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Abstract

In finite decision problems where an agent can
query its human user to obtain information about
its environment before acting, a query’s useful-
ness is in terms of its Expected Value of Infor-
mation (EVOI). The usefulness of a query set is
similarly measured in terms of the EVOI of the
queries it contains. When the only constraint on
what queries can be asked is that they have ex-
actly k possible responses (with k& > 2), we show
that the set of k-response decision queries (which
ask the user to select his/her preferred decision
given a choice of k decisions) is EVOI-Sufficient,
meaning that no single k-response query can
have higher EVOI than the best single k-response
decision query for any decision problem. When
multiple queries can be asked before acting, we
provide a negative result that shows the set of
depth-n query trees constructed from k-response
decision queries is not EVOI-Sufficient. How-
ever, we also provide a positive result that the
set of depth-n query trees constructed from k-
response decision-set queries, which ask the user
to select from among k sets of decisions as to
which set contains the best decision, is EVOI-
Sufficient. We conclude with a discussion and
analysis of algorithms that draws on a connection
to other recent work on decision-theoretic knowl-
edge elicitation.

Introduction

An agent acting autonomously on behalf of its user in a
complex environment might have uncertainty in its envi-
ronment model for a variety of reasons. For example, its
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model might be incomplete (the user omitted information
about circumstances not expected to arise), imprecise (user
abstracted away details to simplify the modeling process),
and/or outdated (user has not maintained the model to re-
flect current conditions). We consider a Bayesian setting
where such an agent is faced with making a single decision
(such as which policy to follow in the future) under uncer-
tainty over which of a space of possible models correctly
represents its environment, i.e., each candidate model pre-
scribes utility/value to each possible decision. The best de-
cision the agent can make, then, is one that achieves the
highest value in expectation over its uncertainty.

Such an agent can benefit by querying its user to learn
more about its environment and user’s preferences before
making its decision. For instance, a robotic car choosing a
route might have uncertainty about its user’s current valua-
tion of speed versus money as it contemplates taking a toll
road. By actively querying its user for information (e.g.,
by asking a query like “For this trip, is it better to arrive
10 minutes earlier or to save $1?”), the agent can develop a
more complete, precise, and updated preference-model and
thereby behave to best suit its user’s preferences.

In this paper, we study the question of what the agent
should ask its user before making its decision when (1)
the agent may ask only a single query (myopic query se-
lection); and (2) the agent may ask n queries (nonmyopic
query selection). In our Bayesian decision making setting,
the agent’s goal is to act so as to maximize its expected
value; thus, the agent should ask queries that maximally
improve its ability to do so. The natural criterion for eval-
uating a query, then, is its Expected Value of Information
(EVOI), which measures the expected increase in value as-
sociated with adapting the agent’s decision as a function of
the user’s response to the query.

The problem of selecting one or more queries from some
query set so as to maximize EVOI (myopically or nonmy-
opically) has been widely studied. However, there has been
little work on how to design a good query set in the first
place. In this paper, we examine how to design a good
query set that could contain any queries among the set of
all k-response queries (queries with k£ possible responses).
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We show that in myopic settings, where the goal is to select
a query so as to maximize EVOI without considering any
future queries that could be asked, the set of k-response de-
cision queries (a decision query asks for the best decision
out of some subset) is sufficiently general in that there is
no benefit in considering any k-response queries beyond k-
response decision queries. This result dovetails with recent
work by Viappiani and Boutilier (2010), who contribute ef-
ficient algorithms for k-response decision query selection
enjoying approximation guarantees due to the submodular-
ity of myopically optimal decision query EVOL.

In addition, we show that in a nonmyopic setting, where
the goal is to select a depth-n k-response query tree in-
stead of a single query, the set of depth-n trees constructed
from k-response decision queries is not sufficiently gen-
eral, while the set of depth-n trees constructed from k-
response decision-set queries is. Finally, we show the com-
putational result that depth-n k-response query tree selec-
tion can be reduced to k™-response decision query selec-
tion, where the algorithms contributed by Viappiani and
Boutilier (2010) directly apply.

2 Related Work

A rich literature exists on the subject of querying and
information acquisition in non-decision-theoretic settings
and/or under different query selection criteria than ours,
appearing in such areas as Bayesian Experimental De-
sign (Chaloner and Verdinelli, 1995), Active Learning (Set-
tles, 2009; Nowak, 2011), Preference Elicitation (Braz-
iunas and Boutilier, 2008; Regan and Boutilier, 2009),
Human-robot/agent Interaction (Cakmak et al., 2010), and
Optimal Learning (Powell and Frazier, 2008). We here
however restrict our comparison to related work studying
decision-theoretic settings that use EVOI to measure query
informativeness. Within this space, our approach can be
compared to related work along the dimensions that follow.

Source of query set.

In scoping what queries the agent can consider asking, re-
searchers typically provide the agent with a specification of
the set of possible queries, fitted to the agent’s setting. In
contrast, our goal is to provide insight on what constitute
good query sets. Thus, we consider more general query
sets that are only constrained by the number of possible
responses that queries can have, rather than being predis-
posed to querying about particular aspects such as parame-
ter values or decisions.

Generality in structure of agent uncertainty and deci-
sion problem.

Various authors have studied queries under specific struc-
tures of uncertainty and/or decision problems, e.g., un-
certainty in parameters defining goals/rewards (Chajewska
et al., 2000) or system dynamics (Cohn et al., 2010). Com-
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bining such structure with assumptions regarding the fam-
ily of distributions expressing the agent’s uncertainty can
afford fruitful computational advantages and/or theoretical
results (Braziunas and Boutilier, 2005). Since our setting
is general in all of these aspects, our theoretical results and
algorithms cannot exploit such structure. The power of this
generality, though, is that our results apply to all such set-
tings.

Myopic and nonmyopic query selection.

Settings in which multiple queries may be asked induce
a challenging optimization problem in which EVOI-based
query selection involves taking into account how useful
a query would be when combined with possible future
queries (Boutilier, 2002). This makes for difficult sequen-
tial decision making problems because of a combination of
(1) large or infinite query sets (analagous to actions) and
their induced posterior distribution spaces (analagous to a
state space); and (2) computationally demanding Bayesian
inference for individual query response updates which it-
self typically requires approximations (Doshi et al., 2012).

Thus, a common approximation to this problem is to re-
peatedly select which single query to ask, without tak-
ing into account future queries (Dittmer and Jensen, 1997,
Bayer-Zubek, 2004; Cohn et al., 2011), which is termed
myopic query selection, in contrast to nonmyopic query se-
lection. In some settings, myopic query selection offers
powerful approximation guarantees (Golovin and Krause,
2011), but in fact is itself nontrivial in many contexts (Braz-
iunas and Boutilier, 2008), especially when evaluating even
a single query is expensive (Cohn et al., 2011; Wilson et al.,
2012). We consider both myopic and nonmyopic query se-
lection in Sections 5 and 6, respectively.

Querying Process.

We assume the agent is acting in a setting where a deci-
sion is to be made after querying ends (e.g., adopting a
policy (Chajewska et al., 2000) or selecting an investment
(Athey and Levin, 2001)). This is simpler than settings
where queries are interleaved with other types of actions, a
subject of recent interest (Doshi et al., 2012; Wilson et al.,
2012); investigating extensions of our results to this setting
is future work.

3 Problem Formulation

Here we define the general decision making under uncer-
tainty problem faced by the agent, the expected value of
information criterion for selecting queries, and the seman-
tics of k-response queries that are at the core of this paper.

3.1 Decision Making under Uncertainty

We assume that the agent’s uncertainty takes the form of
some arbitrary distribution v over a (possibly continuous)
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parameter space {2, where each w € €2 specifies a possible
model. Examples include uncertainty over parameter val-
ues in parameterized reward functions or transition func-
tions, as well as other noise parameters in decision prob-
lems. We will assume that the agent is faced with selecting
from a finite set U of possible decisions, where each deci-
sion could for instance be an action, an open-loop plan, or
a policy. For each w € Q and decision u € U, there is an
associated value denoted V) that captures the utility of de-
cision v in model w. Then, the expected value of decision
u under distribution v can be written as

Vi = EynylVY] = /Q B(w) Vo dw,

where w ~ 1 denotes model-parameters (w) sampled from
distribution ¢ over 2. The Bayes-optimal decision that
maximizes expected value under 1) is

* u
uy, = arg Iglea[}({Vw }s
and the associated Bayes-optimal value is

V= el =1

3.2 Querying

Note that we have purposely not committed to how an agent
computes the value V** of decision « in some model w, be-
cause our focus here is on characterizing query sets purely
in terms of their EVOI and not in terms of special structure
in the models and decisions. Consequently, ¢ is a sufficient
statistic of the agent’s knowledge about which decision is
best. Recall that in our setting the agent can pose queries to
improve this knowledge. Thus, any information relevant to
the value of decisions that the agent receives as a response
to a query can be incorporated via a Bayes update to .
Specifically, assume the agent poses query ¢ to the user,
and the user responds with the ;' out of a finite number of
possible responses to q. Then the posterior distribution of
1) given response j to query g is denoted 1|q = j with

__ Prlg=jlwiw)
Jo Pr(q = jlw")ih(w)dw’

Note that the likelihood function associated with a query
g, Pr(¢ = j|w) for each response j, completely defines
the semantics of ¢. Intuitively, this is the agent’s model for
how the user would respond to the query conditioned on
parameter w. Throughout the paper, we will use ¥|Y =y
to denote the posterior distribution induced when 1) is up-
dated to incorporate the knowledge that Y = y for a ran-
dom variable Y. Then, after receiving response j for query
q, the agent’s best decision based on the updated knowl-
edge is u;}‘qzj with a new expected value of V*I The
expected value of asking query ¢, denoted VJ‘ @ 1s thus

Y(wlg = j)

(1)
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Ej;q7¢[VlZ“ 4=;]» where the expectation is over the proba-
bility of response j to query ¢ given prior knowledge .
In expectation, if a query and its response induces a new
Bayes-optimal decision, that decision can only improve the
agent’s expected value with respect to the updated knowl-

edge about the user’s true model:

VzZ = max {Ej;quwNw\q:j [V‘:f]}
Ej.q0 {max Eonaplg=j [VJ‘]} (by Jensen’s inequality)

B [V%Z\q:j] = VJ\q'

max By, V)]

u
<

The Expected Value of Information (EVOI) associated with
query q measures the expected increase in value associated
with asking ¢ and never asking another query:

EVOI(q,v) = Vi, — Vi

Hence, the EVOI-optimal query (sometimes referred to as
myopically optimal query) from some given query set () is
given by

* = argmax|[V}, — V)] =argmaxV} .
q gqu[ bla — Vi) ngQ ¥lq

We will also consider situations in which the agent can ask
n > 1 queries. In general the choice of the next query
can depend on responses to the previous queries, and so
the general form to consider is a depth-n query tree. Note
that greedy selection of queries based on EVOI at each
node of the tree would not in general produce an EVOI-
optimal depth-n query tree. This is because the effect of
the resulting states of knowledge on future queries must be
taken into account (we address nonmyopic query selection
in Section 6).

Much past research on the subjects of selecting optimal
queries and/or query policies has treated the set of queries
to select from as given. For example, the query set might
be chosen by the designer to simplify knowledge elicitation
(e.g., queries that users find easy to answer), or to simplify
knowledge updating (e.g., queries whose responses cleanly
map to unambiguous updates to specific uncertain parame-
ters). An example of each of these follows.

Action Queries are popular in Markov Decision Process
(MDP) settings (e.g., in Learning by Demonstration (Cher-
nova and Veloso, 2009) and Active Imitation Learning (Ju-
dah et al., 2012)). They typically take the form “What is
the best action to do in state s?”, and so they are designed
to be easily understood and answered by users. Note that
when the number of actions is finite, a query can have only
a finite number of responses. Furthermore, if the number
of states to query about is also finite, then the number of
possible action queries is also finite.

Bound Queries ask whether the true value of some un-
known parameter exceeds a particular threshold, and thus
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cleanly map to the parameter uncertainty representation
(e.g., (Chajewska et al., 2000; Braziunas and Boutilier,
2005)). For example, given uncertainty about the reward
value of a goal state, a query might ask “Is the reward of
this state above 0.57” Bound-queries are binary-response
queries in that they have two possible responses (intu-
itively, “yes” and “no’’); however, there are an infinite num-
ber of such queries when the parameter being queried about
is continuous.

3.3 k-Response Query Forms

In contrast to the work just described that emphasizes de-
signing sets of queries that are easy to answer or easy to
incorporate the answers to, we ask the question of how to
design a query set that assuredly includes a query that max-
imizes EVOL.

First, let us consider the most valuable possible query given
no constraints, i.e., when anything can be asked. Intu-
itively, no query can be better than one allowing the agent
to behave optimally thereafter in response (i.e., allowing
the agent to adopt max,, V' under any w € 2 as a function
of the query response). In fact, the query that asks “What
is the optimal decision?” has exactly this property, and so
it has the highest possible EVOI .

Arguably, much of the burden imposed on the user in an-
swering the above query lies in the number of responses
that are possible: |U|. This raises the question of what
form an EVOI-optimal query would take when the number
of possible responses is restricted to a fixed k, correspond-
ing to a restriction on the number of choices the user should
be asked to consider. We define three types of k-response
queries next.

k-Response Queries. Let () denote the set of all k-
response queries. Other than being limited to a finite num-
ber of responses, this class is unconstrained. For example
(2 includes the Bound Queries mentioned previously.

k-Response Decision Queries. Let Dj denote the space
of all k-response decision queries, where a query ¢ € Dy,
asks which out of k decisions is best. As noted above,
the semantics of a query are defined by its likelihood
function Pr(q jlw); thus the decision query ¢ over
decisions {u;}*_, is defined so that Pr(q Jlw)
d(argmax,;{V¥*} = j), where ¢ is the delta-function that
takes on the value of one if the equality in its argument
is satisfied and zero otherwise (we will assume that in the
event of a tie, the response with smallest index is chosen).

k-Response Decision-Set Queries. Let H; denote the
set of all k-response decision-set queries, where a query
q € Hj asks which out of k finite sets of decisions
contains the best decision. That is, if ¢ queries sets
{U;}k_,, where each U; C U, then Pr(q Jjlw) =
d(arg max;{max,cy, V*} = j) (with ties broken in the
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same manner as above).

Note that the size of Q) is infinite (in general) while the
sizes of Hy and Dy, are always finite in our setting. Fur-
thermore, Qr, O Hy D Dy,.

4 Summary of Theoretical Results

The main contributions of this paper stem from studying
the following comparisons.

e Myopic query selection: Compare k-response queries
with k-response decision queries in terms of the most
valuable queries they contain.

Nonmyopic query selection: Compare depth-n k-
response query trees, depth-n k-response decision
query trees, and depth-n k-response decision-set
query trees with each other in terms of the most valu-
able query trees they contain.

As contributions, our comparisons show that, for all finite
decision problems and for all uncertainty v over them,

1. (In a myopic setting, we can safely consider only de-
cision queries.) We show in Section 5 that the set
of k-response decision queries is EVOI-Sufficient: the
EVOI-optimal k-response decision query has EVOI at
least as high as any other k-response query.

. (In a nonmyopic setting, we can safely consider only
decision-set queries.) We show in Section 6 that
the set of depth-n k-response decision-set query trees
is EVOI-Sufficient: the EVOI-optimal depth-n k-
response decision-set query tree has EVOI at least as
high as any depth-n k-response query tree.

. (In a nonmyopic setting, we cannot be limited to only
decision queries.) We show in Section 6 that the set of
depth-n k-response decision query trees is not EVOI-
Sufficient: the EVOI-optimal depth-n k-response de-
cision query tree may have lower EVOI than the
EVOI-optimal depth-n k-response query tree.

S Myopic k-Response Query Selection

When constrained to k-response queries with & << |U],
the agent will, in general, no longer have the ability to com-
pletely resolve its uncertainty regarding which decision to
follow via a single query. A desirable property of a k-
response query set (), then, is that for all finite decision
problems and for all uncertainty v over them, () always
contains a k-response query with EVOI as high as any other
k-response query — i.e., when there would be no benefit in
considering all k-response queries in addition to those con-
tained by (). We will say that such a query set is k-response
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EVOI-sufficient (hereafter, simply EVOI-sufficient with the
constraint k£ on the number of responses left implicit).

Next we present our first result, which shows that the set
of k-response decision queries is EVOI-sufficient. Intu-
itively, the proof develops a constructive “query improve-
ment” procedure, in that it replaces an arbitrary k-response
query with a k-response decision query that has EVOI at
least as high as the original query.

Theorem 1. (The set of k-response decision queries is
EVOI-Sufficient.)

For all finite decision problems and for all uncertainty v
over them, the EVOI-optimal k-response decision query
has EVOI equal to that of the EVOI-optimal k-response

query:

sup {EVOI(q,v)} = max {EVOI(q',v)}.
q' €Dy

qE€EQk

Proof. Consider an arbitrary k-response query g and recall
that the decision u, wlg= ; is the Bayes-optimal decision for
the posterior d15tr1but10n ¥|q = j (the posterior induced
by the j** response to query ¢). We will show that the
k-response decision query ¢’ that asks for the optimal de-
cision in the set {u, _ ]}J»:1 has EVOI at least as high as
the EVOI of query g.

Let Z = {(;} denote a partition of {2 such that each (; has
the following property: for all pairs of decisions wu, u’ and
parameters w,w’ € G, V%(s) > V¥ (s) = V4(s) >
Vj,/ (s). Thatis, Z is a partition of {2 such that each subset
forming the partition consists of a set of parameters that all
agree on the ordering of the set of decisions according to
value. Such a partition exists since the number of possible
decision orderings is finite. Starting from the definition of
EVOI, we have:

EVOI(q, ¥) + V;}

k

B “w\

= ZPrq—J Vw\q =7 ZPr wquaj
j=1

= E:E:Pf PNWGCM—J”%@ZLQ
j=1¢eZ

— ZZPerC Pr(q = jlw € () qp\z‘q]]wec
j=1¢eZ

< ) Prwed) maXZPYQ—J\WEC) ¢|1f1‘q3]w64
CeZ

= Zprweg maXVw‘fU'quJ.
ez

Now let (; = {( € Z : Vw € (,argmax; VY= = it
i.e, (; is the collection of all ¢ that prescribe value at least
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. * % -/
as high to Ung g S Uy o i for all j'.

from above, we have:

Then, continuing

ZPerC max{ wlwqeg}
ez
= ZPerCJ)max{ w\fulquj}

ZPr w € G)Vijwe,
G
EVOI(¢/

7¢)+Vz;a

where recall ¢’ is the k-response decision query over the set
* k
{ug)g=55=1- =

Thus, we have shown that the set of k-response decision
queries is EVOI-sufficient — this means that when restricted
to asking k-response queries, there is no loss in consider-
ing only k-response decision queries. Furthermore, em-
bedded in the proof above is a procedure for constructing
a k-response decision query that is at least as valuable as
a given k-response query. Repeating this procedure itera-
tively, then, would converge to a k-response decision query
g; with the property that when j is the response, the jth
decision in the set queried by g;; is the new Bayes-optimal
decision. As a consequence, any EVOI-optimal k-response
decision query must have this property. We will revisit
this point in Section 7 where we describe the algorithms
for k-response decision query selection by Viappiani and
Boutilier (2010).

6 Nonmyopic £-Response Query Selection

Here we turn to the nonmyopic setting and ask: what query
trees of depth-n should the agent consider when each query
is constrained to having k responses? We begin our analy-
sis by defining EVOI for query trees. Then we show that the
set of depth-n k-response decision-set query trees contains
a query tree with EVOI at least as high as any other depth-n
k-response query tree. Lastly, we show that the same is not
true for depth-n k-response decision query trees; i.e., The-
orem 1 does not generalize to nonmyopic query selection.

6.1 Expected Value of Information for Query Trees

Let M, (Q) represent the set of all depth-n query trees that
select queries only from query set (). When a depth-n
query tree p is used to select n queries, the result is a trajec-
tory of queries and responses. Let X (1) denote the random
variable where Pr(X (u) = j) represents the probability
that the j** such trajectory is realized when  is used to
select n queries.

Similarly to asking a single query, using p to select n
queries results in an updated posterior at the leaves; let
Y| X (u) = j refer to the posterior distribution induced
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when the j** query and response trajectory is realized,
which leads to a possibly new Bayes-optimal decision

J‘ X(p)=j" Thus, we can write the EVOI associated with
w4 under v as

EVOI(1, ) = Vi x () — Vi

exposing the intuitive fact that the EVOI of any depth-n k-
response query tree can be thought of as the EVOI of an
equivalent k™-response query, as stated by the following
lemma:

Lemma 1. (Depth-n k-response query trees can be repre-
sented as k™ -response queries.)

For all finite decision problems and for all uncertainty
over them, for all depth-n k-response query trees L, there
exists a k™-response query q" such that the EVOI of u is
equal to the EVOI of ¢, implying that

sup  {EVOI(p, 1)} < sup {EVOI(q,)}.
HEM, (Qr) qEQkn

Proof. Consider an arbitrary depth-n k-response query tree
w. Since there are k™ possible trajectories of queries and
responses resulting from using w to select a trajectory of n
queries, we can construct a k™-response query ¢* such that
Pr(¢" = jlw) = Pr(X (1) = jlw). Thus, EVOL(u, 1))
EVOI(g*, ) since p and ¢* are interchangable in terms of
their effect on ). O

We will say that a depth-n k-response query tree set M
is Depth-n k-Response EVOI-Sufficient if M always con-
tains a query tree with EVOI at least as high as any other
depth-n k-response query tree (hereafter, we will omit the
dependence on k and n and refer to such query tree sets as
EVOI-Sufficient).

Next we show that set of depth-n k-response decision-set
query trees is EVOI-Sufficient, while the set of depth-n k-
response decision query trees is not EVOI-Sufficient.

6.2 Decision Queries and Decision-set Queries in
Nonmyopic Query Selection

First we show that the set of depth-n k-response decision-
set query trees is EVOI-Sufficient. The following lemma
provides a key step in proving this fact, reversing the rela-
tionship shown by Lemma 1 for the special case of depth-n
k-response decision-set query trees and k™-response deci-
sion queries:

Lemma 2. (k"-Response decision queries can be repre-
sented as depth-n k-response decision-set query trees.)

For all finite decision problems and for all uncertainty
over them, for all k™ -response decision queries q, there ex-
ists a depth-n k-response decision-set query tree uf such
that the EVOI of q is equal to the EVOI of 114, implying that

EVOI(q, %)} < EVOI(11,1)}.
qglgzgl{ (¢, 9)} < ﬂeﬁ?%k){ (1, 0)}
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Lemmal

Qg

Theorem 1

M(:Qk)

Theorem 2 E

Dyn

Lemma 2

Figure 1: Diagram illustrating the main steps used to prove
Theorem 2. Each arrow represents a statement that, for any
query/query tree contained in the set at the tail of the ar-
row, a query/query tree with equal or higher EVOI must
exist in the set at the head of the arrow. The three solid ar-
rows, together with the fact that M (Hy) C M(Qy), imply
Theorem 2 (represented by the dotted arrow).

Proof. Let q denote any k™-response decision query. We
prove the result by showing that it is always possible to
construct a depth-n k-response decision-set query tree p?
so that EVOI(u?,v) = EVOI(q, ¥).

We construct p? as follows. Let Zj(S) be any function
that partitions a set .S into & disjoint sets (where | S| divis-
ible by k), and let U? denote the set of decisions queried
by g. Then, construct p? such that u9(¢) is the query
that asks the decision-set query about sets Zj, (U?), and let
wa(p|pl(yp) = j) be the query that asks the decision-set

query about sets Zj, (Zk(U 7) j>, and so on. When taken

together, responses to queries selected when using p? to
select a trajectory of n k-response decision-set queries ex-
actly determine which decision out of the original set U?
has maximum value for every possible w.

Thus, if, under a particular w, invoking u? to select a tra-
jectory of n k-response decision-set queries determines that
decision u? is best out of the set, the response to ¢ under
w would be j, and vice-versa; thus, for all w, Pr(X (u?) =
jlw) = Pr(q = j|w), which implies that EVOI(u9, )
EVOI(q, ¢).

oo

As a side note, the above construction implies that the
set of k-response decision-set queries can be restricted to
those containing decision sets of size k"~ ! or less:

Corollary 1. For all finite decision problems and for all
uncertainty 1 over them, the EVOI-optimal depth-n k-
response decision-set query tree can be constructed using
decision-set queries whose decision sets contain no more
than k™"~ decisions.
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We now put together Lemma 1, Lemma 2, and Theorem 1
to prove that the EVOI-optimal depth-n k-response query
tree has EVOI no higher than the EVOI-optimal depth-n
k-response decision-set query tree (Figure 1 for a visual-
ization of the proof below):

Theorem 2. (The set of depth-n k-response decision-set
query trees is EVOI-sufficient.)

For all finite decision problems and for all uncertainty
over them, the EVOI-optimal depth-n k-response query
tree has EVOI equal to the EVOI of the EVOI-optimal
depth-n k-response decision-set query tree:

sup  {EVOI(, 9)} = {EVOIGY, ).
HEMy, (Qk)

max
w €M, (Hy)

Proof. Invoking Lemma 1, Theorem 1, and Lemma 2 se-
quentially, we have

sup {EVOI(u, )} < sup {EVOI(q,v)}
HEM, (Qr) qEQyn

EVOI(q'
J2ax {EVOI(q', )}

< max {EVOI(x, )},
< cpax {EVOI(W, )}
implying that
sup {EVOI(,9)} = max {EVOI(/, %)},
HEM,, (Qr) w € My (Hy)

since M, (Hy) C M, (Qg).
O]

We now show that the set of depth-n k-response decision
query trees is not EVOI-Sufficient, by constructing an
example where no depth-2 binary-response decision query
tree can have EVOI as high as the EVOI-optimal depth-2
binary-response decision-set query tree:

Theorem 3. (The set of depth-n k-response decision query
trees is not EVOI-Sufficient.)

There exist finite decision problems under uncertainty
1 where the optimal depth-n k-response decision query
tree has lower EVOI than the optimal depth-n k-response
query tree, i.e., where

sup  {EVOI(1, )} > {EVOI( )}

nEMy, (Qk)

max
W €My (Dy)

Proof. Consider a decision problem with four possible de-
cisions u1, u2,us and uy, where all 4! orderings over the
values of each decision are supported by 7). Lemma 1 and
Lemma 2 together imply that the EVOI-optimal depth-2
binary-response query tree has EVOI equal to the EVOI
of the myopically optimal 4-response decision query g*.
In this problem, asking ¢* would allow the agent to act
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optimally as a function of the response to ¢* since there
are only four possible decisions, which is achievable by
the EVOI-optimal depth-2 binary-response query tree by
Lemma 2. However, no depth-2 binary-response decision
query tree exists that can meet this requirement.

To see this, note that the execution of a depth-2 binary-
response decision query tree can eliminate at most two of
the four decisions since all possible orderings of the deci-
sion values are supported by 1) — hence, no depth-2 binary-
response decision query tree guarantees that the agent can
act optimally after it selects 2 queries. U

7 Algorithms and Computational
Complexity

In Section 5 we showed that in the myopic setting, the set
of all k-response queries can be replaced by the set of k-
response decision queries at no loss, and in Section 6 we
showed that in our nonmyopic setting, the set of all depth-n
k-response query trees can be replaced by the set of depth-
n k-response decision-set query trees at no loss. We con-
clude our analysis by discussing algorithms for myopic de-
cision query selection and nonmyopic decision-set query
selection, respectively.

7.1 Myopic k-Response Query Selection

We showed through Theorem 1 that computing the EVOI-
optimal k-response query can be reduced to computing
the EVOI-optimal k-response decision query. In fact, the
problem of selecting the EVOI-optimal k-response deci-
sion query has been studied in recent work by Viappiani
and Boutilier (2010) (our decision queries correspond to
their “noiseless choice queries”).

First, they show that an EVOI-optimal k-response deci-
sion query has the property that when decision w is the re-
sponse, u is the new Bayes-optimal decision (in Section 5
we showed that this fact can be understood as a of Theo-
rem 1). Further, they prove that EVOI is submodular in
k for k-response decision queries satisfying this property,
implying that a greedily constructed k-response decision
query has EVOI provably close to that of the EVOI-optimal
k-response decision query (Nemhauser et al., 1978). Below
we summarize their analysis of this greedy algorithm com-
pared to a naive exhaustive algorithm.!

Let m |U|, and let the computational complexity of
executing a single Bayes update (Equation 1) be O(1),

'"We omit the description of a third iterative algorithm pre-
sented by Viappiani and Boutilier (2010) (which can be under-
stood as repeatedly applying the query improvement procedure
embedded in the proof of Theorem 1, but specialized to decision
queries), as its theoretical properties are less understood; how-
ever, this does not preclude its potential as an effective heuristic
in practice.
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where [ is a measure of the size of the problem (which
we leave undefined here because we will simply count
how many such updates are performed by the different
algorithms).

Exhaustive k-Response Decision Query Selection Algo-
rithm. Exhaustively evaluate each possible k-response de-
cision query and select the best one, which has computa-
tional complexity O(mFkl).

Greedy k-Response Decision Query Selection Algo-
rithm. Approximate the EVOI-optimal k-response deci-
sion query by a greedy procedure, at each step adding the
decision contributing maximum EVOI. This algorithm en-
joys the guarantee that the EVOI of the k-response decision
query constructed is within a factor of 1 — (%)k (at worst
63%) of EVOI-optimal, and has computational complexity
O(k*ml).

7.2 Nonmyopic k-Response Query Selection

Although Viappiani and Boutilier (2010) do not discuss al-
gorithms for nonmyopic query selection, we can make use
of the same algorithms as described above in the nonmy-
opic setting by exploiting our theoretical results.

Namely, combining Theorem 1 with Theorem 2 implies
that we can compute the EVOI-optimal depth-n k-response
query tree through two steps: (1) compute the EVOI-
optimal k™-response decision query ¢*; (2) contruct a
depth-n k-response decision-set query tree p* yielding the
same EVOI as ¢*.

Working backwards, step (2) can be implemented by the
procedure described in our proof of Lemma 2, which
involves computing any size-k partition of the k™ decisions
queried by ¢* for all k™ nodes of the tree. Since each of
these k™ computations is O(k™), step (2) has complexity
O(k?™). Since step (1) can be implemented by either the
exhaustive or the greedy algorithm above, we obtain two
algorithms for depth-n k-response decision-set query tree
selection:

Exhaustive Depth-n k-Response Decision-set Query
Tree Selection Algorithm. This algorithm implements
step (1) using the exhaustive k-response decision query se-
lection algorithm above, and so its computational complex-
ity is O(m*" k"1).

Greedy Depth-n k-Response Decision-set Query Tree
Selection Algorithm. This algorithm approximates step
(1) using the greedy k-response decision query selection
algorithm described above, and so it has computational
complexity O(k?"ml) while offering the guarantee that
the EVOI of the query tree computed is within a factor of

1 — (251)%" (again, at worst 63%) of EVOI-optimal.
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Thus we have shown the new result that the computational
problem of selecting an EVOI-optimal depth-n k-response
query tree can be reduced to selecting an EVOI-optimal £"-
response decision query.

8 Discussion

In this paper, we posed the question of what query set
should be designed for an uncertain decision-making agent
to allow the agent to select queries maximizing Expected
Value of Information (EVOI), when the only restriction
on what queries can be asked is that they must have ex-
actly k possible responses (for some k£ > 2). In our my-
opic setting, we proved that the set of k-response deci-
sion queries is EVOI-Sufficient, which intuitively means
that there is no benefit in considering additional k-response
queries beyond decision queries. In our nonmyopic set-
ting, where queries are used to construct depth-n query
trees, we showed that the set of depth-n k-response deci-
sion query trees is not EVOI-Sufficient, but that the more
general set of depth-n k-response decision-set query trees
is in fact EVOI-Sufficient.

We then discussed algorithms developed in related work
that can be directly applied to provably approximate k-
response decision query selection, which exploit the sub-
modularity of EVOI-optimal k-response decision query
EVOL. Finally, we showed that the same algorithms apply
to selecting depth-n k-response decision-set query trees by
reducing depth-n k-response decision-set query tree selec-
tion to k™-response decision query selection.

We note that this paper emphasized designing EVOI-
sufficient k-response-query sets without regard to how hu-
mans may understand and answer queries from these sets.
In some application domains, this may indeed be a practical
challenge — in particular, it is clear that decision-set queries
would be difficult for humans to answer unless the compo-
nent decision-sets were to correspond to well-understood
(by humans) categories of decisions. Studying how these
types of queries can best be approximately conveyed in
practical applications and how to take into account the cog-
nitive burden they impose when evaluating them are impor-
tant directions for future work.

Acknowledgments. We thank Alex Kulesza for numerous
insightful conversations, and are grateful to the anonymous
reviewers for their helpful feedback. Satinder Singh was
funded by NSF grant IIS-1148668, and Edmund Durfee by
NSF grant IIS-0964512. Any opinions, findings, conclu-
sions, or recommendations expressed here are those of the
authors and do not necessarily reflect the views of the spon-
Sors.



Robert Cohn, Satinder Singh, Edmund Durfee

References

Paolo Viappiani and Craig Boutilier. Optimal Bayesian rec-
ommendation sets and myopically optimal choice query
sets. In Proceedings of the Annual Conference on Neu-
ral Information Processing Systems (NIPS), pages 2352—
2360, 2010.

Kathryn Chaloner and Isabella Verdinelli. Bayesian exper-
imental design: A review. Statistical Science, 10:273—
304, 1995.

Burr Settles. Active learning literature survey. Technical
Report 1648, University of Wisconsin — Madison, 2009.

Robert D. Nowak. The geometry of generalized binary
search. IEEE Transactions on Information Theory, 57
(12):7893-7906, 2011.

Darius Braziunas and Craig Boutilier. Elicitation of fac-
tored utilities. Al Magazine, 29(4):79-92, 2008.

Kevin Regan and Craig Boutilier. Eliciting additive reward
functions for Markov decision processes. In Proceedings
of the Twenty-Second International Joint Conference on
Artificial Intelligence (IJCAI), pages 2159-2164, 2009.

Maya Cakmak, Crystal Chao, and Andrea L. Thomaz.
Designing interactions for robot active learners. IEEE
Transactions on Autonomous Mental Development,
2010.

Warren B. Powell and Peter Frazier.
John Wiley and Sons, 2008.

Urszula Chajewska, Daphne Koller, and Ronald Parr. Mak-
ing rational decisions using adaptive utility elicitation. In
Proceedings of the Seventeenth National Conference on
Artificial Intelligence (AAAI), pages 363-369, 2000.

Robert Cohn, Michael Maxim, Edmund Durfee, and Satin-
der Singh. Selecting operator queries using expected
myopic gain. In Proceedings of the International Con-
ference on Intelligent Agent Technology (IAT), 2010.

Optimal Learning.

Darius Braziunas and Craig Boutilier. Local utility elic-
itation in GAI models. In Proceedings of the Twenty-
First Conference on Uncertainty in Artificial Intelligence
(UAI), pages 4249, 2005.

Craig Boutilier. A POMDP formulation of preference
elicitation problems. In Proceedings of the Eighteenth
National Conference on Artificial intelligence (AAAI),
pages 239-246, 2002.

Finale Doshi, Joelle Pineau, and Nicholas Roy. Reinforce-
ment learning with limited reinforcement: Using Bayes
risk for active learning in POMDPs. Artificial Intelli-
gence, 187-188:115-132, 2012.

Sgren L. Dittmer and Finn V. Jensen. Myopic value of in-
formation in influence diagrams. In Proceedings of the
Thirteenth Conference on Uncertainty in Artificial Intel-
ligence (UAI), pages 142-149, 1997.

139

Valentina Bayer-Zubek. Learning diagnostic policies from
examples by systematic search. In Proceedings of the
Twentieth Conference on Uncertainty in Artificial Intel-
ligence (UAI), pages 27-34, 2004.

Robert Cohn, Edmund Durfee, and Satinder Singh.
Comparing action-query strategies in semi-autonomous
agents. In Proceedings of the Twenty-Fifth Confer-
ence on Artificial Intelligence (AAAI), pages 1102-1107,
2011.

Daniel Golovin and Andreas Krause. Adaptive submod-
ularity: Theory and applications in active learning and
stochastic optimization. Journal of Artificial Intelligence
Research (JAIR), 42(1):427-486, 2011.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. A
Bayesian approach for policy learning from trajectory
preference queries. In Proceedings of the Twenty-Sixth

Annual Conference on Neural Information Processing
Systems (NIPS), pages 1142-1150, 2012.

Susan Athey and Jonathan Levin. The value of information
in monotone decision problems. Working paper, Stan-
ford University, 2001.

Sonia Chernova and Manuela Veloso. Interactive policy
learning through confidence-based autonomy. Journal
of Artificial Intelligence Research (JAIR), 34(1):1-25,
2009.

Kshitij Judah, Alan Fern, and Thomas G. Dietterich. Active
imitation learning via reduction to i.i.d. active learning.
In Proceedings of the Twenty-Eighth Conference on Un-
certainty in Artificial Intelligence (UAI), pages 428-437,
2012.

G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An anal-
ysis of approximations for maximizing submodular set
functions-1. Mathematical Programming, 14(1):265—
294, 1978.



