
Distributed Optimization of Deeply Nested Systems

Miguel Á. Carreira-Perpi ñán Weiran Wang
Electrical Engineering and Computer Science, School of Engineering, University of California, Merced

Abstract

Intelligent processing of complex signals such as
images is often performed by a hierarchy of non-
linear processing layers, such as a deep net or
an object recognition cascade. Joint estimation
of the parameters of all the layers is a difficult
nonconvex optimization. We describe a general
strategy to learn the parameters and, to some ex-
tent, the architecture of nested systems, which we
call themethod of auxiliary coordinates (MAC).
This replaces the original problem involving a
deeply nested function with a constrained prob-
lem involving a different function in an aug-
mented space without nesting. The constrained
problem may be solved with penalty-based meth-
ods using alternating optimization over the pa-
rameters and the auxiliary coordinates. MAC
has provable convergence, is easy to implement
reusing existing algorithms for single layers, can
be parallelized trivially and massively, applies
even when parameter derivatives are not avail-
able or not desirable, can perform some model
selection on the fly, and is competitive with state-
of-the-art nonlinear optimizers even in the serial
computation setting, often providing reasonable
models within a few iterations.

The continued increase in recent years in data availabil-
ity and processing power has enabled the development and
practical applicability of ever more powerful models in sta-
tistical machine learning, for example to recognize faces or
speech, or to translate natural language. However, physi-
cal limitations in serial computation suggest that scalable
processing will require algorithms that can be massively
parallelized, so they can profit from the thousands of in-
expensive processors available in cloud computing. We
focus on hierarchical, ornested, processing architectures.
As a particular but important example, consider deep neu-

Appearing in Proceedings of the17th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2014, Reykjavik,
Iceland. JMLR: W&CP volume 33. Copyright 2014 by the au-
thors.

ral nets (fig. 1), which were originally inspired by bio-
logical systems such as the visual and auditory cortex in
the mammalian brain (Serre et al., 2007), and which have
been proven very successful at learning sophisticated tasks,
such as recognizing faces or speech, when trained on data.

x

y

z1

z2

z3

W1

W2

W3

W4

σσ

σσ

σ σ

Figure 1: Net withK =
3 hidden layers (Wk:
weights, zk: auxiliary
coordinates).

A typical neural net defines
a hierarchical, feedforward,
parametric mapping from in-
puts to outputs. The pa-
rameters (weights) are learned
given a dataset by numeri-
cally minimizing an objec-
tive function. The outputs
of the hidden units at each
layer are obtained by trans-
forming the previous layer’s
outputs by a linear operation
with the layer’s weights fol-
lowed by a nonlinear elemen-
twise mapping (e.g. sigmoid).
Deep, nonlinear neural nets
are universal approximators,
that is, they can approximate
any target mapping (from a
wide class) to arbitrary accu-
racy given enough units (Bishop, 2006), and can have more
representation power than shallow nets (Bengio and Le-
Cun, 2007). The hidden units may encode hierarchical, dis-
tributed features that are useful to deal with complex sen-
sory data. For example, when trained on images, deep nets
can learn low-level features such as edges and T-junctions
and high-level features such as parts decompositions. Other
examples of hierarchical processing systems, sometimes
consisting of heterogeneous layers such as a deep net fol-
lowed by an SVM, are cascades for object recognition
and scene understanding in computer vision (Serre et al.,
2007) or for phoneme classification in speech processing
(Saon and Chien, 2012), wrapper approaches to classifica-
tion or regression (e.g. based on dimensionality reduction;
Wang and Carreira-Perpiñán, 2012), or kinematic chains
in robotics. These and other architectures share a funda-
mental design principle:mathematically, they construct a
deeply nested mapping from inputs to outputs.

The ideal performance of a nested system arises when all

10

Distributed Optimization of Deeply Nested Systems

the parameters at all layers are jointly trained to minimize
an objective function for the desired task, such as classi-
fication error (indeed, there is evidence that plasticity and
learning probably occurs at all stages of the ventral stream
of primate visual cortex; Serre et al., 2007). However, this
is challenging becausenesting (i.e., function composition)
produces inherently nonconvex functions. Joint training is
usually done by recursively computing the gradient with
respect to each parameter using the chain rule, as in the
backpropagation algorithm (Rumelhart et al., 1986). One
can then simply update the parameters with a small step in
the negative gradient direction as in gradient descent and
stochastic gradient descent (SGD), or feed the gradient to
a nonlinear optimization method that will compute a better
search direction, possibly using second-order information,
such as conjugate gradients or L-BFGS (Orr and Müller,
1998). This process is repeated until a convergence crite-
rion is satisfied. Backprop in any of these variants suffers
from the problem of vanishing gradients (Rögnvaldsson,
1994; Erhan et al., 2009), where the gradients for lower
layers are much smaller than those for higher layers, which
causes ill-conditioning of the objective function and leads
to tiny steps, slowly zigzagging down a curved valley, and
a very slow convergence. This problem worsens with the
depth of the net and led researchers in the 1990s to give up
in practice with nets beyond around two hidden layers (with
special architectures such as convolutional nets (LeCun
et al., 1998) being an exception) until recently, when im-
proved initialization strategies (Hinton and Salakhutdinov,
2006; Bengio et al., 2007) and much faster computers—
but not really any improvement in the optimization algo-
rithms themselves—have renewed interest in deep archi-
tectures. Besides, backprop does not parallelize over lay-
ers (and, with nonconvex problems, is hard to parallelize
over minibatches if using SGD),is only applicable if the
mappings are differentiable with respect to the parameters,
and needs careful tuning of learning rates. In summary,
after decades of research in neural net optimization, sim-
ple backprop-based algorithms such as stochastic gradient
descent remain the state-of-the-art, particularly when com-
bined with good initialization strategies (Orr and Müller,
1998; Hinton and Salakhutdinov, 2006). In addition, select-
ing the best architecture, for example the number of units
in each layer of a deep net, or the number of filterbanks
in a speech front-end processing, requires acombinatorial
search. In practice, this is approximated with a manual
trial-and-error procedure that is very costly in effort andex-
pertise required, and leads to suboptimal solutions (where
often the parameters of each layer are set irrespective of the
rest of the cascade).

We describe a general optimization strategy for deeply
nested functions that we callmethod of auxiliary coordi-
nates (MAC), which partly alleviates the vanishing gradi-
ents problem, has embarrassing parallelization, reuses ex-
isting algorithms (possibly not gradient-based) that opti-

mize single layers or individual units, and does some model
selection on the fly. Section 1 describes MAC, section 2
describes related work and section 3 gives experimental re-
sults that illustrate the different advantages of MAC.

1 The Method of Auxiliary Coordinates (MAC)

1.1 The Nested Objective Function

For definiteness, we describe the approach for a deep net
such as that of fig. 1. Later sections will show other set-
tings. Consider a regression problem of mapping inputsx

to outputsy (both high-dimensional) with a deep netf(x)
given a dataset ofN pairs (xn,yn). A typical objective
function to learn a deep net withK hidden layers has the
form (to simplify notation, we ignore bias parameters):

E1(W) =
1

2

N
∑

n=1

‖yn − f(xn;W)‖2 (1)

f(x;W) = fK+1(. . . f2(f1(x;W1);W2) . . . ;WK+1)

where each layer function has the formfk(x;Wk) =
σ(Wkx), i.e., a linear mapping followed by a squashing
nonlinearity (σ(t) applies a scalar function, such as the
sigmoid1/(1 + e−t), elementwise to a vector argument,
with output in[0, 1]). Our method applies to loss functions
other than squared error (e.g. cross-entropy for classifica-
tion), with fully or sparsely connected layers each with
a different number of hidden units, with weights shared
across layers, and with regularization terms on the weights
Wk. The basic issue is the deep nesting of the mapping
f . The traditional way to minimize (1) is by computing the
gradient over all weights of the net using backpropagation
and feeding it to a nonlinear optimization method. How-
ever, because of the multiple squashing nonlinear layers,
the effect on the output of modifying a weight in layer 1
is far smaller than for layerK. This poor scaling means
the gradient magnitudes are far smaller for the weights at
the innermost levels, which causes the Hessian ofE1 to
be ill-conditioned; this worsens with the number of layers
(Rögnvaldsson, 1994; Erhan et al., 2009). As a result, most
methods take tiny steps, slowly zigzagging down a curved
valley, and take a huge time to converge in practice. Also,
the chain rule requires differentiable layers wrtW.

1.2 The Method of Auxiliary Coordinates (MAC)

We introduce one auxiliary variable per data point and per
hidden unit and define the following equality-constrained
optimization problem:

E(W,Z) =
1

2

N
∑

n=1

‖yn − fK+1(zK,n;WK+1)‖2 (2)

s.t.

{

zK,n = fK(zK−1,n;WK)
. . .
z1,n = f1(xn;W1)

}

n = 1, . . . , N.

11

Miguel Á. Carreira-Perpi ñán, Weiran Wang

Eachzk,n can be seen as the coordinates ofxn in an inter-
mediate feature space, or as the hidden unit activations for
xn. Intuitively, by eliminatingZ we see this is equivalent
to the nested problem (1); we can prove under very gen-
eral assumptions that both problems have exactly the same
minimizers. Problem (2) seems more complicated (more
variables and constraints), but each of its terms (objective
and constraints) involve only a small subset of parameters
and no nested functions. Below we show this reduces the
ill-conditioning caused by the nesting, and partially decou-
ples many variables, affording an efficient and distributed
optimization, and model selection within each layer.

1.3 MAC with Quadratic-Penalty (QP) Optimization

Problem (2) may be solved with several constrained opti-
mization methods. To show the advantages of MAC in the
simplest way, we use the quadratic-penalty (QP) method
(Nocedal and Wright, 2006). Using the augmented La-
grangian is also possible. We optimize the following func-
tion over(W,Z) for fixedµ > 0 and driveµ → ∞:

EQ(W,Z;µ) =
1

2

N
∑

n=1

‖yn − fK+1(zK,n;WK+1)‖2 (3)

+
µ

2

N
∑

n=1

K
∑

k=1

‖zk,n − fk(zk−1,n;Wk)‖2.

This defines a continuous path(W∗(µ),Z∗(µ)) which, un-
der mild assumptions, converges to a minimum of the con-
strained problem (2), and thus to a minimum of the original
problem (1) (Carreira-Perpiñán and Wang, 2012). In prac-
tice, we follow this path loosely.

The QP objective function can be seen as breaking the func-
tional dependences in the nested mappingf and unfolding
it over layers. Every squared term involves only a shallow
mapping; all variables(W,Z) are equally scaled, which
improves the conditioning of the problem; and the deriva-
tives required are simpler: we require no backpropagated
gradients overW, and sometimes no gradients overWk

at all (see later). We now apply alternating optimization of
the QP objective overZ andW:

W-step Minimizing over W for fixed Z results in a
separate minimization over the weights of each
hidden unit—each a single-layer, single-unit prob-
lem that can be solved with existing algorithms.
Specifically, for unit(k, h), for k = 1, . . . ,K + 1
(where we definezK+1,n = yn) andh = 1, . . . , Hk

(assuming there areHk units in layerk), we have
a nonlinear, least-squares regression of the form
minwkh

∑N

n=1
(zkh,n − fkh(zk−1,n;wkh))

2, where
wkh is the weight vector (hth row ofWk) that feeds
into the hth output unit of layerk, and zkh,n the
corresponding scalar target for pointxn.

Z-step Minimizing overZ for fixedW separates over the
coordinateszn for each data pointn = 1, . . . , N

(omitting the subindexn and weights):

min
z

1

2
‖y − fK+1(zK)‖2 + µ

2

K
∑

k=1

‖zk − fk(zk−1)‖2

and can be solved using the derivatives w.r.t.z of the
single-layer functionsf1, . . . , fK+1.

Thus, theW-step results in many independent, single-layer
single-unit problems that can be solved with existing al-
gorithms, without extra programming cost. TheZ-step is
new, however it always has the same form of a “general-
ized” proximal operator (Rockafellar, 1976). MAC reduces
a complex, highly-coupled problem—training a deep net—
to a sequence of simple, uncoupled problems (theW-step)
which are coordinated through the auxiliary variables (the
Z-step). For a large net with a large dataset, this affords
an enormous potential for parallel, distributed computation.
And, because eachW- or Z-step operates over very large,
decoupled blocks of variables, the decrease in the QP ob-
jective function is large in each iteration, unlike the tinyde-
creases achieved in the nested function. These large steps
are effectively shortcuts through(W,Z)-space, instead of
tiny steps along a curved valley inW-space.

Stopping Criterion and Penalty Parameter Exactly
optimizing EQ(W,Z;µ) for eachµ follows the minima
path strictly but is unnecessary, and one usually performs
an inexact, faster optimization. Unlike in a general QP
problem, in our case we have an accurate way to know
when we should exit the optimization for a givenµ. Since
our real goal is to minimize the nested errorE1(W), we
exit when its value increases or decreases less than a set
tolerance in relative terms. Further, as is common in neu-
ral net training, we use the validation error (i.e.,E1(W)
measured on a validation set). This means we follow the
path(W∗(µ),Z∗(µ)) not strictly but only inasmuch as we
approach a nested minimum, and our approach can be seen
as a sophisticated way of taking a descent step inE1(W)
but derived fromEQ(W,Z;µ). Using this stopping crite-
rion maintains our theoretical convergence guarantees, be-
cause the path still ends in a minimum ofE1 and we drive
µ → ∞. How to setµ depends on the problem, as with
penalty methods in general. A practical strategy is to set
µ = 1, since we have observed this already gives good
models in many problems, and then increaseµ as needed.

The Postprocessing Step Once we have finished opti-
mizing the MAC formulation with the QP method, we
can apply a fast post-processing step that both reduces the
objective function, achieves feasibility and eliminates the
auxiliary coordinates. We simply satisfy the constraints
by settingzkn = fk(zk−1,n;Wk), k = 1, . . . ,K, n =
1, . . . , N , and keep all the weights the same except for
the last layer, where we setWK+1 by fitting fK+1 to the
dataset(fK(. . . (f1(X))),Y). One can prove the resulting
weights reduce or leave unchanged the value ofE1(W).

12

Distributed Optimization of Deeply Nested Systems

Jointly Learning All the Parameters in Heterogeneous
Architectures Although the previous description was fo-
cused on neural nets, where each layer has the same form,
MAC applies more generally to “heterogeneous” architec-
tures. Here, each layer or functionfk may be different and
perform a particular type of processing, such as a SVM,
logistic regressor or sparse feature extractor. Typically, a
specialized training algorithm exists to train such functions
on their own, possibly not based on derivatives over the
parameters (so that backprop is not applicable or not con-
venient for the entire nested system). For example, a quan-
tization layer of an object recognition cascade, or the non-
linear layer of a radial basis function (RBF) network, often
use ak-means training to estimate the parameters. Simply
reusing this existing training algorithm as theW-step for
that layer allows MAC to learn jointly the parameters of the
entire system with minimal programming effort, something
that is not easy or not possible with other methods.

1.4 Model Selection
A final advantage of MAC is that it enables an efficient
search not just over the parameter values of a given archi-
tecture, but (to some extent)over the architectures them-
selves. Traditional model selection usually involves ob-
taining optimal parameters (by running an already costly
numerical optimization) for each possible architecture, and
then evaluating each architecture based on a criterion such
as cross-validation or a Bayesian Information Criterion
(BIC), and picking the best (Hastie et al., 2009). This
discrete-continuous optimization involves training an ex-
ponential number of models, so in practice one settles with
a suboptimal search (e.g. fixing by hand part of the archi-
tecture based on an expert’s judgment, or selecting parts
separately and then combining them, or doing a grid or
random search; Bergstra and Bengio, 2012). With MAC,
model selection may be achieved “on the fly” by having the
W-step do model selection separately for each layer, and
then letting theZ-step coordinate the layers in the usual
way. Specifically, consider a model selection criterion of
the formE1(W) + C(W), whereE1 is the nested objec-
tive function (1) andC(W) = C1(W1)+ · · ·+CK(WK)
is additive over the layers of the net. This is satisfied
by many criteria, such as BIC, AIC or minimum descrip-
tion length (Hastie et al., 2009), in whichC(W) is es-
sentially proportional to the number of free parameters.
Cross-validation can also be considered. While optimizing
E1(W) + C(W) directly involves testingMK deep nets
if we haveM choices for each layer, with MAC theW-
step separates over layers, and requires testing onlyMK
single-layer nets at each iteration. While these model se-
lection tests are still costly, they may be run in parallel, and
they need not be run at each iteration. That is, we may
alternate between running multiple iterations that optimize
W for a given architecture, and running a model-selection
iteration, and we still guarantee a monotonic decrease of
EQ(W) + C(W). In practice, we observe that a near-

optimal model is often found in early iterations. Thus, the
ability of MAC to decouple optimizations reduces a search
of an exponential number of complex problems to an it-
erated search of a linear number of simple problems (of
course, the model selection search in MAC is still local).

2 Discussion and Related Work

Rather than an algorithm,the method of auxiliary coordi-
nates is a mathematical device to design optimization algo-
rithms suited for any specific nested architecture, that are
provably convergent, highly parallelizable and reuse exist-
ing algorithms for non-nested (or shallow) architectures.
The key idea is the judicious elimination of subexpressions
in a nested function via equality constraints. The architec-
ture need not be strictly feedforward (e.g. recurrent nets).
The designer need not introduce auxiliary coordinates at
every layer: there is a spectrum between no auxiliary coor-
dinates (full nesting), through hybrids that use some aux-
iliary coordinates and some semi-deep nets (which use the
chain rule), to every single hidden unit having an auxil-
iary coordinate. An auxiliary coordinate may replace any
subexpression of the nested function (e.g. the input to a hid-
den unit, rather than its output, leading to a quadraticW-
step). It is even possible to redefineZ at any time during the
optimization. Other methods for constrained optimization
may be used (e.g. the augmented Lagrangian rather than
the quadratic-penalty method). Depending on the charac-
teristics of the problem, theW- andZ-steps may be solved
with any of a number of nonlinear optimization methods,
from gradient descent to Newton’s method, and using stan-
dard techniques such as warm starts, caching factorizations,
inexact steps, stochastic updates using data minibatches,
etc. In this respect, MAC is similar to other “metaalgo-
rithms” such as expectation-maximization (EM) algorithms
(Bishop, 2006) and alternating-direction method of multi-
pliers (Boyd et al., 2011), which have become ubiquitous in
statistics, machine learning and optimization. Indeed, the
result of MAC is a “coordination-minimization” (CM) al-
gorithm, that alternates fitting independent layers (M) with
coordinating the layers (C).

Related Work We believe we are the first to propose
the MAC formulation in full generality for nested function
learning as a provably equivalent, constrained problem that
is to be optimized jointly in the space of parameters and
auxiliary coordinates using quadratic-penalty, augmented
Lagrangian or other methods. However, there exist several
lines of work related to it, and MAC/QP can be seen as giv-
ing a principled setting that justifies previous heuristic but
effective approaches, and opening the door for new, princi-
pled ways of training deep nets and other nested systems.

Updating the activations of hidden units separately from
the weights of a neural net has been done in the past. (1)
Early work in neural nets considered learning good inter-
nal representations as important as learning good weights

13

Miguel Á. Carreira-Perpi ñán, Weiran Wang

(Grossman et al., 1988; Saad and Marom, 1990; Krogh
et al., 1990; Rohwer, 1990). In fact, backpropagation was
presented as a method to construct good internal represen-
tations that represent important features of the task domain
(Rumelhart et al., 1986). Thus, while several papers pro-
posed objective functions of both the weights and the acti-
vations, these were not intended to solve the nested prob-
lem or to achieve distributed optimization, but to help learn
good representations. Typically, these algorithms did not
converge to a solution of the nested problem and were de-
veloped for a single-hidden-layer net in very small prob-
lems. More recent variations have similar problems (Ma
et al., 1997; Castillo et al., 2006). (2) More recent work
in learning sparse features with overcomplete dictionaries
use an explicit penalty (e.g.L1) over the features, but this
has only been considered for a single layer (the one that ex-
tracts the features) and again does not minimize the nested
problem (Olshausen and Field, 1996; Ranzato et al., 2007;
Kavukcuoglu et al., 2008). Some work for a single hid-
den layer net mentions the possibility of recovering back-
propagation in a limit (Krogh et al., 1990; Kavukcuoglu
et al., 2008), but this is not used to construct an algo-
rithm that converges to a nested problem optimum. Re-
cent works in deep net learning, such as pretraining (Hin-
ton and Salakhutdinov, 2006), greedy layerwise training
(Bengio et al., 2007) or deep stacking Deng et al. (2012),
do a single pass over the net from the input to the out-
put layer, fixing the weights of each layer sequentially, but
without optimizing a joint objective of all weights. While
these heuristics can be used to achieve good initial weights,
they do not converge to a minimum of the nested problem.
(3) Auxiliary variables have been used before in statistics
and machine learning, from early work in factor and ho-
mogeneity analysis (Gifi, 1990), to learn dimensionality
reduction mappings given a dataset of high-dimensional
pointsx1, . . . ,xN . Here, one takes the latent coordinates
zn of each data pointxn as parameters to be estimated
together with the reconstruction mappingf that maps la-
tent points to data space and minimize a least-squares error
function

∑N
n=1

‖xn − f(zn)‖2, often by alternating overf
andZ. Various nonlinear versions of this approach exist
wheref is a single-layer neural net (Tan and Mavrovounio-
tis, 1995), Gaussian process (Lawrence, 2005) and others.
However, particularly with nonparametric functions, the er-
ror can be driven to zero by separating infinitely apart the
Z, and so these methods need ad-hoc terms onZ to prevent
this. The dimensionality reduction by unsupervised regres-
sion approach of Carreira-Perpiñán and Lu (2008, 2010,
2011) (generalized to supervised dimensionality reduction
in Wang and Carreira-Perpiñán, 2012) solves this by op-
timizing instead

∑N
n=1

‖zn − F(xn)‖2 + ‖xn − f(zn)‖2
jointly over Z, f and the projection mappingF. This can
be seen as a truncated version of our quadratic-penalty ap-
proach, whereµ is kept constant, and limited to a single-
hidden-layer net. The resulting estimate for the nested

mappingf(F(x)) does not minimize the nested error.

In summary, these works typically sought to have explicit
control on the internal representations or features but did
not solve the nested problem (1). None of them realize
the possibility of using heterogeneous architectures with
layer-specific algorithms, or of learning the architectureit-
self by minimizing a model selection criterion that sepa-
rates in theW-step. In MAC, the auxiliary coordinates are
purely a mathematical construct to solve a well-defined,
general nested optimization problem, with embarrassing
parallelism suitable for distributed computation, and is not
necessarily related to learning good hidden representations.

Finally, the MAC formulation is similar in spirit to problem
transformations used with the alternating direction method
of multipliers (ADMM) (Boyd et al., 2011). Specifically,
in consensus problems one splits an existing variable that
appears in multiple, additive terms of the objective function
(which then decouple) rather than a functional nesting, for
exampleminx f(x) + g(x) becomesminx,y f(x) + g(y)
s.t.x = y, or x is split into non-negative and non-positive
parts. In contrast, MAC introduces new variables to break
the nesting. ADMM is known to be very simple, effective
and parallelizable, and able to achieve a pretty good esti-
mate pretty fast, thanks to the decoupling introduced and
the ability to use existing optimizers for the subproblems
that arise. MAC also gives these characteristics to prob-
lems involving function nesting.

3 Experiments

We have successfully tested MAC with a variety of models
and datasets. Here we report a subset of experiments which
illustrate the basic properties of MAC: how it can learn a
homogeneous architecture (deep sigmoidal autoencoder),
a heterogeneous architecture (RBF autoencoder combin-
ing k-means- and gradient-based steps), and the heteroge-
neous architecture itself. In all cases, we show the speedup
achieved with a parallel implementation of MAC as well.
All experiments were run in the same computer using a sin-
gle processor except the parallel MAC ones.

TheW- andZ-steps decouple into subproblems for each
hidden unitwkh and auxiliary vectorzn, respectively. In
this paper (except for the MAC minibatch experiment) we
solve each of the subproblems (a nonlinear least-squares
fit) with a Gauss-Newton approach (Nocedal and Wright,
2006), which essentially approximates the Hessian by lin-
earizing the objective function, solves a linear system to get
a search direction, does a line search (we use backtracking
with initial step size1), and iterates. In practice 1–2 itera-
tions converge with high tolerance.

Our parallel implementation of MAC/QP is extremely sim-
ple at present, yet it achieves large speedups (about6×
faster if using 12 processors), which are nearly linear as
a function of the number of processors for all experiments,

14

Distributed Optimization of Deeply Nested Systems

as shown in fig. 5. We used the Matlab Parallel Processing
Toolbox. The programming effort is insignificant: all we
do is replace the “for” loop over weight vectors (in theW-
step) or over auxiliary coordinates (in theZ-step) with a
“parfor” loop. Matlab then sends each iteration of the loop
to a different processor. We ran this in a shared-memory
multiprocessor machine using up to 12 processors (a limit
imposed by our Matlab license). While simple, the Mat-
lab Parallel Processing Toolbox is quite inefficient. Larger
speedups may be achievable with other parallel computa-
tion models such as MPI in C, and using a distributed ar-
chitecture (so that cache and other overheads are reduced).

3.1 Homogeneous training: deep sigmoidal autoencoder

We use the USPS dataset, containing16 × 16 grayscale
images of handwritten digits, i.e., 256D vectors with val-
ues in[0, 1]. We useN = 5000 images for training and
5 000 for validation, both randomly selected equally over
all digits. We train a deep autoencoder architecture 256–
300–100–20–100–300–256, for a total of over200 000
weights, with allK = 5 hidden layers being logistic sig-
moid units and the output layer being linear, trained to min-
imize the squared reconstruction error. The initial weights
are uniformly sampled from[−1/

√
fk, 1/

√
fk] for layers

k = 1, . . . ,K, resp., wherefk is the input dimension (fan-
in) to each layer (Orr and M̈uller, 1998). We used MAC/QP
introducing auxiliary coordinates for each hidden unit at
each layer. For each value ofµ, we optimizeEQ(W,Z;µ),
exiting when the value of the nested errorE1(W) on a val-
idation set increases or decreases less than a tolerance of
10−2 in relative terms. We then increaseµ to 10µ.

We compare with two classical backprop-based tech-
niques, stochastic gradient descent and conjugate gradi-
ents. Stochastic gradient descent (SGD) has several pa-
rameters that should be carefully set by the user to ensure
that convergence occurs, and that convergence is as fast as
possible. We did a grid search for the minibatch size in
{1, 10, 20, 50, 100, 200, 500, 1000, 5000} and learning rate
in {1, 10, 100, 1000} × 10−7. We found minibatches of 20
samples and a learning rate of10−6 were best. We ran-
domly permute the training set at the beginning of each
epoch. For nonlinear conjugate gradients (CG), we used
the Polak-Ribìere version, widely regarded as the best (No-
cedal and Wright, 2006). We use Carl Rasmussen’s im-
plementationminimize.m, which uses a line search based
on cubic interpolation that is more sophisticated than back-
tracking, and allows steps longer than 1. We found a mini-
batch ofN (i.e., batch mode) worked best, and restarts ev-
ery 100 steps. While it is possible to fine-tune the perfor-
mance of SGD, CG and MAC even further, our results seem
representative of each method’s behavior.

Figure 2 plots the mean squared training error for the nested
objective function (1) vs run time for the different algo-
rithms. The validation error follows closely the training er-
ror and is not plotted. The learning curve of the parallel ver-

0 0.5 1 1.5 2
0

5

10

15

20

25

30
µ = 1

101 102 103 104 106

107
108

ob
je

ct
iv

e
fu

nc
tio

n

runtime (hours)

MAC (• = 1 it.)
Parallel MAC

MAC (minibatches)
Parallel MAC (minibatches)

CG (• = 100 its.)

SGD (• = 20 epochs)

Figure 2: Deep autoencoder with USPS handwritten digit
images: nested function error (1) for each algorithm, with
markers shown every iteration (MAC) or every epoch
(MAC minibatches), every 100 iterations (CG) or every 20
epochs (SGD); one epoch is one pass over the training set.
For MAC/QP, we incremented the penalty parameterµ at
the beginning of each iteration having a red solid marker.

sion of MAC (using 12 processors) is also shown in blue.
SGD and CG need many iterations to decrease the error,
but each MAC/QP iteration achieves a large decrease, par-
ticularly at the beginning, so that it can reach a pretty good
network pretty fast. While MAC/QP’s serial performance
is already remarkable, its parallel implementation achieves
a linear speedup on the number of processors (fig. 5).

Finally, we illustrate how MAC can benefit from using
minibatches (as in SGD) and inexact steps. We modified
theW andZ steps as follows. Using minibatches of size
100, we run theZ step on a minibatch and then run the
W step on that minibatch (using 5 iterations of CG). Af-
ter that, we switch to the next minibatch. The blue curve
shows the result, where each marker denotes the error af-
ter one epoch. The first epoch reduces the error to that of
several epochs of batch MAC. We run 3 epochs and then
applied a postprocessing step, reaching even a better error
than with the batch MAC. The cyan curve shows the paral-
lel MAC minibatch. Thus, SGD should not be viewed as a
different, competing approach to MAC, but as an optimiza-
tion technique that can be used within the MAC steps.

3.2 Heterogeneous Training: RBF Autoencoder

We use the COIL–20 image dataset (Nene et al., 1996),
containing rotation sequences of 20 different objects every
5 degrees (72 images per object), each a32× 32 grayscale
image with pixel intensity in[0, 1]. Thus, the data contain
20 closed, nonlinear 1D manifolds in a1 024–dimensional
space. We pick half of the images from objects 1 (duck)
and 4 (cat) as validation set, which leaves a training set of
N = 1368 images.

15

Miguel Á. Carreira-Perpi ñán, Weiran Wang

We train an autoencoder architecture to minimize the
squared reconstruction error, defined not to use gradients
during training, as follows. The bottleneck layer of low-
dimensional codes has only 2 units. Both the encoder
and the decoder are radial basis function (RBF) networks,
each having a single hidden layer. The first one (encoder)
has the formz = f2(f1(x;W1);W2) = W2 f1(x;W1),
where the vectorf1(x;W1) hasM1 = 1368 elements
(basis functions) of the formexp (−‖(x−w1i)/σ1‖2),
i = 1, . . . ,M1, with σ1 = 4, and maps an imagex to a
2D spacez. The second one (decoder) has the formx′ =
f4(f3(z;W3);W4) = W4 f3(z;W3), where the vector
f3(z;W3) hasM3 = 1368 elements (basis functions) of
the formexp (−‖(x−w3i)/σ3‖2), i = 1, . . . ,M3, with
σ3 = 0.5, and maps a 2D pointz to a 1 024D image.
Thus, the complete autoencoder is the concatenation of the
two Gaussian RBF networks, it hasK = 3 hidden layers
with sizes 1024–1368–2–1368–1024, and a total of almost
3 million weights. As is usual with RBF networks, we ap-
plied a quadratic regularization to the linear-layer weights
with a small value (λ2 = λ4 = 10−3). The nested problem
is then to minimize the following objective function, which
is a least-squares error plus a quadratic regularization on
the linear-layer weights:

E1(W) =
1

2

N∑

n=1

‖yn − f(xn;W)‖2 + λ2 ‖W2‖
2
F
+ λ4 ‖W4‖

2
F

f(x;W) = f4(f3(f2(f1(x;W1);W2);W3);W4). (4)

In practice, RBF networks are trained in two stages
(Bishop, 2006). Consider the encoder, for example. First,
one trains the centersW1 using a clustering algorithm ap-
plied to the inputs{xn}Nn=1, typically k-means or (when
the number of centers is large) simply by fixing them to be
a random subset of the inputs. Second, having determined
W1, one obtainsW2 from a linear least-squares problem,
by solving a linear system. The reason why this is pre-
ferred to a fully nonlinear optimization over centersW1

and weightsW2 is that it achieves near-optimal nets with
a simple, noniterative procedure. This type of two-stage
noniterative strategy to obtain nonlinear networks is widely
applied beyond RBF networks, for example with support
vector machines, kernel PCA, sliced inverse regression and
others (Hastie et al., 2009). We wish to capitalize on this at-
tractive property to train deep autoencoders constructed by
concatenating RBF networks. However, backprop-based
algorithms are incompatible with this two-stage training
procedure, since it does not use derivatives to optimize over
the centers. This leads us to the two following optimization
methods: an alternating optimization approach, and MAC.

We define the MAC-constrained problem as follows. We
introduce auxiliary coordinates only at the coding layer
(rather than at allK = 3 hidden layers). This allows
theW-step to become the desiredk-means plus linear sys-
tem training for the encoder and decoder separately. It re-
quires no programming effort; we simply call an existing,

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

µ = 1

µ = 5ob
je

ct
iv

e
fu

nc
tio

n

runtime (hours)

MAC
Alt. opt.
Parallel MAC

Figure 3: RBF autoencoder with COIL–20 images: nested
function error (4) for each algorithm, with markers shown
every iteration. Other details as in fig. 2.

k-means-based RBF training algorithm for each of the en-
coder and decoder separately. We start withµ = 1 and
increase it toµ = 5 after 70 iterations.

We can use an alternating optimization approach directly
on the nested problem by alternating the following two
steps: (1) A step where we fix(W1,W2) and train
(W3,W4), by applyingk-means toW3 and a linear sys-
tem toW4. This step is identical to theW-step in MAC
over (W1,W2). (2) A step where we fix(W3,W4) and
train(W1,W2), by applyingk-means toW1 and a nonlin-
ear optimization toW2 (we use nonlinear conjugate gradi-
ents with 10 steps). This is becauseW2 no longer appears
linearly in the objective function, but is nonlinearly em-
bedded as the argument of the decoder. This step is signif-
icantly slower than theW-step in MAC over(W3,W4).
Since we use as many centers as data points (M1 = M3 =
N), thek-means step simplifies (also for MAC) to setting
each basis function center to an input point.

In this experiment, instead of using random initial weights,
we obtained initial values for theZ coordinates by running
a nonlinear embedding method based on theN ×N Gaus-
sian similarity values between every pair of COIL images.

Fig. 3 shows the nested function error (4) per data point. As
before, MAC/QP achieves a large error decrease in a few
iterations. Alternating optimization is much slower. The
parallel implementation of MAC achieves a large speedup.

3.3 Learning the Architecture: RBF Autoencoder

Now we jointly learn the architecture of the RBF encoder
and decoder by trying50 different values for the number
of basis functions in each (a search space of502 = 2500
architectures). We define the following objective function
over architectures and their weights:

Ē(W) = E1(W) + C(W) (5)

whereE1(W) is the nested error from eq. (4) (includ-
ing regularization terms), andC(W) = C(W1) + · · · +
C(W4) is the model selection term. We use the AIC cri-
terion (Hastie et al., 2009), defined asĒ(Θ) = SSE(Θ) +

16

Distributed Optimization of Deeply Nested Systems

20 40 60 80
20

40

60

80

100

120

20 40 60 80

20.5

21

21.5

22

22.5µ = 1

µ = 5

(1 368, 1 368)

(700, 150)

(1 050, 150)

(1 368, 150)

ob
je

ct
iv

e
fu

nc
tio

n

iteration

Figure 4: Learning the architecture of the RBF autoencoder
of fig. 3 using MAC. We show the total errorE1(W) +
C(W) (the nested function error (1) plus the model cost)
per point. Model selection steps are run every 10 iterations,
shown with green markers (solid if the architecture changes
and empty if it does not change). Other details as in fig. 3.

C(Θ) (times a constant1
N

, which we omit). SSE(Θ) is
the sum of squared errors achieved with a model having
parametersΘ in the training set. AndC(Θ) = 2ǫ2 |Θ|,
whereǫ2 is the mean squared error achieved by a low-bias
model (typically estimated by training a model with many
parameters) and|Θ| is the number of free parameters in the
model. In our case, this equals|W| = (D+L)(M1+M3)
(centers and linear weights), whereM1 andM3 are the
numbers of centers for the encoder and decoder, resp. (first
and third hidden layers), andD = 1024 andL = 2 are the
input and output dimension of the encoder, resp. (equiva-
lently, the output and input dimension of the decoder).

We choose each of the numbers of centersM1 andM3 from
a discrete set consisting of the50 equispaced values in the
range150 to 1 368 (a total of502 = 2500 different archi-
tectures). We estimatedǫ2 = 0.05 from the result of the
RBF autoencoder of section 3.2, which had a large num-
ber of parameters and thus a low bias. As in that section,
the centers of each network are constrained to be equal to
a subset of the input points (chosen at random). We set
σ1 = 4, σ3 = 2.5 andλ1 = λ2 = 10−3. We start the
MAC/QP optimization from the most complex model, hav-
ingM1 = M3 = 1368 centers (i.e., the model of the previ-
ous section). While every iteration optimizes the MAC/QP
objective function (3) over(W,Z), we run a model selec-
tion step only every 10 iterations. This selects separately
for each net the bestMk value and potentially changes the
size ofW. Thus, every 11th iteration is a model selection
step, which may or may not change the architecture.

Figure 4 shows the total error̄E(W) = E1(W) + C(W)
of eq. (5) (the nested function error plus the model cost).
Model selection steps are indicated with green markers

2 4 6 8 10 12

2

4

6

number of processors

sp
ee

du
p

USPS data
COIL data
COIL (learn arch.)

Figure 5: Parallel processing speedup of MAC/QP vs the
number of processors for the experiments of figures 2–4.

(solid if the architecture did change and empty if it did not
change), annotated with the resulting value of(M1,M3).
The first change of architecture moves to a far smaller
model (M1,M3) = (700, 150), achieving an enormous
decrease in objective. This is explained by the strong
penalty that AIC imposes on the number of parameters, fa-
voring simpler models. Then, this is followed by a few
minor changes of architecture interleaved with a contin-
uous optimization of its weights. The final architecture
has(M1,M3) = (1 368, 150), for a total of1.5 million
weights. While this architecture incurs a larger training er-
ror than that of the previous section, it uses a much sim-
pler model and has a lower value for the overall objective
function of eq. (5). Because, early during the optimization,
MAC/QP settles on an architecture that is quite smaller
than the one used in fig. 3, the result is in fact achieved
in even less time. And, again, the parallel implementation
is trivial and achieves an approximately linear speedup on
the number of processors (fig. 5).

4 Conclusion
MAC drastically facilitates, in runtime and human ef-
fort, the practical design and estimation of nonconvex,
nested problems by jointly optimizing over all parame-
ters, reusing existing algorithms (possibly not based on
gradients), searching automatically over architectures and
affording massively parallel computation, while provably
converging to a solution of the nested problem. It could re-
place or complement backprop-based algorithms in learn-
ing nested systems both in the serial and parallel settings.
An important application may be the joint, automatic tun-
ing of all stages of a complex processing such as those in
computer vision and speech, in a distributed cloud comput-
ing environment. A more ambitious goal would be to allow
non-experts to construct and deploy complex nested sys-
tems by simply combining existing modules (such as neu-
ral nets, RBFs or SVMs) in a LEGO-like way and having
a “compiler” automatically derive a MAC formulation and
map it onto a target multiprocessor architecture. MAC also
opens many questions, such as the optimal way to introduce
auxiliary coordinates in a given problem, the choice of spe-
cific algorithms to optimize theW- andZ-steps, and exten-
sions to deep belief nets, recurrent nets and other models.

Acknowledgments
Work funded in part by NSF CAREER award IIS–0754089.

17

Miguel Á. Carreira-Perpi ñán, Weiran Wang

References

Y. Bengio and Y. LeCun. Scaling learning algorithms to-
ward AI. In L. Bottou, O. Chapelle, D. DeCoste, and
J. Weston, editors,Large-Scale Kernel Machines, Neu-
ral Information Processing Series, pages 321–360. MIT
Press, 2007.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle.
Greedy layer-wise training of deep networks. In
B. Scḧolkopf, J. Platt, and T. Hofmann, editors,
Advances in Neural Information Processing Systems
(NIPS), volume 19, pages 153–160. MIT Press, Cam-
bridge, MA, 2007.

J. Bergstra and Y. Bengio. Random search for hyper-
parameter optimization.J. Machine Learning Research,
13:281–305, 2012.

C. M. Bishop. Pattern Recognition and Machine Learn-
ing. Springer Series in Information Science and Statis-
tics. Springer-Verlag, Berlin, 2006.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
Distributed optimization and statistical learning via the
alternating direction method of multipliers.Foundations
and Trends in Machine Learning, 3(1):1–122, 2011.

M. Á. Carreira-Perpĩnán and Z. Lu. Dimensionality reduc-
tion by unsupervised regression. InProc. of the 2008
IEEE Computer Society Conf. Computer Vision and Pat-
tern Recognition (CVPR’08), Anchorage, AK, June 23–
28 2008.

M. Á. Carreira-Perpĩnán and Z. Lu. Parametric dimension-
ality reduction by unsupervised regression. InProc. of
the 2010 IEEE Computer Society Conf. Computer Vision
and Pattern Recognition (CVPR’10), pages 1895–1902,
San Francisco, CA, June 13–18 2010.

M. Á. Carreira-Perpĩnán and Z. Lu. Manifold learning and
missing data recovery through unsupervised regression.
In Proc. of the 12th IEEE Int. Conf. Data Mining (ICDM
2011), pages 1014–1019, Vancouver, BC, Dec. 11–14
2011.

M. Á. Carreira-Perpĩnán and W. Wang. Distributed op-
timization of deeply nested systems. Unpublished
manuscript, arXiv:1212.5921, Dec. 24 2012.

E. Castillo, B. Guijarro-Berdĩnas, O. Fontenla-Romero,
and A. Alonso-Betanzos. A very fast learning method
for neural networks based on sensitivity analysis.J. Ma-
chine Learning Research, 7:1159–1182, July 2006.

L. Deng, D. Yu, and J. Platt. Scalable stacking and learning
for building deep architectures. InProc. of the IEEE
Int. Conf. Acoustics, Speech and Sig. Proc. (ICASSP’12),
pages 2133–2136, Kyoto, Japan, Mar. 25–30 2012.

D. Erhan, P. A. Manzagol, Y. Bengio, S. Bengio, and
P. Vincent. The difficulty of training deep architectures
and the effect of unsupervised pre-training. InProc.

of the 12th Int. Workshop on Artificial Intelligence and
Statistics (AISTATS 2009), pages 153–160, Clearwater
Beach, FL, Mar. 21–24 2009.

A. Gifi. Nonlinear Multivariate Analysis. John Wiley &
Sons, 1990.

T. Grossman, R. Meir, and E. Domany. Learning by choice
of internal representations.Complex Systems, 2(5):555–
575, 1988.

T. J. Hastie, R. J. Tibshirani, and J. H. Friedman.The El-
ements of Statistical Learning—Data Mining, Inference
and Prediction. Springer Series in Statistics. Springer-
Verlag, second edition, 2009.

G. E. Hinton and R. R. Salakhutdinov. Reducing the di-
mensionality of data with neural networks.Science, 313
(5786):504–507, July 28 2006.

K. Kavukcuoglu, M. Ranzato, and Y. LeCun. Fast inference
in sparse coding algorithms with applications to object
recognition. Technical Report CBLL–TR–2008–12–01,
Dept. of Computer Science, New York University, Dec. 4
2008.

A. Krogh, C. J. Thorbergsson, and J. A. Hertz. A cost func-
tion for internal representations. In D. S. Touretzky, edi-
tor, Advances in Neural Information Processing Systems
(NIPS), volume 2, pages 733–740. Morgan Kaufmann,
San Mateo, CA, 1990.

N. Lawrence. Probabilistic non-linear principal component
analysis with Gaussian process latent variable models.J.
Machine Learning Research, 6:1783–1816, Nov. 2005.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition.Proc.
IEEE, 86(11):2278–2324, Nov. 1998.

S. Ma, C. Ji, and J. Farmer. An efficient EM-based train-
ing algorithm for feedforward neural networks.Neural
Networks, 10(2):243–256, Mar. 1997.

S. A. Nene, S. K. Nayar, and H. Murase. Columbia
object image library (COIL-20). Technical Report
CUCS–005–96, Dept. of Computer Science, Columbia
University, Feb. 1996.

J. Nocedal and S. J. Wright.Numerical Optimization.
Springer Series in Operations Research and Financial
Engineering. Springer-Verlag, New York, second edi-
tion, 2006.

B. A. Olshausen and D. J. Field. Emergence of simple-
cell receptive field properties by learning a sparse code
for natural images.Nature, 381(6583):607–609, June 13
1996.

G. B. Orr and K.-R. M̈uller, editors. Neural Networks:
Tricks of the Trade, volume 1524 ofLecture Notes in
Computer Science. Springer-Verlag, Berlin, 1998.

M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Effi-
cient learning of sparse representations with an energy-
based model. In B. Schölkopf, J. Platt, and T. Hofmann,

18

Distributed Optimization of Deeply Nested Systems

editors,Advances in Neural Information Processing Sys-
tems (NIPS), volume 19, pages 1137–1144. MIT Press,
Cambridge, MA, 2007.

R. T. Rockafellar. Monotone operators and the proximal
point algorithm. SIAM J. Control and Optim., 14(5):
877–898, 1976.

T. Rögnvaldsson. On Langevin updating in multilayer
perceptrons.Neural Computation, 6(5):916–926, Sept.
1994.

R. Rohwer. The ‘moving targets’ training algorithm. In
D. S. Touretzky, editor,Advances in Neural Information
Processing Systems (NIPS), volume 2, pages 558–565.
Morgan Kaufmann, San Mateo, CA, 1990.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learn-
ing representations by back-propagating errors.Nature,
323:533–536, 1986.

D. Saad and E. Marom. Learning by choice of internal rep-
resentations: An energy minimization approach.Com-
plex Systems, 4(1):107–118, 1990.

G. Saon and J.-T. Chien. Large-vocabulary continuous
speech recognition systems: A look at some recent ad-
vances.IEEE Signal Processing Magazine, 29(6):18–33,
Nov. 2012.

T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Pog-
gio. Robust object recognition with cortex-like mecha-
nisms.IEEE Trans. Pattern Analysis and Machine Intel-
ligence, 29(3):411–426, Mar. 2007.

S. Tan and M. L. Mavrovouniotis. Reducing data di-
mensionality through optimizing neural network inputs.
AIChE Journal, 41(6):1471–1479, June 1995.

W. Wang and M.Á. Carreira-Perpĩnán. Nonlinear low-
dimensional regression using auxiliary coordinates. In
N. Lawrence and M. Girolami, editors,Proc. of the 15th
Int. Workshop on Artificial Intelligence and Statistics
(AISTATS 2012), pages 1295–1304, La Palma, Canary
Islands, Spain, Apr. 21–23 2012.

19

