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Abstract

Bayesian networks (BN) are an extensively
used graphical model for representing a prob-
ability distribution in artificial intelligence,
data mining, and machine learning. In this
paper, we propose a simple model for large
random BNs with bounded indegree, that is,
large directed acyclic graphs (DAG) where
the edges appear at random and each node
has at most a given number of parents. Using
this model, we can study useful asymptotic
properties of large BNs and BN algorithms
with basic combinatorics tools. We estimate
the expected size of a BN, the expected size
increase of moralization, the expected size of
the Markov blanket, and the maximum size
of a minimal d-separator. We also provide
an upper bound on the average time com-
plexity of an algorithm for finding a mini-
mal d-separator. In addition, the estimates
are evaluated against BNs learned from real
world data.

1 INTRODUCTION

A Bayesian network (BN) is a directed acyclic graph
(DAG) that provides a concise representation of a
probability distribution. It is used extensively in ar-
tificial intelligence, data mining, and machine learn-
ing. Because of the increasing amount of data now
available, today many BNs contain a large number of
nodes. Though graphical models have been proposed
for large BNs with repeated structures, such as the dy-
namic BN and plate model, a wide range of important

Appearing in Proceedings of the 17" International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2014, Reykjavik, Iceland. JMLR: W&CP volume 33. Copy-
right 2014 by the authors.

114

Judea Pearl
Cognitive Systems Laboratory
Department of Computer Science
University of California, Los Angeles
Los Angeles, CA 90095
judea@cs.ucla.edu

applications nonetheless involve large BNs with no re-
peated structures (Cohen and Havlin, 2010; Guo and
Hsu, 2002; Jones et al., 2005; Koller and Friedman,
2009; Schadt et al., 2010).

In this paper, we propose a simple model for the dis-
tribution of large random BNs, that is, DAGs where
the edges appear at random, each node has at most k
parents, and k is much less than the number of nodes
n. Using this model and basic combinatorics tools, we
show that the expected size of a BN is O(kn— k2 In n),
the expected number of edges added when moralizing
a BN is O(k*n —k*Inn), and the expected size of the
Markov blanket is O(k? — k*Inn/n). We also show
that the maximum size of a minimal d-separator is k;
and that on the average, a revised version of the algo-
rithm for finding a minimal d-separator by Acid and
De Campos (1996) and Tian et al. (1998) has time
complexity upper-bounded by O (k‘Q(]fS—i-l)n—kQ Inn).
Non-Big-O estimates can be found in Section 4-6. In
addition, we compare our estimates against BNs for
analyzing gene expression data learned from the Gene
Expression Omnibus database (Edgar et al., 2002;
Friedman et al., 2000). The results suggest that this
model provides a useful characterization of the BNs.

The BN distribution of our model has been used as
a prior for BN learning, known as the order-modular
prior (Friedman and Koller, 2000). To the best of our
knowledge, the mathematical property of the model
have yet received much attention. Most work on
random graphs is about undirected graphs (Bollobds,
2001; Janson et al., 2000; Newman, 2009). In addition,
a node in BNs usually has a limited number of par-
ents (Ide and Cozman, 2002). The studies on random
DAGs have not considered DAGs with this property
(Barak and Erdos, 1984; Cohen et al., 2003; Dorogovt-
sev et al., 2001; Karrer and Newman, 2009; Pittel and
Tungol, 2001).
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2 THE MODEL

Inspired by the work of Barak and Erdés (1984) on
random DAGs, we propose the following model for
random BNs.

Definition 1. (Random Bayesian Network)

Given a set of nodes V', where |V| = n, and an integer
k, let Gy 1. denote the random Bayesian network for V
where each node has at most k parents. Then let L de-
note a list of DAGs constructed as follows: Consider
all possible orderings (V,<) of the nodes in V. For
each ordering (V,<), every node v has zero to k par-
ents v', where v' < v. Then P(Gpir = G) = ng/|L|,
where ng is the number of times that G appears in L.

For example, consider V = {X,Y,Z} and k = 1. In
Definition 1, when (V, <) = (X,Y, Z) or (X, Z,Y), the
DAGs constructed are

Y

><:o

X Y Z X Y Z
— 3, o A._\ — 33,
X Y Z X Y Z X Y Z
. . . /:\- . )
X A Y X A Y X VA Y
— . A._\. — 3,
X Z Y X Z Y X Z Y

Figure 1: Given V = {X,Y,Z} and k = 1, when (V, <
) = (X,Y,Z) or (X,Z,Y), the DAGs constructed in
Definition 1.

Note that there are six possible (V,<). Let G be the
edgeless DAG, that is, X Y Z. Since G appears once
for each (V, <), and each (V, <) induces six possible
DAGs, P(Gp,, = G) = 1/6. Then consider the DAG
G': X =Y — Z. Since G’ only appears once when
(V,<) = (X,Y, Z), P(Gps = G') = 1/36.

From the example above, it appears that G, i is likely
to contain isolated nodes. Section 7 shows that when n
is large, G, 1 contains no isolated nodes almost surely.

In addition, note that for a graph G in L, since there
exists a (V, <) such that the parents are always smaller
than the children, G does not contain cycles, and is
therefore a DAG. Moreover, since all possible (V, <)
are considered, L contains all the possible DAG con-
figurations for G,, k.

Now we discuss some fundamental properties of our
random BN model. Given a (V, <), consider distinct
nodes v,v’, pa, ch where pa < v,v" < ch. Recall that
each node has at most k parents. Consequently if v
is already a parent of ch, then v’ is less likely to be a
parent of ch. However since the constraint is only on
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the number of parents, whether pa is a parent of v is
independent of whether pa is a parent of v'. We state
the properties formally as the following theorems.

Theorem 1. (Children Dependence)

Given a random Bayesian network Gy, ;, and an order-
ing (V, <), for distinct nodes v,v’, ch where v,v’ < ch,
the event that whether ch is a child of v and the event
that whether ch is a child of v' are dependent.

Theorem 2. (Parent Independence)

Given a random Bayesian network Gy, ;; and an order-
ing (V, <), for distinct nodes v,v’, pa where pa < v,v’,
the event that whether pa is a parent of v and the event
that whether pa is a parent of v’ are independent.

3 MATHEMATICAL TOOLS

Now we discuss the combinatorics tools that we use to
analyze our random BN model.

First we show the absorption and extraction identities
of the binomial coefficients. Let i be a non-negative
integer. Then

()=o)
=o(i) (")

Then we consider some fundamental tools in proba-
bilistic combinatorics. Let Iy,...,I; be random vari-
ables and I,, be a non-negative random variable that
depends on n. Then

(1)

(2)

Ell +...+I]=E[L]+...+ E[L]. (3)

If nl;rrgo E[I,] — 0, then I,, is zero almost surely. (4)
Equation (3) is known as the linearity of expectation.
Note that Iy, ..., I; may be dependent. Consequently
(3) is a valuable tool for tackling problems involving
dependent events. Equation (4) can be intuitively un-
derstood as follows: Since random variable I, is non-
negative and its expected value approaches zero, it is
almost always zero (Alon and Spencer, 2008).

In addition, we use integral to approximate summation
(Graham et al., 1994). Let f(r) be a smooth function
defined for all reals 7 in [m, n], then

if(i)%/mn

In the following, when integral is used to approximate
S, f(r) to areal number r/, we write .1 f(r) ~
r’. In addition, approximations made without expla-
nation are based on the fact that k < n.

f(r)dr.
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Moreover, let I4 denote the indicator random variable
of event A, that is, T4 = 1 when A occurs, and I, =0
when A does not. Note that E[I4] = P(A).

4 BASIC PROPERTIES

In this section, we study the probability that a given
edge occurs, the expected BN size, and the expected
number of parents for a node in our random BN model.

Recall that the definition of our model involves all pos-
sible (V, <). Consider mapping each (V, <) to integers
between 1 and n. For example, for (V, <) = (X,Y, Z),
map X, Y, Z to1,2,3. The mapping preserves the node
ordering, and therefore can be used to represent (V, <).

4.1 Edge Probability

In this subsection, we consider the probability that
there exists edge X — Y for given X,Y in G, .

4.1.1 Probability Estimation

Let A denote the event that there exists X — Y, and
let O denote the event that in (V, <), X,Y map to
integers z,y. Note that the edge exists only if z < y.
Consequently

P(A)

> P(AJO)P(0).

1<z<y<n

When x < k, Y does not have k nodes to serves as
parents. Since n > k, we ignore these cases. Hence

> P(AJO)P(0).

k<z<y<n

P(4)

~
~

Clearly P(O) =1/ (n(n — 1)). Then note that P(A|O)
is the ratio of the number of DAGs where X is a parent
of Y to the number of DAGs where X may or may not
be a parent of Y when given X < Y. By Theorem 1
and 2, this ratio is the same as the ratio of possible
parents of Y when X is a parent of Y to possible par-
ents of Y when X may or may not be a parent of Y.
When X is a parent, there are y — 2 nodes, other than
X, smaller than Y and may be parents of Y. Conse-
quently there are Zf;ol (yZQ) ways to choose parents
of Y. When X may or may not be a parent, there are
Z?:o (¥7") ways to choose parents of Y. Hence

k=1 ry—2
2izo (yi )
k -1
>izo (yz )
A partial summation of the binomial coefficients such

as the numerator and denominator in the equation
above does not have a closed form (Graham et al.,

P(A|O) =
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1994). Therefore we now simplify this equation. Let
S1= Zi:ol (y_'2) and So = Zf:o (y_-l). Then

K2 K2

Sy = yl_lké(z +1) (f;ll) (by (1))
k
() "
s

=sa- 8- (V%) v ).

Consequently
1 )
P(AlO) == (1 -—kl
2\ XL ()
Since when y is not small, (yzl) + (Zj) = () are

dominant in Z?:o (yzl), we approximate Zf:o (yil)

with (;’i) Similarly, we approximate y — 1 with y. As
a result,

k(k+1)
292

P(A|O) ~ = — (6)

k
Y
Then by using integral to approximate summation,

k k(k+3)lnn
n 2n2 ’

P(A) ~

4.1.2 Approximation Error

Now we give a naive analysis on the error of P(A)
estimation from approximating Zf:o (y;l) with (),
denoted as e(A).

First consider when y > 2k — 1. Note that

y—1 Y
()< @)
Please see the Appendix for details. Consequently the
error in estimating P(A|O), denoted as e(A|O), is

k

D

=0

(y—k+D(y—k+2)
(y—k+D(y—k+2)—k(k—1)

LD D) )
e(A|O) = = —
ao=3 (G - =

k(k—1)(y—k)(y—k—1)

29(y =Dy —k+1)(y—k+2)

Since n > k,
e(A)m > e(AO)P(O)

2k—1<z<y<n

N kE(k—1)Inn

2n? '
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4.2 Expected Size and Number of Parents

Since E[I4] is the expected number of times X — Y
exists for given X,Y, by (3), summing FE[I4] over all
possible X, Y gives the expected size of Gy, :

Y. Elal= ) P(4)

X,Yev X,Yev
k(k+3)Inn
—

~ kn —

Then since each edge induces exactly one parent and
there are n nodes, the expected number of parents a
node has is approximately

k k(k+3)Inn

a 2n ’

5 MORAL GRAPH AND MARKOV
BLANKET ANALYSIS

Now we apply the analysis used in Section 4 to moral
graphs and Markov blankets.

5.1 Moral Graph

In this subsection, we first consider the v-structure for
given parents X,Y and child Z, that is, X — Z < Y
where there are no edges between X and Y. Then we
consider the expected size increase of moralizing a BN.

Let B denote the event that there exists X — Z <Y
and there do not exist edges between X and Y in G,, .
Let B; denote the event that there exists X — Z < Y,
and let By denote the event that there do not exist
edges between X and Y. Let O denote the event that
in (V,<), X,Y,Z map to z,y,z. By Theorem 2, B;
and By are independent given O. Consequently

>

k<z<y<z<n
k<y<z<z<n

~
~

P(B) P(B1|0)P(B2|0)P(O).

Consider when k < z < y < z < n. Note that edges
between X and Y can only be X — Y. Then similar
to Subsection 4.1,

Y () k-1 (. 2kt 1)
k—1 -2
X () ok k(R
P(B3|0) =1 Zfzo (yzl) ” + 57

Please see the Appendix for details. When k£ < y <
x < z < n, the case is essentially identical. As a result,

3k(k — 1)

_k(k-1)(Tk+1)Inn
4n? '

2n3

P(B) ~
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Each v-structure induces exactly one edge to be added
in moralization. Consequently the expected number of
edges added when moralizing G,, j, is

k(k—1)(Tk+1)Inn
1 :

Z BlIs] ~ 3k(k—1)n

{X,Y}CV 8
zZev

5.2 Markov Blanket

The Markov blanket of a node consists of its parents,
spouses, and children. Recall Subsection 4.2. Note
that since each edge induces a parent and a child, the
expected number of parents is identical to the expected
number of children. In addition, since each v-structure
induces two spouses, following Subsection 5.1, the ex-
pected number of spouses is approximately

3k(k—1)  k(k—1)(Tk+1lan
4 B 2n ’

Then the expected size of the Markov blanket is ap-
proximately

k(3k +5) _ k(7Tk* — 5k +2)Inn
4 2n '

6 d-SEPARATOR ANALYSIS

In this section, we consider the problem of finding
a minimal d-separator for given X,Y, that is, a d-
separator such that none of its subsets d-separates X
and Y. We study the maximum size of a minimal d-
separator, and the time needed to find one.

6.1 Maximum Size

If there exists a d-separator for X and Y, at least one
of the following two sets d-separates X and Y: the set
consisting of the parents of X, and the set consisting
of the parents of Y (Pearl, 1988). As a result, the
maximum size of a minimal d-separator is k.

6.2 Complexity

We first review some results on this problem by Acid
and De Campos (1996) and Tian et al. (1998). Let G
be a DAG in G, 1, and let G4 denote the subgraph
induced by the ancestral set of X |JY. A minimal d-
separator of X and Y only needs to d-separate them
in G4, and can be found by running two breadth-first
searches on (G 4)™, where m denotes the moral graph.

The results can be improved by exploiting the fact that
a d-separator of X and Y only needs to d-separate
them in G’4, the subgraph of G4 consisting of paths
between X and Y, as shown in Figure 2. Consequently
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a minimal d-separator can be found by (1) construct
G4, in O(|G 4|) time (2) run two breadth-first searches
on (G\)™, in O (|(G'4)™|) time. Then since G/, is a
subgraph of G 4, the time complexity for finding a min-
imal d-separator O(|Ga|+[(G\)™]) = O(|G a|+|Ewm|),
where E,, is the edges added in G’y moralization.

Zy Z3 A Zy
Zs /\/\
X Y X 73 Y
Zy

(a) DAG G.

(b) DAG ).

Figure 2: A DAG G and its G/,.

Below, we show that the expected time complexity
for finding a minimal d-separator in G, i, that is,
O(|Ga| + |E]), is asymptotically upper bounded by
k3(k —1)2n/20 + k*>n/4 — k? Inn.

6.2.1 Expected Size of G4

Let Z, Z' be two nodes in (V, <) where Z < Z’, and let
S denote the event that edge Z — Z’ is in G 4. Then

D

{z,2'}cV

E[lGall = E[Is].

Let A denote the event that Z, Z’ are ancestors of X
in G, and let B denote that for Y. Let O denote the
event that in (V, <), X, Y, Z, Z' map to z,y, z, z’. Note
that an event may not hold for some (V, <), such as A
when z < z < 2’ <y. Then

>

1<y<z<z'<z<n
1<z<y<z'<z<n
1<z<2' <z<y<n
1<z<2' <y<z<n

>

1<z<z<z'<y<n
1<z<z<z' <y<n
1<z<2 <z<y<n
1<z2<2' <y<z<n

Ells] < E[14|0]1P(0)

+ E[I5|0]P(0).

First note that > E[I4]|O]P(O) = > P(A|O)P(O).
Then since event A states there exists path Z — Z/ —
... — X, consider such a path for a (V, <), as below:

z z24+1 .o -1 2 Z41--2-1 =z

Figure 3: Path Z - 7' — ... = X for a (V, <).
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Note that the edges on the path appear independently.
By (6), we approximate the probability that there ex-
ists Z — Z' with k/2’, and that for W; — X with
k/x, where W; are nodes between Z’ and X. Then let
p; be the probability that there exist paths from Z’ to
W;. Since the events that there exists W; — X are
dependent, and the events that there exist paths from
Z' to W; may also be dependent,

2 k2(x—2' —1)
P(A — sl — _
(Al0) < =1+ pe—zm1) < —
As a result,
k2 Elnn
E[I4|0|P(O ——
> BLOPO) < f -

1<y<z<z'<z<n
1<z<y<z'<z<n
1<z2<2' <z<y<n
1<2<2’' <y<z<n

The second term is essentially the same. Consequently

En

1 k? Inn.

E[|Gal] <

6.2.2 Expected Size of F,,

Let Z,Z' be two nodes in (V, <) where Z < Z’, and
let S’ denote the event that edge Z — Z’ is added when
moralizing G,. Then

E[|En|] =

by

{z,2'}cV

Ells).

Edge Z — Z' is added when there does not exist Z —
Z', and there exist paths of the following types: (a)
X—..2Z2—=272"+7Z —...—Y, where Z” is an
ancestor of Y (b) X + ...« Z > 272"+ 7'+ ... +
Y, where Z" is an ancestor of X (¢) X « ...+ Z —
7"+ 7' — ... =Y, where Z" is an ancestor of X or
Y, or both.

To see this, first note that in (a) Z” cannot be an
ancestor of X or otherwise G contains a loop. Then
consider path X<+ 2y > oy Jyg— Ly Zs—>Y
in Figure 4(a). It appears to induce two edges Z; — Z3
and Z3— Z5 to be added, and yet is not any of the three
types. Nevertheless, since in G’4, nodes other than X
and Y are ancestors of X or Y, there exist paths of the
three types that induce Z; — Z3 and Z3 — Z5, which
in this case are X < Z; — Zy < Z3 — Z4 — Y and
X< o Jd3—> Ly Zs—Y.

By reasoning similar to that for E[|GAl],

431k3(k — 1)n

E||E,n
[Eml] < 9316

Please see the Appendix for details.
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Zl Zg Z5 Zl Z3 Z5
Jé Zy Zy & ! Zy Zy l
X Y X Y

(a) Gla. (b) (G)™.

Figure 4: DAG G/, and its (G/y)™.

7 ISOLATED NODES

In this section, we prove that G, ;, contains no isolated
nodes almost surely, that is, with probability 1.

Let A denote the event that a given node X is isolated,
that is, in (V, <), none of the nodes smaller than X is
a parent of X, and none of the nodes greater than X is
a child of X. Let A; denote the event that none of the
nodes smaller than X is its parent, and let Ay denote
the event that none of the nodes greater than X is its
child. Let O denote the event that in (V, <), X maps
to . By Theorem 2, A; and A, are independent given
O. Hence similar to Subsection 4.1,

S P(4]0)P(4:]0)P(0)

r=k+1

P(A1]0) =
>ico (71)

Then by Theorem 2, whether a node greater than X
is a child of X is independent of whether another such
node is a child of X. By (6), we approximate the
probability that there exists X — Y with k/y. Hence

P(A)

~
~

1

k
=0

r—1
%

n

k
P(A5|0) ~ H L=
1=z+1
Then
1 & [, 1-2 1 & k!
P(A) < = el 0o —
z:zk;i-l (k) n z:zk;i-l (n_ k+ 1)k
k!
T n—k+1)F

As a result, the expected number of nodes that are
isolated

kln
S B[] <
Xev (n—k+1)

Since k > 1, this number approaches zero when n —
oo. Hence by (4), G, contains no isolated nodes
almost surely.
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8 EXPERIMENTS

In this section, we compare our estimates of the ex-
pected size and the expected size increase of moraliza-
tion against BNs learned from real data.

We use BN learning software Banjo (Hartemink, 2005)
and the Gene Expression Omnibus database (Edgar
et al., 2002) to learn BNs for analyzing gene expres-
sion data (Friedman et al., 2000). Banjo learns BN
structures with the Bayesian Dirichlet scoring metric
for a given maximum number of parents k. We learned
about 30 BNs for n = 250, 300, 350, 400, 450, 500, 550
and k = 3,4 respectively with an equivalent sample
size that grows with k. Figure 5 shows the mean ab-
solute percentage error (MAPE) of the estimates.

1.00 100 -
—-— k=3 —-— k=3
0.75 075
m k=4 m k=4
2050~ % 0.50 -
= b
025 025"~y
———a———"
0.00 I I I I I I I 0.00 - T T I T I I T
250 300 350 400 450 500 550 250 300 350 400 450 500 550
n n

(a) The expected size.  (b) The expected moraliza-

tion size increase.

Figure 5: MAPE of the expected size and the expected
size increase of moralization estimates.

The MAPE for the expected size is lower than 0.15
when k£ = 3, and lower than 0.2 when k = 4, though
both slightly increase with n. The MAPE for the ex-
pected size increase for n = 250 is 0.27 when k£ = 3,
and 0.23 when k& = 4; and for n = 550 the MAPE
drops to 0.17 when k = 3, and 0.20 when k£ = 4. The
MAPESs suggest that our model provides a useful char-
acterization of BNs with important applications. They
also suggest that though our estimates are asymptotic
ones, they may be applied to relatively small BNs.

9 CONCLUSION

We propose a simple model for large random BNs to
study important properties of large BNs and BN algo-
rithms. In this paper, we focus on the average case,
that is, expectation, analysis. A natural next step is
variance analysis. However, much of our expectation
analysis relies on the linearity of expectation, and since
variance is not linear, the analysis do not always ap-
ply to variance. Consequently we will explore variance
analysis in future work.
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Appendix

Approximation Error

Let t =y — k. When y > 2k — 1. Then

(") _ O+ + (2

) 9]
k(k-1) k(k-1) \°
(t+1)(+2) (( )) "
(t+1)(t+2)

t+1)(t+2
= (t+1)(t+2)-k(k-1)°

k
=0

(y

k
< 1+

y—1
9

2

Moral Graph

o (77°) and 8 =

). Let ¢ be a positive integer. Note that

(=) ()

Then similar to Subsection 4.1,

Consider P(B1]|0). Let S1 = Y,
i (53
n—1
1—1

_ (n-1

(7)

7

S1

S

Consequently
z—2

k—3

(z—l

i
and again we approximate Zf:o (

<3_

z—1

i2) =
Zk

=0

)+2(i"5)

)

z—1
%

51

1

Sy 4

<1+<z>+<

)

) by (). Then

).

k(k-1)
422

2(k+1)

P(B1[0) ~ -
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Expected Size of F,,

Let A denote the event that in G’; there does not exist
Z — Z' and there exists a path of Type (a). Similarly,
let B, C denote that for Type (b), (c¢) paths. Then

>

r<z<2'<2" <y

Ells] < P(A[O)P(0)

+ > P(BlO)P(O)
+ ). P(ClO)P(0).

<<z’ <2 <y
<z <x<2 <y
2<z' <2 <z<y
<y<z' <z’ <z
<2 <y<z' <z
<2 <2 <y<zx

Consider the first term. Recall Section 5. We approx-
imate the probability that there exists W — Y «+ W'
with 3k(k — 1)/(4y?), and approximate the probabil-
ity that v-structure Z — Z" + Z’ exists with 3k(k —
1)/(42") (1 — k/2") = 3k(k—1)(z'—k)/(42'2""*). Then
similar to Subsection 6.2.1,

9k3(k—1)2(2'—k)(z—2-1)(y—2'-1)(y-2"-1)

"2

P(A
(4]0) < 16y222'2

and

5k3 (k1)
3072n2

>

r<z<2'<2"<y

P(A|0)P(0) <

The case for the second term is the same as the first.
Then consider the third term Y P(C|O)P(O). First
note that the case for P(C|O)P(0)
is essentially identical to >°, .. .n ., P(A[O)P(O).
Then when z < 2/ <z < 2’ <y,

<<z <2<y

9k3(k-1)2(2'—k)(z—2-1)(y-2"-1)(y-2"-1)

P
(C|O) < 16xy22’z”2

and

49k3 (k-1)?

P(CIO)P(O) < 1343972

2.

<z <x<2"<y

Then consider when z < 2’ < 2/ <z < y. Recall that
Z'"" is an ancestor of X or Y, or both. First consider
when Z” is an ancestor of X:

9k3(k-1)2(2' k) (z—2-1)(z-2"-1)(y-2'-1) .

P
(C|O) < 16x2yz’z”2

Then consider when Z” is an ancestor of Y:

9k3(k-1)2(2'—k)(z—2-1)(y-2"-1)(y-2"-1)
16.%‘3/22’2”2 .

P(C|0) <



Random Bayesian networks with bounded indegree

Consequently

>

z<z' <2 <x<y

251k3 (k—-1)2

P(CIO)P(0) < =

The remaining cases are the same as the above.
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