update ensures that
ee(wt+1; (93t7yt)) < ée(’wt; (mtvyt)) but not that the
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Input: wy, o, yi, €, T
|+ 91 =0
u<+ 0, =

Wt,j
“max
Jjixt, ;>0 T,
S < OO

while |s|/(y; +¢€) > 7 do
Update midpoint 0 « (I + u)/2
s < fi(0) (NN-PA-T) or f;(6) (NN-PA-II)
if s <0 then
Update upper bound u + 6
else
Update lower bound [ < 6
end if
end while
Output: ¢

optimization problem is solved optimally. Despite be-
ing approximate, we will show in the next section that
such updates are sufficient to derive an O(v/T) regret
bound, where T is the total number of rounds.

4 Regret analysis

We study the performance of NN-PA-I in the regret
bound model, in which the cumulative loss of our al-
gorithm is compared to the cumulative loss of any com-
peting hypothesis. The competing hypothesis can be
chosen in hindsight, i.e., after observing the entire se-
quence of input-target pairs. The following theorem

holds for both the regular and approximate versions of
NN-PA-I.

Theorem 1 Let (x1,41),...,(xT,yr) be a sequence
of input-target pairs, where x; € R and y; € Ry.
Let wy, ..., wr be a sequence of vectors obtained by the
reqular or approzimate NN-PA-I update rules. Then
Vw € R

T

T
Zfe(wﬁ (¢, yt))_z C(w; (@, yr)) <

t=1

where p = max [

To prove this result (c.f. supplementary material), we
adopt a primal-dual view of online learning [Shalev-
Shwartz and Singer, 2007]. In this view, we define an
optimization problem and we cast online learning as
the task of incrementally increasing the dual objective
function. We prove that the NN-PA-T update rules
guarantee that the dual increases. Note that we can
minimize the right-hand side of (15) with respect to C.

_ |

By choosing C' T

the right-hand side becomes
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|lw|v/Tp, i.e., we obtain an O(v/T) regret bound. In
other words, the difference between the cumulative loss
suffered by NN-PA-T and the cumulative loss of any
fixed non-negative weight vector is bounded by a term
that is sub-linear in the number of iterations 7.

As an immediate corollary of Theorem 1, we analyze
the performance of NN-PA-I for doing k passes over
the observed entries of matrix R.

Corollary 1 Let S be a sequence of rounds of length
T = k|Q| such that on each round t we choose an entry
(ut,i¢) € Q, and all entries of R are chosen k times
in total. If we keep Q fized on all rounds and use NN-
PA-I to update pt,, to pitt, then VP € RI*™

de(pzu (qiprumit)) - de(pup (qita Tutyit))

tes teS
_ 1P TCp,
- 2C 2 7
where ||| denotes the Frobenius norm and p, =

max ||q;||>. If we keep P fized on all rounds and use
1

NN-PA-I to update qﬁt to gt*L, then the same bound

1t

holds but with the roles of P and Q swapped.

In future work, we plan to further study NN-PA’s the-
oretical guarantees in a batch setting.

5 Empirical results

We conduct experiments on the following three popu-
lar large-scale recommendation system datasets.

Table 1: Datasets used in our experiments.

Dataset Users Items Ratings
Movielens10M 69,878 10,677 10,000,054

Netflix 480,189 17,770 | 100,480,507
Yahoo-Music | 1,000,990 | 624,961 | 252,800,275

Due to space limitations, we focus on the NN-PA-I
variant. To determine prediction error, we use strati-
fied selection (w.r.t. the number of ratings per user) in
order to split each dataset’s ratings into 4/5 training
and 1/5 testing. The task is to predict the test rat-
ings. Throughout our experiments we set e = 0, which
is equivalent to choosing the absolute loss as our eval-
uation measure. For easier comparison, we normalize
results by the absolute norm of the rating matrix R.
Throughout this section, we report the average results
over 5 runs. For each run, we initialize P to 0 and
Q randomly with rank m = 30 (all algorithms use the
same initialization in a given run). The number of rat-
ings indicated in Table 1 corresponds to the number
of times the NN-PA-I optimization problem must be

With C=10"* With ¢=10"

80 80

Exact
Bisec (r=10"") -
Bisec (r=10)| *°
- Bisec (r=10"") -
- Approx R

60 60

Absolute error
Absolute error

40| 40|

2 -1 0 1 -1 0 1
10 10 10 10 10 10
Training time (seconds) Training time (seconds)
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ith C'—10-2 ith C=10-!
10 With C=10 101 With C=10
+ 80 . 80
g g
o o
Q Q
5 60f E 60]
o o
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E 2
40 40
2 0 1 2 0 1 2
10 10 10 10 10 10°
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(b) Netflix
ith C=10-1 ith C—
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. 80| . 80
g g R
a o “,“
Q Q
£ 60] 5 60
o ©°
a 2
E <
40, 40
2 1 2 3 1 2 3
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(¢) Yahoo-Music

Training time (seconds)

Figure 1: Convergence of different methods for
solving the NN-PA-I optimization problem. We
compare convergence for two different values of C. Ab-
solute error is normalized, training time (seconds) is in
log-scale. Results are the average of 5 runs.

solved in order to make one pass over the rating matrix

R.

5.1 Solving the NN-PA-I problem

As we mentioned previously, the optimization problem
associated with NN-PA-I can be broken down into two
sub-problems. If g; < y;, there exists a computation-
ally cheap closed-form solution. If §; > y;, we need
to solve Eq. (6), for which no closed-form solution is
available. In this experiment, we compare three meth-
ods for solving Eq. (6):

e Exact: pivot algorithm for finding an exact solu-
tion (c.f. Section 6.3),

e Bisec: bisection algorithm for finding a solution
with tolerance 7 (c.f. Algorithm 2),

e Approx: approximate update (c.f. Section 3).
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Figure 2: Comparison between PA-I and NN-PA-I. We compare prediction error for different values of C.
Absolute error is normalized. Results are the average of 5 runs (each run uses a different initialization).

Figure 1 compares the speed of convergence of the
above methods for two different values of the regu-
larizer parameter C. When C is small, we see that
the different methods perform comparably. This is
because the condition f;(C) > 0 in Lemma 3 is more
likely to hold if C' is small. We can thus avoid solving
an expensive optimization problem most of the time.
When C' is larger, we see that solving the sub-problem
exactly or accurately is slower and does not reduce the
final prediction error. In the next sections, we there-
fore always use the approximate variant of NN-PA-I.

5.2 Comparison with existing methods

Comparison with PA-I. To investigate the valid-
ity of using NMF for the task of matrix completion,
we compare NN-PA-I to the original PA-I [Crammer
et al., 2006] (i.e., without non-negativity constraint).
Both algorithms use the same non-negative initializa-
tions for P and @ and perform 5 passes over the rat-
ing matrix. Figure 2 compares the prediction error
achieved by the two algorithms for different values of
the regularization parameter C. PA-I and NN-PA-I
perform comparably when using the optimal C' param-
eter. However, NN-PA-I is more robust with respect
to the choice of C', which suggests that non-negativity
constraints act as a form of regularization. For PA-I,
we found that initializing P and @ with both pos-
itive and negative values performed poorly compared
to non-negative initialization. This confirms that good
solutions tend to be non-negative.

Comparison with SGD and Coordinate De-
scent. We also compare NN-PA-I to Stochastic Gra-
dient Descent (SGD) and Coordinate Descent (CD).
We choose these methods because they are considered
state-of-the-art in the recommendation system litera-
ture and can easily incorporate the non-negativity con-
straint. We use SGD and CD to minimize the NMF
objective 3, req {Py - i) + 2(IPI% + 1QI2)
with respect to P € R}*™ and Q € RTXd, where /¢

is a loss function and A > 0 is a regularization pa-
rameter. We use the absolute loss for SGD and the
squared loss for CD, since CD cannot handle non-
differentiable loss functions. Common learning rates
for SGD include 1, = % and 7, = % We choose
the latter, since it does not require any extra hyper-
parameter and is known to achieve a O(v/T) regret
bound [Shalev-Shwartz, 2007]. The complexity of CD
for doing one pass is the same as that of NN-PA-I
and SGD, i.e., O(m|Q]) [Yu et al., 2012]. However,
in practice, CD typically requires more memory than
NN-PA-T and SGD because of the necessity to main-
tain a residual matrix.

It is difficult to compare the convergence of methods
that minimize different objectives, because the choice
of the regularization parameter influences the trade-
off between fast early convergence and low final pre-
diction error. We therefore compare the prediction
error achieved by NN-PA-I, SGD and CD for a given
“computational budget”: 1, 3, 5 passes over the rating
matrix R. We hold 25% of the training set to select the
regularization parameter (C for NN-PA-I, A\ for SGD
and CD) that minimizes absolute error then retrain
using the entire training set once the parameter has
been selected.

Results are given in Table 2. NN-PA-I achieves the
lowest prediction error on all datasets when doing 1 or
3 passes. CD achieves slightly lower prediction error
than NN-PA-T on two datasets when doing 5 passes,
although at the cost of substantially longer training
times. Interestingly, the standard deviation of the pre-
diction error for NN-PA-I was much smaller than SGD,
meaning that NN-PA-T is less sensitive than SGD to
initialization. This is because NN-PA-I chooses the
step size (k* and 0* in Eq. (11)) by solving a data-
dependent optimization problem, whereas SGD uses a
data-independent learning rate.

In terms of sparsity, we found that NN-PA-I and SGD
do not achieve very sparse solutions. For example,
on the Yahoo-Music dataset, the percentage of non-
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Table 2: Comparison between NN-PA-I, Stochastic Gradient Descent (SGD) and Coordinate De-
scent (CD). We compare absolute error (normalized) and training time (seconds) for a given “computational
budget”: 1, 3 or 5 passes over the datasets. We tune the regularization parameter (C or ) using a development

set and report the results on the test set.

Dataset [ Passes | [ NN-PA-T [ SGD [ CD

1 Error 23.75 + 0.05 31.58 + 1.91 34.59 + 0.03

Time 3.24 + 0.01 2.68 + 0.01 3.88 + 0.01

Movielens10M 3 Error 20.91 + 0.04 25.27 £+ 0.02 21.38 + 0.05
Time 10.28 £ 0.01 8.09 £ 0.08 12.73 £+ 0.01
5 Error 20.61 £ 0.01 24.54 £ 0.02 20.47 £ 0.01

Time 17.40 + 0.06 13.44 + 0.03 22.57 + 0.01

1 Error 22.32 + 0.01 27.29 + 0.81 34.31 + 0.01

Time 34.29 + 0.10 27.68 + 0.41 36.58 + 0.37

Netflix 3 Error 20.01 + 0.01 24.28 + 0.01 21.60 + 0.01
Time 109.53 £ 2.97 82.98 + 0.14 153.46 £ 0.72
5 Error 19.64 £ 0.01 23.70 £ 0.14 19.37 £ 0.01
Time 181.43 + 0.22 133.59 + 0.60 270.28 + 0.49

1 Error 50.64 + 0.33 52.52 + 0.68 57.08 + 0.28
Time 114.16 + 0.05 96.89 + 0.04 170.38 + 0.06

Yahoo-Music 3 Error 38.44 + 0.16 44.63 £ 1.24 45.32 £ 0.23
Time 335.13 + 0.34 291.59 + 0.24 468.86 + 0.69

5 Error 36.26 £ 0.09 41.62 £ 1.15 37.97 £ 0.21
Time 576.08 + 0.73 475.86 + 2.90 787.57 + 1.68

zero coefficients in matrix @ obtained by NN-PA-I
and SGD with best-tuned regularization parameter
was 85% whereas it was 45% by CD. The fact that
solutions are not very sparse is a well-known issue of
online algorithms in general (see, e.g., [Blondel et al.,
2013] and references therein).

5.3 Model interpretability

In previous work, Zhang et al. [2006] found that NMF
can empirically reduce prediction error compared to
conventional methods such as Singular Value Decom-
position (SVD). Another advantage of NMF is that it
tends to obtain interpretable solutions [Lee and Seung,
1999]. In the case of recommendation system data, the
bases contained in matrix ) can be interpreted as top-
ics or genres. Thanks to the non-negativity constraint,
the coefficients in a basis correspond to the relative
importance of items (e.g., movies) in that basis. It is
therefore possible to sort items in a basis in order of
decreasing coefficients.

To verify whether NN-PA-I can indeed extract rele-
vant topics, we compute the matrix decomposition of
the Movielens10M dataset for 5 different initializations
and select the one which achieves the lowest absolute
error. In the Movielens10M dataset, each movie was
manually assigned to one or more of twenty categories
(e.g., comedy, thriller, etc...). Following Zhang et al.
[2006], we thus set the rank to m = 20 for this ex-
periment. Table 3 indicates the top 5 movies in each
topic or genre. Although some topics contain irrele-
vant movies, we see that related movies tend to cluster
into the same topics. For example, Topic 1 contains
horror movies and Topic 2 contains comedies. NN-PA

can therefore be used to gain insights about the data.

6 Related work

6.1 Non-negative Matrix Factorization

NMF [Lee and Seung, 1999] is an unsupervised ma-
trix factorization method, the goal of which is to min-
imize the reconstruction error between a non-negative
matrix and its low rank decomposition. In this de-
composition, the matrix is represented as a strictly
additive weighted sum of bases. Popular optimiza-
tion methods for NMF include multiplicative meth-
ods [Lee and Seung, 2001], projected gradient descent
[Lin, 2007] and coordinate descent [Hsieh and Dhillon,
2011]. Zhang et al. [2006] previously applied NMF
to the task of non-negative matrix completion and
showed that NMF can reduce prediction error com-
pared to conventional methods such as Singular Value
Decomposition (SVD). Sindhwani et al. [2010] pro-
posed a weighted NMF method, in which they also
enforced non-negativity on the decomposition so as to
lead to interpretable models.

To handle large-scale or real-time data, several authors
have proposed online NMF algorithms [Cao et al.,
2007, Mairal et al., 2010, Wang et al., 2011]. However,
they all assume that the data matrix is fully observed.
On the other hand, several state-of-the-art optimiza-
tion methods developed in the recommendation sys-
tem literature, such as SGD (e.g., [Koren et al., 2009])
or coordinate descent (e.g., [Yu et al., 2012]), can eas-
ily incorporate a non-negativity constraint. We thus
compared NN-PA to these methods in Section 5.
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Table 3: Topic model. The top 5 ranked movies in 6 out of 20 topics extracted from the Movielens10M dataset
by NN-PA-I. Categories in parentheses are the tags movies are annotated with in the Movielens10M dataset.

Topic 1 [ Topic 2 [ Topic 3
Scream Dumb & Dumber Pocahontas
(Comedy, Horror, Thriller) (Comedy) (Animation, Children, Musical, ...)
The Fugitive Ace Ventura: Pet Detective Aladdin
(Thriller) (Comedy) (Adventure, Animation, Children, ...)
The Blair Witch Project Five Corners Merry Christmas Mr. Lawrence
(Horror, Thriller) (Drama) (Drama, War)

Deep Cover
(Action, Crime, Thriller)

Ace Ventura: When Nature Calls

(Comedy)

Toy Story

(Adventure, Animation, Children, ...

)

The Plague of the Zombies
(Horror)

Jump Tomorrow
(Comedy, Drama, Romance)

The Sword in the Stone

(Animation, Children, Fantasy, ...

)

Topic 4

[ Topic 5

Topic 6

Belle de jour
(Drama)

Four Weddings and a Funeral
(Comedy, Romance)

Terminator 2: Judgment Day
(Action, Sci-Fi)

Jack the Bear The Birdcage Braveheart
(Comedy, Drama) (Comedy) (Action, Drama, War)
The Cabinet of Dr. Caligari Shakespeare in Love Aliens

(Crime, Drama, Fantasy, ...)

(Comedy, Drama, Romance)

(Action, Horror, Sci-Fi)

M*A*S*H
(Comedy, Drama, War)

Henri V
(Drama, War)

Mortal Kombat
(Action, Adventure, Fantasy)

Bed of Roses
(Drama, Romance)

Three Men and a Baby
(Comedy)

Congo
(Action, Adventure, Mystery, ...)

6.2 Passive-aggressive algorithms

Passive-aggressive algorithms [Crammer et al., 2006]
are a family of online algorithms for supervised learn-
ing. On each round, passive-aggressive algorithms
solve a constrained optimization problem which bal-
ances between two competing goals: being conserva-
tive, in order to retain information acquired on pre-
ceding rounds, and being corrective, in order to make
a more accurate prediction when presented with the
same instance again. Passive-aggressive algorithms
enjoy a certain popularity in the Natural Language
Processing community, where they are often used for
large-scale batch learning. Using the result of an opti-
mization problem comprising two opposing terms was
previously advocated by several authors for deriving
online updates [Littlestone, 1989, Herbster, 2001] and
can be used to motivate SGD updates as well [Kivinen
and Warmuth, 1997]. Consider the following optimiza-
tion problem:

1
w1 = argmin §Hw —wi||* + 0l (w; (x4, 1)),
weRT

where 7; is the learning rate parameter. Since the
above optimization problem does not enjoy an analyt-
ical solution, (projected) SGD performs, on any round
when £§ > 0, the following approximate update instead

Wi41 = max(wt — T]tgt, O)

= max(w; + n5:x¢, 0),

where g, is a subgradient of the function ¢¢(-, (2, y:))
evaluated at w; and s; = sign(y; — ¢). The similarity
between the above update and NN-PA is striking and

sheds some light on NN-PA’s behavior. Namely, NN-
PA can be seen as automatically adjusting the learning
rate 7, in a data-dependent fashion, i.e., based on wy,
x, Y, C and e.

6.3 Relation to projection onto the simplex

The optimization problem in Eq. (6) can be seen as
the problem of Euclidean projection on the convex set
{w € R} | w-x; = y; +e}. Interestingly, this problem
generalizes the well-known problem of projection onto
the standard simplex. Indeed, the two problems are
the same if we set x; to a vector of all ones and y; +
€ to 1. Duchi et al. [2008] propose an ezact pivot
algorithm with expected O(m) complexity for solving
the projection onto the simplex. For completeness,
we derive a similar algorithm for solving Eq. (6) in
the supplementary material. Our algorithm includes
Duchi et al.’s algorithm as a special case. However, as
pointed out in Section 5.1, solving the problem exactly
is slower and does not reduce prediction error.

7 Conclusion

We introduced NN-PA and demonstrated its effective-
ness on three large-scale matrix completion problems.
We also confirmed that NN-PA is able to learn easy-
to-interpret matrix decompositions and we provided
O(VT) regret bounds. A straightforward extension
is to apply NN-PA to semi-NMF, e.g., by applying
a non-negativity constraint to the basis matrix @ but
not the coefficient matrix P. Future work also includes
investigating the effectiveness of NN-PA on real-time
streaming data.
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