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Abstract ral nets (fig. 1), which were originally inspired by bio-
logical systems such as the visual and auditory cortex in
the mammalian brain (Serre et al., 2007), and which have
been proven very successful at learning sophisticated task
such as recognizing faces or speech, when trained on data.
A typical neural net defines
a hierarchical, feedforward,
parametric mapping from in-
puts to outputs. The pa-
rameters\eightg are learned
given a dataset by numeri-
cally minimizing an objec-
tive function. The outputs
of the hidden units at each
layer are obtained by trans-

Intelligent processing of complex signals such as
images is often performed by a hierarchy of non-
linear processing layers, such as a deep net or
an object recognition cascade. Joint estimation
of the parameters of all the layers is a difficult
nonconvex optimization. We describe a general
strategy to learn the parameters and, to some ex-
tent, the architecture of nested systems, which we
call themethod of auxiliary coordinates (MAC)
This replaces the original problem involving a
deeply nested function with a constrained prob-
lem involving a different function in an aug-
mented space without nesting. The constrained . ; \
problem may be solved with penalty-based meth- forming the previous Iayer S
ods using alternating optimization over the pa- ogtputs by a I,near_operatlon
rameters and the auxiliary coordinates. MAC with the Iayers'welghts fol-
has provable convergence, is easy to implement Iov_ved by a PO”"”ear _elem_en-
reusing existing algorithms for single layers, can twise mapping (e.g. sigmoid).
be parallelized trivially and massively, applies Deep, -nonllnear neu_ral nets
even when parameter derivatives are not avail- are gnlversal approxmgtors,
able or not desirable, can perform some model that is, they can gpproxmate
selection on the fly, and is competitive with state- any target mapping (from a

of-the-art nonlinear optimizers even in the serial wide glass) to arbltra_ry accu-
computation setting, often providing reasonable racy given enough units (Bishop, 2006), and can have more
models within a few iterations representation power than shallow nets (Bengio and Le-

Cun, 2007). The hidden units may encode hierarchical, dis-

tributed features that are useful to deal with complex sen-
The continued increase in recent years in data availabilsory data. For example, when trained on images, deep nets
ity and processing power has enabled the development arghn learn low-level features such as edges and T-junctions
practical applicability of ever more powerful models in-sta and high-level features such as parts decompositionsrOthe
tistical machine learning, for example to recognize fages oexamples of hierarchical processing systems, sometimes
speech, or to translate natural language. However, physconsisting of heterogeneous layers such as a deep net fol-
cal limitations in serial computation suggest that scalabl lowed by an SVM, are cascades for object recognition
processing will require algorithms that can be massivelyand scene understanding in computer vision (Serre et al.,
parallelized, so they can profit from the thousands of in-2007) or for phoneme classification in speech processing
expensive processors available in cloud computing. WéSaon and Chien, 2012), wrapper approaches to classifica-
focus on hierarchical, onested processing architectures. tion or regression (e.g. based on dimensionality redugtion
As a particular but important example, consider deep neuwang and Carreira-Peiffiin, 2012), or kinematic chains

in robotics. These and other architectures share a funda-

Appearing in Proceedings of tHg*" International Conference on mental design principlemathematically, they construct a

Artificial Intelligence and Statistics (AISTATS) 2014, Reykjavik, qeeply nested mappina from inputs to outputs
Iceland. JMLR: W&CP volume 33. Copyright 2014 by the au- Py ppINg P P

thors. The ideal performance of a nested system arises when all

Figure 1: Net withK =
3 hidden layers Wi:
weights, z;: auxiliary
coordinates).
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the parameters at all layers are jointly trained to minimizemize single layers or individual units, and does some model
an objective function for the desired task, such as classiselection on the fly. Section 1 describes MAC, section 2

fication error (indeed, there is evidence that plasticityt an describes related work and section 3 gives experimental re-
learning probably occurs at all stages of the ventral strearsults that illustrate the different advantages of MAC.

of primate visual cortex; Serre et al., 2007). However, this

is challenging becauseesting (i.e., function composition) 1 The Method of Auxiliary Coordinates (MAC)
produces inherently nonconvex functiordeint training is

usually done by recursively cqmputing thg gradient yvithl_l The Nested Objective Function

respect to each parameter using the chain rule, as in the

backpropagation algorithm (Rumelhart et al., 1986). Oneror definiteness, we describe the approach for a deep net
can then simply update the parameters with a small step iguch as that of fig. 1. Later sections will show other set-
the negative gradient direction as in gradient descent anings. Consider a regression problem of mapping inguts
stochastic gradient descent (SGD), or feed the gradient tg outputsy (both high-dimensional) with a deep it )

a nonlinear optimization method that will compute a bettergiven a dataset oV pairs (x,,y,). A typical objective
search direction, possibly using second-order informatio function to learn a deep net with hidden layers has the
such as conjugate gradients or L-BFGS (Orr andlidt,  form (to simplify notation, we ignore bias parameters):
1998). This process is repeated until a convergence crite- N

;lon is satisfied. Backprop in any of Fhese"varlants suffers E1(W) = 1 Z ¥ — f(xn;W)||2 1)

rom the problem of vanishing gradients ggvaldsson, 24~

1994; Erhan et al., 2009), where the gradients for lower ) . ] ) )
layers are much smaller than those for higher layers, which o6 W) = e (- BB Wi Wa) 5 W)
causes ill-conditioning of the objective function and lead where each layer function has the forfp(x; W) =

to tiny steps, slowly zigzagging down a curved valley, ande(Wx), i.€., a linear mapping followed by a squashing
a very slow convergence. This problem worsens with thehonlinearity ¢(t) applies a scalar function, such as the
depth of the net and led researchers in the 1990s to give ugigmoid 1/(1 + e~*), elementwise to a vector argument,
in practice with nets beyond around two hidden layers (withwith output in[0, 1]). Our method applies to loss functions
special architectures such as convolutional nets (LeCugther than squared error (e.g. cross-entropy for classifica
et al., 1998) being an exception) until recently, when im-tion), with fully or sparsely connected layers each with
proved initialization strategies (Hinton and Salakhuotin @ different number of hidden units, with weights shared
2006; Bengio et al., 2007) and much faster computers—across layers, and with regularization terms on the weights
but not really any improvement in the optimization algo- W. The basic issue is the deep nesting of the mapping
rithms themselves—have renewed interest in deep archf. The traditional way to minimize (1) is by computing the
tectures. Besides, backprop does not parallelize over laygradient over all weights of the net using backpropagation
ers (and, with nonconvex problems, is hard to parallelizeand feeding it to a nonlinear optimization method. How-
over minibatches if using SGDjs only applicable if the ever, because of the multiple squashing nonlinear layers,
mappings are differentiable with respect to the parametersthe effect on the output of modifying a weight in layer 1
and needs careful tuning of learning rates. In summaryis far smaller than for layef. This poor scaling means
after decades of research in neural net optimization, simthe gradient magnitudes are far smaller for the weights at
ple backprop-based algorithms such as stochastic gradiefte innermost levels, which causes the Hessiaipfto
descent remain the state-of-the-art, particularly whan-co be ill-conditioned; this worsens with the number of layers
bined with good initialization strategies (Orr andiiNer, ~ (Rognvaldsson, 1994; Erhan et al., 2009). As a result, most
1998; Hinton and Salakhutdinov, 2006). In addition, select methods take tiny steps, slowly zigzagging down a curved
ing the best architecture, for example the number of unity/alley, and take a huge time to converge in practice. Also,
in each layer of a deep net, or the number of filterbankghe chain rule requires differentiable layers Wvt.

in a speech front-end processing, requiresabinatorial

search. In practice, this is approximated with a manuall.2 The Method of Auxiliary Coordinates (MAC)
trial-and-error procedure that is very costly in effort axd

pertise required, and leads to suboptimal solutions (wher¥Ve introduce one auxiliary variable per data point and per
often the parameters of each layer are set irrespectiveof thidden unit and define the following equality-constrained
rest of the cascade). optimization problem:

We describe a general optimization strategy for deeply 1 . 2
nested functions that we cathethod of auxiliary coordi- E(W.Z) = 2 z_:l lyn = fxcs1 (2 Wren)IIP ()
nates (MAC)which partly alleviates the vanishing gradi- "

ents problem, has embarrassing parallelization, reuses ex ¢ {ZK” = (2K 105 WK)} n—1. N
isting algorithms (possibly not gradient-based) that -opti z1 = f1(x; W1) Y
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Eachzy, ,, can be seen as the coordinatesgfin an inter- (omitting the subindex and weights):
mediate feature space, or as the hidden unit activations for
X,. Intuitively, by eliminatingZ we see this is equivalent

to the nested problem (1); we can prove under very gen-
eral assumptions that both problems have exactly the same
minimizers. Problem (2) seems more complicated (more  and can be solved using the derivatives wa.0f the
variables and constraints), but each of its terms (objectiv single-layer functions, ..., fx 1.

and constraints) involve only a small subset of parameters

and no nested functions. Below we show this reduces thd hus, theW-step results in many independent, single-layer
ill-conditioning caused by the nesting, and partially deco single-unit problems that can be solved with existing al-

ples many variables, affording an efficient and distributedd0"ithms, without extra programming cost. THestep is
optimization, and model selection within each layer. new, however it always has the same form of a “general-
ized” proximal operator (Rockafellar, 1976). MAC reduces

; - P a complex, highly-coupled problem—training a deep net—
1.3 MAC with Quadratic-Penalty (QP) Optimization to a sequence of simple, uncoupled problems Whestep)
Problem (2) may be solved with several constrained optiwhich are coordinated through the auxiliary variables (the
mization methods. To show the advantages of MAC in thez-step). For a large net with a large dataset, this affords
simplest way, we use the quadratic-penalty (QP) methoén enormous potential for parallel, distributed compaotati
(Nocedal and Wright, 2006). Using the augmented La-And, because eacW- or Z-step operates over very large,
grangian is also possible. We optimize the following func-decoupled blocks of variables, the decrease in the QP ob-

K
1
min 3 |ly — fice (20| +’;; s — fu(zi)

tion over(W, Z) for fixed . > 0 and drivep — oo: jective function is large in each iteration, unlike the tifg-
| X creases achieved in the nested function. These large steps
Eg(W,Z;u) = 3 Z 1y — fx41(zr.n; Wieya)||? (3)  are effectively shortcuts throudW ', Z)-space, instead of
n—1 tiny steps along a curved valley W -space.

Stopping Criterion and Penalty Parameter Exactly
optimizing Eo (W, Z; 1) for eachy follows the minima

. ] ] ] path strictly but is unnecessary, and one usually performs
This defines a continuous pafW (1), Z* (1)) which, un- ap inexact, faster optimization. Unlike in a general QP
der mild assumptions, converges to a minimum of the conprgplem, in our case we have an accurate way to know
strained problem (2), and thus to a minimum of the original,hen we should exit the optimization for a given Since
problem (1) (Carreira-Peran and Wang, 2012). In prac- oy real goal is to minimize the nested erir(W), we

tice, we follow this path loosely. exit when its value increases or decreases less than a set

The QP objective function can be seen as breaking the fundolerance '” relative terms. Fur.ther., asis common in neu-
tional dependences in the nested mapirgd unfolding '@l net training, we use the validation error (i.&,(W)

it over layers. Every squared term involves only a shallowmeasured on a validation set). This means we follow the
mapping; all variable§W,Z) are equally scaled, which Path(W*(x), Z*(n)) not strictly but only inasmuch as we
improves the conditioning of the problem; and the deriva-2PProach a nested minimum, and our approach can be seen
tives required are simpler: we require no backpropagate@S & sophisticated way of taking a descent stefifW)
gradients oveW, and sometimes no gradients o#af, ~ Put derived fromEq (W, Z; ). Using this stopping crite-

at all (see later). We now apply alternating optimization offion maintains our theoretical convergence guarantees, be
the QP objective oveZ andW: cause the path still ends in a minimumisf and we drive

u — oo. How to sety depends on the problem, as with
hpenalty methods in general. A practical strategy is to set
u = 1, since we have observed this already gives good
models in many problems, and then increases needed.

N =
] =

K
+ > Nzkm — fi(ze—1.0: W)
k=1

n=1

W-step Minimizing over W for fixed Z results in a
separate minimization over the weights of eac
hidden unit—each a single-layer, single-unit prob-
lem that can be solved with existing algorithms.
Specifically, for unit(k, k), for k = 1,..., K +1  The Postprocessing Step Once we have finished opti-
(where we defin@x 11, = yn)andh =1,...,Hr  mizing the MAC formulation with the QP method, we
(assuming there arél; units in layerk), we have  can apply a fast post-processing step that both reduces the
a nonhne«;;\vr, least-squares regreSS|on20f the formppjective function, achieves feasibility and eliminatke t
Milw,, Y=g (2khn — frn(Zk—1,n: Win))™, Where  guxiliary coordinates. We simply satisfy the constraints
win IS the weight vector/{th row of W,,) that feeds  py settingzy,, = f(zh10;Wi), k = 1,...,K, n =

into the hth output unit of layerk, and zin,, the 1 . N, and keep all the weights the same except for

corresponding scalar target for poiqt. the last layer, where we s8 ., by fitting fx ., to the
Z-step Minimizing overZ for fixed W separates over the datase{fx (... (f;(X))),Y). One can prove the resulting

coordinatesz,, for each data point. = 1,...,N  weights reduce or leave unchanged the valuEqiw).
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Jointly Learning All the Parameters in Heterogeneous optimal model is often found in early iterations. Thus, the
Architectures  Although the previous description was fo- ability of MAC to decouple optimizations reduces a search
cused on neural nets, where each layer has the same foriwf, an exponential number of complex problems to an it-
MAC applies more generally to “heterogeneous” architec-erated search of a linear number of simple problems (of
tures. Here, each layer or functifpmay be different and course, the model selection search in MAC is still local).
perform a particular type of processing, such as a SVM,

logistic regressor or sparse feature extractor. Typically 2 Discussion and Related Work

specialized training algorithm exists to train such fuoics ] N ]

on their own, possibly not based on derivatives over theXather than an algorithnthe method of auxiliary coordi-
parameters (so that backprop is not applicable or not Conn.ates is a.mathematlcal de_v_|ce to design o_pt|m|zat|on algo-
venient for the entire nested system). For example, a quari|_thms suited for any specmc neste_d architecture, that are
tization layer of an object recognition cascade, or the nonProvably convergent, highly parallelizable and reuse exis
linear layer of a radial basis function (RBF) network, often N9 &lgorithms for non-nested (or shallow) architectures
use ak-means training to estimate the parameters. SimplyN€ key ideais the judicious elimination of subexpressions
reusing this existing training algorithm as tNé-step for N @ nested function via equality constraints. The architec
that layer allows MAC to learn jointly the parameters of the turé need not be strictly feedforward (e.g. recurrent nets)
entire system with minimal programming effort, somethingThe designer need not introduce auxiliary coordinates at

that is not easy or not possible with other methods. every layer: there is a spectrum between no auxiliary coor-
dinates (full nesting), through hybrids that use some aux-
1.4 Model Selection iliary coordinates and some semi-deep nets (which use the

A final advantage of MAC is that it enables an efficient chain rule), to every single hidden unit having an auxil-
search not just over the parameter values of a given archiary coordinate. An auxiliary coordinate may replace any
tecture, but (to some extentyer the architectures them- subexpression of the nested function (e.g. the input to-a hid
selves Traditional model selection usually involves ob- den unit, rather than its output, leading to a quadrsitie
taining optimal parameters (by running an already costlystep). Itis even possible to redefii@t any time during the
numerical optimization) for each possible architecture] a Optimization. Other methods for constrained optimization
then evaluating each architecture based on a criterion sudRay be used (e.g. the augmented Lagrangian rather than
as cross-validation or a Bayesian Information Criterionthe quadratic-penalty method). Depending on the charac-
(BIC), and picking the best (Hastie et al., 2009). Thisteristics of the problem, th& - andZ-steps may be solved
discrete-continuous optimization involves training an ex With any of a number of nonlinear optimization methods,
ponential number of models, so in practice one settles witirom gradient descent to Newton’s method, and using stan-
a suboptimal search (e.g. fixing by hand part of the archidard techniques such as warm starts, caching factorization
tecture based on an expert's iudgment, or Seiecting panigexact steps, stochastic updates using data minibatches,
Separa’[eiy and then Combining them, or doing a gnd oetc. In this respect, MAC is similar to other “metaalgo—
random search; Bergstra and Bengio, 2012). With MAC fithms” such as expectation-maximization (EM) algorithms
model selection may be achieved “on the fly” by having the(Bishop, 2006) and alternating-direction method of multi-
W-step do model selection separately for each layer, angliers (Boyd etal., 2011), which have become ubiquitous in
then letting theZ-step coordinate the layers in the usual statistics, machine learning and optimization. Indeed, th
way. Specifically, consider a model selection criterion ofresult of MAC is a “coordination-minimization” (CM) al-
the form E; (W) 4+ C(W), whereE, is the nested objec- gorithm, that alternates fitting independent layers (Mhwit
tive function (1) and’(W) = Cy (W) +- -+ Cx (W)  coordinating the layers (C).

is additive over the layers of the net. This is SatISf.ledRelated Work We believe we are the first to propose

by many criteria, such as BIC, AIC or minimum descrip- the MAC formulation in full generality for nested function

tion length (Hastie et al., 2009), in which(W) is es- . . .
. ) learning as a provably equivalent, constrained problein tha
sentially proportional to the number of free parameters.

Cross-validation can also be considered. While optimizin IS to be optimized jointly in the space of parameters and

£ (W) COW) drecty s esing e nets (ot OVIAES Uang duadalc pealty svomirte
if we have M choices for each layer, with MAC th&v- grang . '

step separates over layers, and requires testing iy lines of work related to it, and MAC/QP can be seen as giv-

single-layer nets at each iteration. While these model se'—ng a _prmupled setting thatJUSt!f'es previous heuristit .b .
4 . : effective approaches, and opening the door for new, princi-
lection tests are still costly, they may be run in parallatj a

they need not be run at each iteration. That is, we ma)PIed ways of training deep nets and other nested systems.

alternate between running multiple iterations that optemi  Updating the activations of hidden units separately from
W for a given architecture, and running a model-selectiorthe weights of a neural net has been done in the past. (1)
iteration, and we still guarantee a monotonic decrease dtarly work in neural nets considered learning good inter-
Eq(W) + C(W). In practice, we observe that a near- nal representations as important as learning good weights
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(Grossman et al., 1988; Saad and Marom, 1990; Krogmappingf(F(x)) does not minimize the nested error.

etal., 1990; Rohwer, 1990). In fact, backpropagation a3, summary, these works typically sought to have explicit
presented as a method to construct good internal represen- Y, picaly 9 P

tations that represent important features of the task du)maicontrOI on the internal representations or features but _did
(Rumelhart et al., 1986). Thus, while several papers prc)pot solve the nested problem (1). None of them realize
posed objective Hmction:s of bo';h the weights and the actiIhe possibility of using heterogeneous architectures with
vations, these were not intended to solve the nested pro Igyer-spe(_:if_ic _al_gorithms, or of Iear_ning the grchitecﬁltl-re
lem or to achieve distributed optimization, but to help fear self by minimizing a model selection criterion that sepa-

good representations. Typically, these algorithms did no{ates In theW-step. In MAC, the auxiliary coordinates are

. urely a mathematical construct to solve a well-defined,
converge to a solution of the nested problem and were de- T . i
) . : general nested optimization problem, with embarrassing
veloped for a single-hidden-layer net in very small prob-

lems. More recent variations have similar problems (Maparallelism suitable for distributed computation, andas n

et al., 1997: Castillo et al., 2006). (2) More recent work necessarily related to learning good hidden representatio

in learning sparse features with overcomplete dictiosarie Finally, the MAC formulation is similar in spirit to problem
use an explicit penalty (e.d.;) over the features, but this transformations used with the alternating direction metho
has only been considered for a single layer (the one that exaf multipliers (ADMM) (Boyd et al., 2011). Specifically,
tracts the features) and again does not minimize the nesteéd consensus problems one splits an existing variable that
problem (Olshausen and Field, 1996; Ranzato et al., 200@ppears in multiple, additive terms of the objective fumati
Kavukcuoglu et al., 2008). Some work for a single hid- (which then decouple) rather than a functional nesting, for
den layer net mentions the possibility of recovering back-exampleminy f(x) 4+ g(x) becomesniny y f(x) + g(y)
propagation in a limit (Krogh et al., 1990; Kavukcuoglu s.t.x =y, orx is split into non-negative and non-positive
et al., 2008), but this is not used to construct an algo{arts. In contrast, MAC introduces new variables to break
rithm that converges to a nested problem optimum. Rethe nesting. ADMM is known to be very simple, effective
cent works in deep net learning, such as pretraining (Hinand parallelizable, and able to achieve a pretty good esti-
ton and Salakhutdinov, 2006), greedy layerwise trainingmate pretty fast, thanks to the decoupling introduced and
(Bengio et al., 2007) or deep stacking Deng et al. (2012)the ability to use existing optimizers for the subproblems
do a single pass over the net from the input to the outthat arise. MAC also gives these characteristics to prob-
put layer, fixing the weights of each layer sequentially, butlems involving function nesting.

without optimizing a joint objective of all weights. While

these heuristics can be used to achieve good initial weight3 Experiments

they do not converge to a minimum of the nested problem.

(3) Auxiliary variables have been used before in statisticé\le have successfully tested MAC with a variety of models
and machine learning, from early work in factor and ho-and datasets. Here we report a subset of experiments which
mogeneity analysis (Gifi, 1990), to learn dimensionalityillustrate the basic properties of MAC: how it can learn a
reduction mappings given a dataset of high-dimensionahomogeneous architecture (deep sigmoidal autoencoder),
pointsx,,...,xy. Here, one takes the latent coordinatesa heterogeneous architecture (RBF autoencoder combin-
z, of each data poink,, as parameters to be estimated ing k-means- and gradient-based steps), and the heteroge-
together with the reconstruction mappifighat maps la- neous architecture itself. In all cases, we show the speedup
tent points to data space and minimize a least-squares errgghieved with a parallel implementation of MAC as well.
function > ||x,, — f(z,)|?, often by alternating oveft  All experiments were run in the same computer using a sin-
andZ. Various nonlinear versions of this approach existgle processor except the parallel MAC ones.

vyheref is asingle'-layer neural net (Tan and Mavrovounio--l-he W- and Z-steps decouple into subproblems for each
tis, 1995), Gaussian process (Lawrence, 2005) and othergijyen ynitw,, and auxiliary vectow,, respectively. In
However, particularly with nonparametric functions, tine e this paper (except for the MAC minibatch experiment) we

ror can be driven to zero by separating infinitely apart theg, e each of the subproblems (a nonlinear least-squares

Z, and so these methods need ad-hoc ternis anprevent fit) with a Gauss-Newton approach (Nocedal and Wright,
this. The dimensionality reduction by unsupervised regres,00g), which essentially approximates the Hessian by lin-

sion approachlof Carrelra-Pgnan gnd Lu' (2098’ 2010', earizing the objective function, solves a linear systereto g

2011) (generalized to supervised dimensionality redactio 4 gearch direction, does a line search (we use backtracking

in Wang and Carreira-Pefféin, 2012) solves this by 0p- i injtial step sizel), and iterates. In practice 12 itera-

timizing instead)_,,_, ||z, — F(x)[|” + [jx, — £(z,)]| tions converge with high tolerance.

jointly over Z, f and the projection mapping. This can

be seen as a truncated version of our quadratic-penalty afur parallel implementation of MAC/QP is extremely sim-

proach, wherg. is kept constant, and limited to a single- ple at present, yet it achieves large speedups (abaut

hidden-layer net. The resulting estimate for the nestedaster if using 12 processors), which are nearly linear as
a function of the number of processors for all experiments,
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as shown in fig. 5. We used the Matlab Parallel Processin {
Toolbox. The programming effort is insignificant: all we
do is replace the “for” loop over weight vectors (in tVeé-

SGD (e = 20 epochs)

step) or over auxiliary coordinates (in ti#estep) with a o 25 \ CG (e = 100its.)
“parfor” loop. Matlab then sends each iteration of the loop G

to a different processor. We ran this in a shared-memon 5 20 ‘

multiprocessor machine using up to 12 processors (a limi o 157}‘

imposed by our Matlab license). While simple, the Mat- 5 o or 5

lab Parallel Processing Toolbox is quite inefficient. Large % ) § \*-. 0°
speedups may be achievable with other parallel compute © 0 ‘\ MAC (e = 11it.)

tion models such as MPI in C, and using a distributed ar- " Parallel MAC 107,055
chitecture (so that cache and other overheads are reduce S ‘i\ MAC (minibatches) 1

. . . Parallel MAC (minibatches)
3.1 Homogeneous training: deep sigmoidal autoencoder 0 ‘ ‘

We use the USPS dataset, containirfgx 16 grayscale 0 0.5 runltime (hoﬁ}g) 2

images of handwritten digits, i.e., 256D vectors with val- _ . _ o
ues in[0, 1]. We useN = 5000 images for training and Figure 2: Deep autoencoder with USPS handwritten digit
5000 for validation, both randomly selected equally over images: nested function error (1) for each algorithm, with
all digits. We train a deep autoencoder architecture 256arkers shown every iteration (MAC) or every epoch
300—100-20-100-300-256, for a total of o@®0000 (MAC minibatches), every 100 iterations (CG) or every 20
weights, with allK = 5 hidden layers being logistic sig- epochs (SGD); one epoch is one pass over the training set.
moid units and the output layer being linear, trained to min-For MAC/QP, we incremented the penalty parametet
imize the squared reconstruction error. The initial wesght the beginning of each iteration having a red solid marker.

are uniformly sampled from—1/+/fx, 1/+/f%] for layers

k=1,..., K, resp., wherdy is the input dimension (fan-  sion of MAC (using 12 processors) is also shown in blue.
in) to each layer (Orr and Mler, 1998). We used MAC/QP  SGD and CG need many iterations to decrease the error,
introducing auxiliary coordinates for each hidden unit atbut each MAC/QP iteration achieves a large decrease, par-
each layer. For each value pfwe optimizeEg (W, Z; 11), ticularly at the beginning, so that it can reach a pretty good
exiting when the value of the nested erfor(W) onaval-  network pretty fast. While MAC/QP’s serial performance
idation set increases or decreases less than a toleranceigfalready remarkable, its parallel implementation acsev
10~2 in relative terms. We then increagdo 10. a linear speedup on the number of processors (fig. 5).

We compare with two classical backprop-based techfinally, we illustrate how MAC can benefit from using
niques, stochastic gradient descent and conjugate gradiinibatches (as in SGD) and inexact steps. We modified
ents. Stochastic gradient descent (SGD) has several pghe W andZ steps as follows. Using minibatches of size
rameters that should be carefully set by the user to ensurg00, we run theZ step on a minibatch and then run the
that convergence occurs, and that convergence is as fast 8 step on that minibatch (using 5 iterations of CG). Af-
possible. We did a grid search for the minibatch size inter that, we switch to the next minibatch. The blue curve
{1,10, 20, 50, 100, 200, 500, 1000, 5000} and learning rate  shows the result, where each marker denotes the error af-
in {1,10,100,1000} x 10~7. We found minibatches of 20 ter one epoch. The first epoch reduces the error to that of
samples and a learning rate ti—® were best. We ran- several epochs of batch MAC. We run 3 epochs and then
domly permute the training set at the beginning of eachapplied a postprocessing step, reaching even a better error
epoch. For nonlinear conjugate gradients (CG), we useghan with the batch MAC. The cyan curve shows the paral-
the Polak-Ribere version, widely regarded as the best (No-lel MAC minibatch. Thus, SGD should not be viewed as a
cedal and Wright, 2006). We use Carl Rasmussen’s imdifferent, competing approach to MAC, but as an optimiza-
plementationmi ni mi ze. m which uses a line search based tion technique that can be used within the MAC steps.

on cubic interpolation that is more sophisticated than back

tracking, and allows steps Ionger than 1. We found a m|n|32 Heterogeneous Training: RBF Autoencoder

batch of NV (i.e., batch mode) worked best, and restarts &Vive use the COIL-20 image dataset (Nene et al., 1996),

ery 100 steps. While it is possible to fine-tune the perfor- - . . .
containing rotation sequences of 20 different objectsyever
mance of SGD, CG and MAC even further, our results seeny . .
. , . degrees (72 images per object), eadl x 32 grayscale
representative of each method’s behavior. ; AR L i
image with pixel intensity if0, 1]. Thus, the data contain
Figure 2 plots the mean squared training error for the nested0 closed, nonlinear 1D manifolds inl&®24—dimensional
objective function (1) vs run time for the different algo- space. We pick half of the images from objects 1 (duck)
rithms. The validation error follows closely the training e and 4 (cat) as validation set, which leaves a training set of
ror and is not plotted. The learning curve of the parallel ver N = 1368 images.
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We train an autoencoder architecture to minimize the

. : . 2 5=<— K= 1 ‘ —MAC
squared reconstruction error, defined not to use gradieni Alt. opt.
during training, as follows. The bottleneck layer of low- E —— Parallel MAC ||
dimensional codes has only 2 units. Both the encode
and the decoder are radial basis function (RBF) networks 2
each having a single hidden layer. The first one (encoder
has the formz = fg(fl (X; Wl),Wg) = Wsyfj (X;Wl), g
where the vectoff; (x; W;) hasM; = 1368 elements 'g‘ § p=5
(basis functions) of the formexp (— ||(x — w1;)/o1||?), T
i =1,...,My, with oy = 4, and maps an image to a
2D spacez. The second one (decoder) has the form= % 1 2 3 5
fi(f3(z; W3); Wy) = W, fs3(z; W3), where the vector runtime (hours)
f3(z; W3) hasM; = 1368 elements (basis functions) of Figure 3: RBF autoencoder with COIL-20 images: nested
the formexp (— ||(x — ws;)/o3||?), @ = 1,..., Ms, with  function error (4) for each algorithm, with markers shown

o3 = 0.5, and maps a 2D point to a 1024D image. every iteration. Other details as in fig. 2.

Thus, the complete autoencoder is the concatenation of the o )

two Gaussian RBF networks, it hd§ = 3 hidden layers k-means-based RBF training algorithm for each of the en-
with sizes 1024-1368-2-1368-1024, and a total of almos.FfOder anq decoder separa}tely. ~We start with= 1 and

3 million weights. As is usual with RBF networks, we ap- increase ittq. = 5 after 70 iterations.

plied a quadratic regularization to the linear-layer wésgh e can use an alternating optimization approach directly
with a small value k> = Ay = 10~%). The nested problem o the nested problem by alternating the following two
is then to minimize the following objective function, which steps: (1) A step where we fi{W,;, W5) and train
is a least-squares error plus a quadratic regularization OPW 3, W), by applyingk-means toW; and a linear sys-
the linear-layer weights: tem toW . This step is identical to th&-step in MAC

1 X over (Wi, W,). (2) A step where we fiXW3;, W,) and
E\(W) =5 D Ny = £ W + Az [[Wa 3 + A [ W7 traingwl, ng, by applyingk-means tdvél anda n)onlin-
et ear optimization toWV, (we use nonlinear conjugate gradi-
ents with 10 steps). This is becal®é, no longer appears
In practice, RBF networks are trained in two stageslinearly in the objective function, but is nonlinearly em-
(Bishop, 2006). Consider the encoder, for example. Firstbedded as the argument of the decoder. This step is signif-
one trains the cente/; using a clustering algorithm ap- icantly slower than théV-step in MAC over(Ws, Wy).
plied to the inputs{x,, }V_,, typically k-means or (when Since we use as many centers as data poifis£ M; =
the number of centers is large) simply by fixing them to beN), the k-means step simplifies (also for MAC) to setting
a random subset of the inputs. Second, having determinegch basis function center to an input point.

W, one obtain$V, from a linear least-squares problem, |, yhig experiment, instead of using random initial weights

by solving a linear system. The reason why this i preyye ohtained initial values for tH& coordinates by running

ferred to a fully nonlinear optimization over centé&vg, a nonlinear embedding method based onthe N Gaus-
anq WelghtsW2 IS that it achieves negr-opumal nets with sian similarity values between every pair of COIL images.
a simple, noniterative procedure. This type of two-stage

noniterative strategy to obtain nonlinear networks is Wide Fig. 3 shows the nested function error (4) per data point. As
applied beyond RBF networks, for example with supportbefore, MAC/QP achieves a large error decrease in a few
vector machines, kernel PCA, sliced inverse regression anigerations. Alternating optimization is much slower. The
others (Hastie et al., 2009). We wish to capitalize on this atparallel implementation of MAC achieves a large speedup.
tractive property to train deep autoencoders construgted b§.3 Learning the Architecture: RBF Autoencoder
concatenating RBF networks. However, backprop-base o )

algorithms are incompatible with this two-stage trainingNOW We jointly learn the architecture of the RBF encoder
procedure, since it does not use derivatives to optimize ovend decoder by trying0 different values for the number
the centers. This leads us to the two following optimization©f basis functions in each (a search spacé_(ﬁf_: 2500
methods: an alternating optimization approach, and MAC architectures). We define the following objective function

We define the MAC ed o ol W over architectures and their weights:

e define the -constrained problem as follows. We _

introduce auxiliary coordinates only at the coding layer BE(W) = Ei(W) + C(W) ()
(rather than at allk = 3 hidden layers). This allows where E;(W) is the nested error from eq. (4) (includ-
the W-step to become the desiréemeans plus linear sys- ing regularization terms), an@(W) = C(Wq) + --- +
tem training for the encoder and decoder separately. It re€(W,) is the model selection term. We use the AIC cri-
quires no programming effort; we simply call an existing, terion (Hastie et al., 2009), defined B$0©) = SSE®) +

£(x; W) = fa(f3(f2(f1(x; W1); W2); W3); W), (4)
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RPYITRECI | | o 5| - ol dua 7]
\ “ 5 : 2 |[-colL (eamarch) . - |
100t~ =1 | T ——_ (1050, 150) ] D 4
c ‘ 22 / ‘\‘ | 8_
-% (700, 150) \‘ » 5
.5 80r 215 L\A‘m (1368,150) | : . . : =
o R r/ number of processors
2 gor | 21 /“ 11 _ _
8 | . \ Figure 5: Parallel processing speedup of MAC/QP vs the
o) a \ ] number of processors for the experiments of figures 2—4.
o | 20.5 )
407 ‘ ‘ ‘ -
| 20 40 60 80 (solid if the architecture did change and empty if it did not
20 (S R N change), annotated with the resulting value df;, Ms).

‘ : : The first change of architecture moves to a far smaller
20 40 60 80 model (M, M3) = (700,150), achieving an enormous
lteration decrease in objective. This is explained by the strong
Figure 4: Learning the architecture of the RBF autoencodebenany that AIC imposes on the number of parameters, fa-
of fig. 3 using MAC. We show the total errdf, (W) +  yoring simpler models. Then, this is followed by a few
C(W) (the nested function error (1) plus the model cost)mingr changes of architecture interleaved with a contin-
per point. Model selection steps are run every 10 iteraions,oys optimization of its weights. The final architecture
shown with green markers (solid if the architecture changeg,55 (M, Ms) = (1368,150), for a total of 1.5 million
and empty if it does not change). Other details as in fig. 3.\yeights. While this architecture incurs a larger training er
ror than that of the previous section, it uses a much sim-
C(©) (times a constant;, which we omit). SSE®) is  pler model and has a lower value for the overall objective
the sum of squared errors achieved with a model havingunction of eq. (5). Because, early during the optimization
parameter® in the training set. And’(®) = 2¢2 @], MAC/QP settles on an architecture that is quite smaller
wheree? is the mean squared error achieved by a low-biaghan the one used in fig. 3, the result is in fact achieved
model (typically estimated by training a model with many in even less time. And, again, the parallel implementation
parameters) an®| is the number of free parameters in the is trivial and achieves an approximately linear speedup on
model. In our case, this equd® | = (D + L)(M; + M3)  the number of processors (fig. 5).
(centers and linear weights), whefd; and M3 are the

numbers of centers for the encoder and decoder, resp. (fir h . . .
p- ( MAC drastically facilitates, in runtime and human ef-

and third hidden layers), and = 1024 andL = 2 are the fort._th tical desi d estimati f
input and output dimension of the encoder, resp. (equiva-or’ € practical design and estimation of nonconvex,

lently, the output and input dimension of the decoder). hested prpblem; py jointly.optimizing over all parame-
ters, reusing existing algorithms (possibly not based on

We choose each of the numbers of cenfdisandM; from  gradients), searching automatically over architectures a

a discrete set consisting of th6 equispaced values in the affording massively parallel computation, while provably
rangel50 to 1368 (a total of 50> = 2500 different archi-  converging to a solution of the nested problem. It could re-
tectures). We estimated = 0.05 from the result of the place or complement backprop-based algorithms in learn-
RBF autoencoder of section 3.2, which had a large numing nested systems both in the serial and parallel settings.
ber of parameters and thus a low bias. As in that sectionAn important application may be the joint, automatic tun-
the centers of each network are constrained to be equal g of all stages of a complex processing such as those in
a subset of the input points (chosen at random). We setomputer vision and speech, in a distributed cloud comput-
o1 = 4,03 = 25and\; = A\, = 1073, We start the ing environment. A more ambitious goal would be to allow
MAC/QP optimization from the most complex model, hav- non-experts to construct and deploy complex nested sys-
ing M, = M3z = 1368 centers (i.e., the model of the previ- tems by simply combining existing modules (such as neu-
ous section). While every iteration optimizes the MAC/QPral nets, RBFs or SVMSs) in a LEGO-like way and having
objective function (3) ovefW, Z), we run a model selec- a “compiler” automatically derive a MAC formulation and
tion step only every 10 iterations. This selects separatelynap it onto a target multiprocessor architecture. MAC also
for each net the best/;, value and potentially changes the opens many questions, such as the optimal way to introduce
size of W. Thus, every 11th iteration is a model selection auxiliary coordinates in a given problem, the choice of spe-
step, which may or may not change the architecture. cific algorithms to optimize th&V- andZ-steps, and exten-

Figure 4 shows the total errdi(W) = E;(W) + C(W) sions to deep belief nets, recurrent nets and other models.
of eq. (5) (the nested function error plus the model cost)Acknowledgments
Model selection steps are indicated with green markerdVork funded in part by NSF CAREER award 11S-0754089.

4. Conclusion
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