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Abstract

Online selective sampling algorithms learn to
perform binary classification, and additionally
they decided whether to ask, or query, for a la-
bel of any given example. We introduce two
stochastic linear algorithms and analyze them in
the worst-case mistake-bound framework. Even
though stochastic, for some inputs, our algo-
rithms query with probability 1 and make an up-
date even if there is no mistake, yet the margin
is small, hence they are doubly aggressive. We
prove bounds in the worst-case settings, which
may be lower than previous bounds in some set-
tings. Experiments with 33 document classifica-
tion datasets, some with 100K’s examples, show
the superiority of doubly-aggressive algorithms
both in performance and number of queries.

1 Introduction

In many real world problems, input examples are cheap
and easy to collect, while labeling them is a long and an
expensive process. Today, one can easily access an enor-
mous amount of text, audio, images and video, on the web.
Nevertheless, much effort is needed to provide correct out-
put for each input. We study online selective sampling in
which algorithms are fed with a sequence of inputs and ask
or query labels only for a subset of the inputs. Unlike the
well studied area of active-learning, an algorithm has ac-
cess to one input at a time, and it can query its label only at
that time, with no ability to store examples which possibly
will be queried in the future.

Another motivation for a selective sampling technique is to
reduce the size of kernel-based models built online, such
as the Perceptron algorithm combined with kernels. This is
because the size of the model is bounded by the number of
queried labels, which may be small for selective sampling.
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Many algorithms for selective sampling, that build on lin-
ear models, query for a label of an input x, if the absolute
value of the margin is small, |w - x| (e.g. [11, 24]). How-
ever, this quantity may be small in one of two cases: (1)
when only few labels are observed (i.e. uncertainty due to
a small sample, and there is a real need to query); (2) if
there is labeling noise for x (uncertainty due to noise, and
there is no real need to query). Previous algorithms are not
distinguishing between these cases, and thus are not focus-
ing their queries in the first case.

We revisit the design of selective sampling with linear mod-
els based on this observation. As a by product, our algo-
rithms query more aggressively in early rounds where the
uncertainty is large. We introduce doubly aggressive algo-
rithms for selective sampling (DAGGER), which query for
a label based both on margin and a notion of confidence
(intervals) (e.g. [10]).

We present two algorithms that integrate both quantities to
decide whether to query. One algorithm builds on the work
of Cesa-Bianchi et al [11], and the other on a recently in-
troduced algorithm for online regression of Moroshko and
Crammer [22]. We analyze the theoretical properties of
both algorithms, showing bounds that may be lower than
bounds of other algorithms in some settings. Extensive
evaluation on 33 datasets, with hundred of thousand exam-
ples, demonstrate the superiority of our algorithms, which
achieve lower test error with less number of queries. Fi-
nally, all figures in the paper are best viewed in color.

2 Problem Setting

Linear selective-sampling online algorithms maintain a
weight vector w; and work in rounds. On the ith round an
algorithm receives an input x; € R¢ and outputs a binary
label ; = sign(x; w;_1) € {#1}. The algorithm then
makes (a possibly) stochastic decision if to ask (or query)
for the true label y; € {£1}. If indeed the label is asked for,
the algorithm may use y; to update its prediction model to
w;. Otherwise, no change is performed, w; = w;_1, and
it proceeds to the next round. Algorithms have two com-
plementary goals, to make few prediction mistakes and to
ask, or query, small amount of labels.

The decision of the algorithm is represented by a binary
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variable ();, where Q; = 1 iff the label y; was queried on
the ith round. Note, the algorithm is evaluated on all ex-
amples, even those not queered. The two goals above are
to have both >, Q; (queries) and ), [y; # ¥;] (mistakes)
small. Algorithms will be analyzed in the worst-case set-
ting, bounding the expected number of mistakes using the
cumulative hinge loss, inter alia, defined by,

Z€ (yivTxi) where ¢ (vax) = max {0, 1-—- vax} .
The bounds we describe below are of expected number of
mistakes. Expectation of a quantity defined at round i is
with respect to all events at prior (and present) of the query,
and are independent of future times.

3 Algorithms

We focus in second-order algorithms that are adapted to
classification from regression, and specifically, the Ag-
gregating Algorithm for regression (AAR) of Vovk [25],
which was also described by Forster [18], and is related
to the work of Azoury and Warmuth [3]. On each itera-
tion, these algorithms solve (recursively) a time-dependent
batch regression problem. The resulting prediction func-
tion depends on two quantities, a vector b; = 5 X5Y;
and a matrix A; = T+ ), x;x, . Cesa-Bianchi et al [9]
proposed to adapt the online ridge-regression (squared loss
and Euclidean regularization) to online binary classifica-
tion. Given a new example, the second-order perceptron
predicts the sign of the margin,

pi=x; (4;'b;) . (1)
A selective-sampling algorithm is required to make two
choices, the first choice is if to query a label or not. Con-
sider the case that the absolute margin is large |p;| > 0.
This may be interpreted that the example lies far from the
decision boundary, and thus it will not be useful to query
the label, as even if the current model is not the optimal
one, but only close to it, still it makes the same prediction
as the optimal model. The hidden assumption is that the
current model is indeed not far from the optimal one, but
this clearly is not the case in early rounds. Thus, there is
a need to employ an additional quantity that is used to dif-
ferentiate between these two cases of large absolute margin
|p;]: (1) computed with a model after observing already
examples close (or similar) to the input x;; (b) computed
with a model after seeing only few, if any, examples close
(or similar) to the input x;. In the former case, in fact, there
will not be a need to query, while in the later, the quality of
the estimator p; is not good, and there is a need to query.

A useful quantity which is used below is the projection of
an input x; on the inverse of the matrix A;_; (conceptually,
it is a covariance-like matrix),

T 4—1
ri =%, A%,

2
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which can be thought of the confidence in the prediction.
Indeed, confidence-weighted (CW) linear prediction algo-
rithms [13] employ a similar formal model, and in CW, r;
is exactly the variance in prediction, under a Gaussian dis-
tribution. Some algorithms, including AAR, use a related
quantity that incorporates also the input x; itself. From

Woodbury equality we have, x; A7 'x; = S
i 1%

117}1- . We will use this quantity exactly for the purpose
of differentiating between these two cases. Low values of
r; represent low uncertainty (as many examples close to
x; were already observed), while large values of r; reflect
high-uncertainty, as only few, if any, examples similar to x;
were observed. In the extreme case, when x; is orthogonal

to all previous examples, we have r; = 1.

The second choice an algorithm should make is how to up-
date the model given the input x; and the queried label y;.
Previous linear algorithms for selective-sampling [11, 10]
are based on the Perceptron update which is passive (or
conservative), i.e. it updates only when mistakes occur.
Yet, it is known that aggressive updates yield algorithms
that perform better (e.g. the second order preceptron [9]
vs AROW [14], the latter is aggressive and performs bet-
ter). The algorithms we describe below couples these two
decisions. When they query aggressively (ie with probabil-
ity 1), they also perform an aggressive update when the
signed margin is small, according to a rule of the form
yipi < f(r;), where f(r;) is a decreasing function. Hence,
they are doubly aggressive, as they query- and update ag-
gressively simultaneously. (Most aggressive algorithms,
i.e. PA [12], employ a constant function f(z) = 1.)

Intuitively, a stochastic choice to query, means that the
algorithm is confident about its own prediction, and thus
there is no need for a large or aggressive update. Similarly,
a query with probability 1 (i.e. deterministic, which we
call below an aggressive query), means that the algorithm
is not confident about its own prediction, and the model is
not converged yet. Thus, an aggressive update is needed.

We design two selective-sampling algorithms that make a
stochastic decision based both on p; and r;. Both algo-
rithms below flip a coin with bias,

2¢/ (2¢ 4+ max{0, F(|p:],r:)}) , 3)

where F'(p;, ;) is some function increasing in p; and ¢ > 0
is a positive parameter. If F'(p;, r;) is negative, a query will
be issued aggressively, and otherwise, it will be issued if
the margin p; is close to zero, or r; is large, namely, there
were only few past inputs similar to the current input x;.

To summarize, on each iteration, after receiving x;, both al-
gorithms compute p; and ;. They then have one of two al-
ternatives. First, draw a coin with bias defined in (3), each
with a specific value of bias, and use the outcome of the
draw to decide if to query. If indeed the label is queried,
a conservative update is performed, i.e. an update is per-
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Algorithm 1 DAGGER-algorithms
Input: parameter ¢ > 0 (b > 1 wemm) (Tab. 1 line 1)
Initialize bo = 0 , Ay = I (ridge) or Ay = bI (wemm)
(Tab. 1 line 2)
fori=1,...,mdo
Get instance x; € R%,||x;|| < 1
Compute p; (Tab. 1 line 3)
Predict y; = sign(p;)
Compute 7; = x; A; ' x; (2)
if F(|p:|, ;) > 0 (Tab. 1 line 4) then
Draw a Bernoulli random variable Q; € {0, 1} with
probability W
if ); = 1 then
Receive label y; € {£1}
Set Z; = 1if y; # 1; (and Z; = 0 otherwise)
end if
else
Set Q; = 1 (i.e. Q; = 1 with probability 1).
Receive label y; € {£1}
Set Z; = 1.
end if
{If @; = 0 the rhs of both equations below is zero.}
Set a; (Tab. 1 line 5)
b; = bi_1 + 0; Z;Qix;y;
Ai = Ay + aiZiQixix]
end for

formed only if y;p; < 0. Second, when an aggressive query
is performed, the update is also aggressive, it is performed
when y;p; < f(r;) for some non-decreasing non-negative
function f(r;).

We conclude et al [11, Alg. 3] is a special case for which
F(|pi|,ri) = p; (always stochastic) and f(r;) = 0. We
refer to this algorithm by the initials of the authors, namely
CBGZ-ridge, where the suffix indicates the underlying re-
gression algorithm. An illustration of this query and update
schema is shown in Fig. 1(a) for ¢ = 0.1. The bias of query-
ing is fixed with respect to r; and thus the colored lines are
parallel to the y-axis. Clearly, the probability drops fast
when |p;| gets larger, it is 0.25 when the margin is about
0.3. Also, the left half-plane is shaded indicating an update
if the margin is negative, ignoring the uncertainty 7;.

3.1 DAGGER: Doubly AGGREssive algorithms

Our first algorithm, builds on the work of Cesa-Bianchi et

al [11] and employs the following function in the denomi-

nator of (3). It is motivated from the analysis in Thm. 1.
ri

1 +7r i '

O(Ips|, i) = (L+1)p; + 2|ps| — “4)

To better understand the query rule, we compute under
what conditions a query will be issued aggressively. The
function ©(|p;|, ;) is quadratic in |p;|, and attains negative
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Table 1: Settings for DAGGER-ridge and DAGGER-wemm

Algorithm DAGGER-ridge DAGGER-wemm
1 Parameters | ¢ > 0 c>0,b>1
2 Ao I bI
3pi x; (Aic1 + XiXiT)il bi-1 x; A7 bis
4 F(|pil,ms) | Opil, m:) (4) L([pil, ) (7)
5a; 1 = (6)

values in a closed interval. Solving for |p;| we get,

—14+V1+7m

147r;

O(lpil,r:) <0 & |pi| <0(ri) = ®)

That is, there is a first order phase transition point of the
bias that depends on ;. For margin values |p;| less than
6(r;), a query will always be issued, while for margin val-
ues above this threshold, it will be issued only with some
probability strictly less than 1. This upper bound is de-
creasing with the uncertainty r;. If the uncertainty is maxi-
mal r; = 1, then a query will be issued if the margin is less
than (v/2 — 1)/2 ~ 0.2. While if the algorithm observe
the same example (or linear combination of it) many times,
that is, r; =~ 0, than only if the margin is zero, p; = 0, a
query will be issued aggressively (with probability 1).

If a stochastic query is made (i.e. with probability less than
one, when O(|p;|,r;) > 0), then a conservative update is
made, that is only when a mistake is performed. Other-
wise, if a deterministic query is made (i.e. with probability
1, called aggressive-query), then also an aggressive update
is performed y;p; < 6(r;) (see (5)), when the margin is
negative or small.

We call this algorithm DAGGER-ridge, for a Doubly AG-
GRessive based on (online) ridge-regression, as an al-
gorithm that (sometimes) is aggressive simultaneously in
querying (deterministic, probability 1) and in its update.
Pseudocode of DAGGER-ridge is given in Alg. 1 and the
left column of Tab. 1.

An illustration of this query and update schema are shown
in Fig. 1(b) for ¢ = 0.1. For large uncertainty r;, the bias is
1 (deterministic, or aggressive query) even if the absolute
margin is far from zero, |p;| > 0. As the uncertainty r;
increases, the interval of absolute values with determinis-
tic bias shrinks, until it is a point (|p;| = 0, as in CBGZ-
ridge). Also, the left half-plane and the red (middle) area
are shaded, indicating that an update is performed if the
margin is negative or if an aggressive query was performed.

3.2 DAGGER-wemm

Our next algorithm builds on a recent online regression al-
gorithm of Crammer and Moroshko [22] called WEMM.
The algorithm is a last-step min-max online regression al-
gorithm, as the one of Forster [18], yet it weights the loss
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Figure 1: Bias vs. p and r for 3 algorithms. Updates are performed for pairs (p;, r) which are shaded with black dots.

term of the ith example with,

1 1

- TA L« 1—p
1-x/ A x; 1-m

(6)

Q;

On each round, the algorithm finds the minimizer of bI +
it Tx;)?, f b> 1.1

> a; (y; —w'x;)", for some parameter b > 1. It was
shown to have sub-logarithmic regret, and has an aggres-
sive update (for regression). The sequence of weights a;
is effectively giving higher weights to new examples, or
directions in space, making it an ideal basis for a new ag-
gressive selective sampling algorithm. For example, if the
algorithm receives the same input x again and again, the
weights a; will decrease from a value larger of a 1, to 1, in
the limit. The bias function we use for this algorithm is,

Ti

R . 2
) = (o 20 +32) far )
which, as before, its specific form is motivated from an
analysis, summarized in Thm. 2. The main difference is
the multiplicative factor of 1/a; = (1 — ;). Thus, even
if there is no aggressive update (I'(|p;|,7;) > 0), the bias
(probability of update) is close to 1 as r; is close to 1, i.e.

where there were only few examples similar to x;.

As before we compute the point of phase transition,

T
L(|pil,ri) <0 |pi] < v(ri)=-1 1+——, @8
(Ipal, i) il < y(r:) T ®)

and update conservatively if T'(|p;|,r;) > 0 and aggres-
sively (y;p; < 7(r;)) otherwise.

We call this algorithm DAGGER-wemm, since it is based
on the WEMM algorithm. A pseudocode appears in Alg. 1
and the right column of Tab. 1. Finally, an illustration of
this query and update schema is shown in Fig. 1(c) for
¢ = 0.1. It has similar properties as DAGGER-ridge, with
two differences: for large uncertainty, the probability of
query is very close to unit, effectively ignoring the margin
p;, and the area for which T'(|p;|, r;) is negative is slightly
smaller. To conclude both DAGGER algorithms have high
probability rate where there is uncertainty, which naturally
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occur more on early rounds of the run. Thus, we expect
these algorithms to query more on early stages. Addition-
ally, DAGGER algorithms update aggressively (on selected
cases) as opposed to CBGZ-ridge, which is conservative.

4 Analysis

We now analyze both algorithms in the worst-case mistake
bound model, starting with DAGGER-ridge. We denote for
convenience the matrix,

Av =1 + Z ZzQZXZXZT .

i=1

©))

The bound partitions the inputs into two disjoint sets of in-
dices, S = {’L : @(|ﬁl|,rl) > O} s .A{Z : @(‘ﬁll,ﬂ) <
0 } . The set S is of examples for which a stochastic query
was made, and the other set A is when there is an aggres-
sive query. Additionally, denote by M the set of example
indices for which the algorithm makes a mistake (that is,
where p; < 0) and let M = |M]|. Similarly, denote by
U the set of example indices for which there is an update
but not a mistake (0 < p; < 6(r;)) and let U = |U|. The
remaining examples, for which the algorithm had a large
margin (6(r;) < p;), do not affect the behavior of the algo-
rithm and can be ignored.

Theorem 1. Let (X1,Y1), .- ., (Xm, Ym ) be an arbitrary in-
put sequence, where ||x;|| < 1. Assume DAGGER-ridge
(Alg. 1 and left column of Tab.1) is run on the sequence
with parameter ¢ > 0. Then, for all v € R4,

Z ZiQil (yiVTXi)]

E[M)] g%chIE [Av]v+E

ri
~E
+ c 1+

~E[U] . (10)

>

r
icA ¢

Additionally, the expected number of queries is upper

bounded by E [|A| + > ies 72%@(2'%1_"”}]

Remark 1. The last term of the bound, E [Zle A L’;—T} -

E [U] is strictly lower than the corresponding term of Cesa-

Bianchi et al [11, Thm. 3] for two reasons. First, it con-
. T T4

tains a sum over less examples, >, 4 155 < D, 74 <
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> i log(1 + Ap), where Ay, are the eigenvalues of As,. Sec-
ond, the expected number of times the algorithm makes an
update when no mistakes occur (E [U]) is subtracted from
it. Nevertheless, the bounds are not comparable as both
contain quantities that depend on a specific run of each.

Remark 2. The exact value of the bound depends explicitly
on the choice of parameter c. The optimal value of c can
B[S ica 5]
vIE[Ay]v
similar to Cesa-Bianchi et al [11, Thm. 3], which may be
lower due to Remark 1. Note that there is no real ”optimal”
parameter as we trade-off between accuracy and number of
queries. Additionally, from the experiments below, we see
that both DAGGER algorithms perform reasonably well for
a large range of values for c, and in fact they outperform
other algorithms we evaluated for all values of c used.

be compute easily, ¢ = , yielding a bound

The proof appears in App. A.2 (supplementary material).
We conclude by noting that the set A is not too large. Con-
sider the simple case in which examples are restricted to
some basis, e.g. x; € {e1...eq}. Since examples are or-
thogonal they do no affect each other. When e; is observed
for the first time we have p; = 0 and r; = 1 and thus it will
be queried aggressively and be used for an update. Now, if
it is seen again, we have p; = 0.5 and r; = 0.5, and thus
©(0.5,0.5) > 0, i.e., it will not belong to .4 again.

We now turn to analyze DAGGER-wemm. We emphasize
that weights of WEMM q; defined in (6) are random vari-
ables depending on the specific outcomes of the algorithm’s
randomization. We define S = {i : T'(|p;|, ;) > 0} and

A{i : T(|p;], ;) < 0}, analogously to (9), we denote,
AL =bI+ > a:iZQixix] . (11)
i=1
Theorem 2. Let (X1,Y1),- - -, (Xm, Ym ) be arbitrary input

sequence, where ||x;|| < 1. Assume DAGGER-wemm (
Alg. 1 and right column of Tab. 1) is run on the sequence
with parameter b > 1 and ¢ > 0. Then for all v € R,

1 T a b T
. : +1)E| Y | —E[U]
c b—1 _ 1+ '
ieMUU

Additionally, the expected number of queries is upper
bounded by E [\A| +> 2¢ }

1€S 2¢+T(|ps],ri}
The proof appears in App. A.3 (supplementary material).
Remark 3. Both Remarks 1 and 2 also apply for this the-
orem. lIts last term, is lower than the last term of Cesa-
Bianchi et al [11, Thm. 3], and one can compute the op-
timal parameter c. Nevertheless, the three terms may be
higher than the previous bound, as A, < A%, and b > 1.
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Table 2: Properties of datasets.

Data Generated Examples  Features Fraction of
smaller class
20NG 20 lvs-rest 18K 61K 3.3-53%
RCV1 4 lvs-rest 685K 268K 8-43%
RCVI 6 1vsl 273-537K  112K-253K 20-46%
Amazon 3 Rank 769K (4.5K) 16M 6-33%

Still, the bounds are not comparable, as they depend on
the exact updates of the user, which may yield this bound
to be lower than the previous one, as DAGGER-wemm may
update more aggressively during the beginning of its excep-
tion, but much less later.

S Empirical Evaluation

We evaluate our algorithms on a range of binary document
classification problems. We selected three tasks and gen-
erated 33 binary classification problems, by either predict-
ing one class against the rest (1vs-rest), or taking pairs of
classes (1vs1). We used five-fold cross validation.

20 Newsgroups corpus contains messages partitioned
across 20 different newsgroups [1]. We generated 20 1vs-
rest binary problems, yielding datasets with about 18K ex-
amples and 61K features. These datasets are highly unbal-
anced with about 5% positive examples. The Reuters Cor-
pus (RCV1-v2/LYRL2004) contains manually categorized
newswire stories [21]. Each article contains one or more
labels describing its general topic, industry and region. We
used the four most general labels (E-, G-, C-, M-CAT) and
generated 10 datasets: four 1vs-rest (with about 685K ex-
amples and 268K features) and six 1vsl sets. Details on
document preparation and feature extraction are given by
Lewis et al [21]. Amazon reviews were used to predict
sentiment. We used a larger version of the multi-domain
data set of Blitzer et al [6] used by Dredze et al [17, 2].
This data consists of product reviews. The goal in each
domain is to classify a product review as either positive or
negative. Feature extraction creates unigram and bigram
features using counts following Blitzer et al [6]. We in-
duced three binary datasets with 769K training examples,
4.5K test examples, and 16 M features. The task in the first
dataset was to predict if the number of stars associated with
a review is one or more. For the second dataset, it’s to pre-
dict if the score is two or less, vs more than two. Finally,
for the third one, is it four or less, or five. We followed
previous preprocessing and omitted all reviews with three
stars, as they are very noisy. Properties of all datasets are
summarized in Tab. 2.

We evaluated five algorithms: DAGGER-ridge
DAGGER-wemm (with a fixed value of b 1.1)
(both algorithms are in Alg. 1 and Tab. 1), CBGZ-ridge of
Cesa-Bianchi et al [11, Alg. 3] (performed best in their
evaluation), BBQ of Orabona et al [10] and RANDom
sampling. Since the data is of high-dimension (up to
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Figure 2: Error vs no of queries labels for 9 datasets: Amazon (first row), 1vs-rest and 1vs1l RCV (second row), and 20NG

lvs-rest (third row). Figure best viewed in color.

16 M) we diagonalized A; after processing each example.
(Synthetic simulations with full matrices showed similar
results as shown below.) Each algorithm was executed
with 20 values of the constant ¢ having one pass over the
training data, recording the number of queried labels and
the test error. We report averages over all folds.

Results for 9 representative datasets appear in Fig. 2 (more
results are in Fig. 4 and Fig. 5 in the supplementary ma-
terial). Each panel summarizes the results for a single
dataset, where the first row shows the results for all Ama-
zon datasets, second for two (out of four) 1vs-rest RCV
and one (out of six) 1vsl RCV, and third for three (out of
twenty) 1vs-rest 20NG. Each panel plots five lines connect-
ing markers, one line per algorithm. Each marker shows
the average (test) error vs average number of updates for a
run with a specific choice of the parameter c. A line shows
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the tradeoff between number of queries (x-axis) and error
(y-axis) for some algorithm. Error bars indicate 95% con-
fidence intervals. The horizontal dashed gray line indicates
the performance of AROW [15], a state-of-the-art online
algorithm, a possible skyline that always makes a query.

In most cases CBGZ-ridge (green-circles) shows a large
range of the tradeoff, with the ability to query very little
(points at left) to very much (points at right). In some cases
RANDom is worse than BBQ , and in other cases, the other
way around. Note that BBQ has strong assumptions about
the label generating process, and furthermore it ignores the
labels when deciding to query.

DAGGER algorithms perform best than the other algo-
rithms, where in general, DAGGER-ridge outperforms
DAGGER-wemm. We were not able to drive them to query
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Table 3: Average number of queries and test error Results for six algorithms for 1-vs-rest binary classification problems
based on the 20NG dataset, where the maximal number of allowed queries is 1, 500 (1st block) and 4, 500.

RAND BBQ CBGZ-ridge DAGGER-ridge DAGGER-wemm AROW
queries error |queries error |queries error |queries error |queries error |queries error
rrec.sport.hockey 969 5.43(2.50) 560 5.25(0.13) | 1,296 2.51(0.34) | 1,136 1.21(0.30) | 1,191 1.14(0.20) (15,019 0.89 (0.13)
rec.sport.baseball 1,020 6.02 (1.19) 565 5.99(0.78) | 1,248 4.50(0.70) | 1,071 2.26(0.39) | 1,233 1.85(0.19) (15,019 1.47(0.25)
sci.electronics 1,017 8.70 (3.76) 404 13.33(10.26) | 1,363 5.34(0.37) 997 5.16(0.26) | 1,346 4.51(0.21) (15,019 3.14(0.18)
sci.crypt 989 4.49 (0.54) 593 5.89(0.43) | 1,378 3.55(0.47) | 1,335 2.04(0.51) | 1,262 1.86 (0.41) (15,019 1.48(0.31)
sci.space 1,012 5.07 (0.44) 516 5.65(0.19) | 1,450 3.15(0.17) | 1,208 2.52(0.34) | 1,353 1.76 (0.16) (15,019 1.52(0.20)
sci.med 994 7.24 (2.09) 553 6.25(1.03) | 1,399 4.04(0.38) 815 4.60(0.73) | 1,289 2.78(0.72) (15,019 1.68(0.32)
talk.politics.guns 1,010 5.31(0.69) 713 5.11(0.32) | 1,306 4.41(0.74) | 1,296 3.42(0.93) | 1,292 2.94(0.35) (15,019 2.09 (0.14)
8 |soc.religion.christian 994 6.68 (1.85) 785 6.02(0.86) | 1,180 5.40(1.02) | 1,175 3.04(0.41) | 1,007 3.32(0.44) (15,019 2.10(0.17)
' ftalk.politics.misc 1,004 4.39 (0.39) 698 4.48 (0.56) | 1,236 4.24(0.73) 977 3.70(0.35) | 1,048 3.35(0.36) (15,019 2.40(0.47)
v [talk.politics. mideast 996 6.66 (3.63) 690 6.28 (1.38) | 1,327 3.56 (1.78) 984 2.34(1.20) | 1,237 1.44(0.12) |15,019 1.16(0.16)
.8 ftalk religion.misc 1,005 5.81(1.56) 786 3.99(0.66) | 1,470 3.67(0.50) | 1,463 3.23(0.31) | 1,388 3.22(0.37) |15,019 2.75(0.39)
E lalt.atheism 986 5.71 (1.04) 704 4.45(0.40) | 1,239 4.12(044) | 1,117 3.43(0.50) | 1,019 3.65(0.45) (15,019 2.17(0.39)
Sicomp.os.ms-windows.misc | 1,013 6.14 (0.80) 456 6.25(0.94) | 1,198 4.49(0.39) | 1,162 3.61(0.61) | 1,113 3.56 (0.21) (15,019 2.74 (0.28)
icomp.graphics 1,010 6.14 (0.67) 416 6.10(0.32) | 1,273 7.08 (3.64) | 1,097 3.90(0.85) | 1,138 3.87(0.37) (15,019 3.01(0.34)
comp.sys.mac.hardware 999 6.25 (0.84) 500 8.85(4.96) | 1,359 4.37(0.48) 981 4.29(0.89) | 1,232 3.26 (0.32) (15,019 2.51(0.23)
comp.sys.ibm.pc.hardware 993 9.29 (3.02) 441 7.33(2.49) | 1,254 6.02 (1.37) 950 4.70(0.26) | 1,223 4.34(0.34) (15,019 3.50(0.27)
imisc.forsale 983 5.09 (1.22) 349 6.33(4.76) | 1,414 3.00(0.34) | 1,382 1.84(0.24) | 1,303 1.98(0.22) (15,019 1.82(0.25)
comp.windows.x 1,012 5.78 (0.64) 375 5.76 (0.29) | 1,271 4.27(0.82) | 1,199 2.69 (0.34) | 1,203 2.66 (0.19) (15,019 2.07 (0.24)
rec.motorcycles 997 10.00 (10.38) 432 6.38 (1.15) | 1,349 3.92(1.67) | 1,206 2.32(1.39) | 1,300 1.50(0.20) (15,019 1.27(0.13)
rec.autos 1,017 10.20 (3.14) 519 6.51(0.46) | 1,409 5.55(1.85) | 1,104 3.51(0.69) | 1,303 2.61(0.29) (15,019 2.12(0.34)
rec.sport.hockey 5,526 2.32(0.60) | 5,125 2.73(0.39) | 5,689 1.86(0.39) | 5,164 0.79 (0.16) | 5,645 0.94(0.24) (15,019 0.89 (0.13)
ec.sport.baseball 5,552 3.87 (2.14) | 4,332 3.69(0.28) | 5,745 2.24(0.04) | 5532 1.38(0.16) | 5,036 1.41(0.21) |15,019 1.47(0.25)
sci.electronics 5,499 4.96 (0.54) | 5,702 5.16(0.34) | 5976 4.44(0.69) | 5299 3.04(0.31) | 5331 3.08(0.18) (15,019 3.14(0.18)
sci.crypt 5,516 3.60 (1.57) | 4,825 3.85(0.30) | 5,904 2.79(0.86) | 5,786 1.44(0.23) | 5,166 1.52(0.22) (15,019 1.48(0.31)
sci.space 5,030 3.68 (0.97) | 4,495 3.82(0.37) | 5,064 2.50(0.18) | 5,043 1.35(0.09) | 4,634 1.52(0.23) (15,019 1.52(0.20)
sci.med 5,015 3.47(0.55) | 4,168 5.56(1.19) | 5,117 2.62(0.16) | 4,447 1.54(0.23) | 4,737 1.60(0.21) (15,019 1.68(0.32)
talk.politics.guns 5,482 4.11(1.32) | 5,157 4.50(0.36) | 5,794 3.13(0.38) | 4,944 2.15(0.41) | 5,344 2.12(0.31) (15,019 2.09 (0.14)
S [soc.religion.christian 5,526 5.79 (3.69) | 5,406 4.80(0.50) | 5,633 3.25(0.52) | 5,574 2.00(0.16) | 5,100 2.25(0.31) (15,019 2.10(0.17)
3 [talk.politics.misc 5,505 3.64 (0.58) | 5,460 3.88(0.49) | 5871 3.46(0.85) | 5,792 2.18(0.33) | 5426 2.35(0.42) (15,019 2.40(0.47)
v [talk.politics. mideast 5,524 2.43(0.47) | 5,575 3.98(0.52) | 5,834 1.78(0.27) | 5457 0.95(0.11) | 5280 1.04(0.10) |15,019 1.16(0.16)
8 ftalk.religion.misc 5,557 4.61 (1.76) | 5,346 5.40(1.92) | 5,695 3.29(0.54) | 5213 2.76(0.29) | 5,160 2.68(0.22) (15,019 2.75(0.39)
§ lalt.atheism 5,491 3.81(0.87) | 5,121 4.50(1.69) | 5,816 3.77(0.81) | 5,654 1.90(0.24) | 5,201 2.26(0.28) (15,019 2.17(0.39)
Sicomp.os.ms-windows.misc | 5,053 5.10(0.83) | 3,802 6.87(3.49) | 5,514 5.17(1.25) | 5420 2.75(0.18) | 4,725 3.12(0.16) (15,019 2.74 (0.28)
icomp.graphics 5,447 6.09 (1.75) | 3,666 491 (0.62) | 5,628 4.98(1.89) | 4,831 2.96(0.33) | 5,028 3.17(0.38) |15,019 3.01(0.34)
comp.sys.mac.hardware 5,511 4.97(0.93) | 3,894 4.49 (0.67) | 5,715 4.78(1.34) | 4,898 2.46 (0.31) | 5,095 2.64(0.39) (15,019 2.51(0.23)
comp.sys.ibm.pc.hardware | 5,494 5.54(0.84) | 3,603 5.98(1.36) | 5,547 4.46(0.53) | 5,507 3.53(0.21) | 4,948 3.58(0.37) (15,019 3.50(0.27)
imisc.forsale 4,969 3.28 (0.28) | 4,250 3.08(0.31) | 5,117 2.43(0.23) | 4,318 1.75(0.29) | 4,949 2.03(0.21) (15,019 1.82(0.25)
comp.windows.x 5,545 3.66 (0.28) | 3,725 4.00 (0.19) | 5,604 3.50(0.78) | 5,410 2.01(0.26) | 5,598 2.11(0.31) (15,019 2.07(0.24)
rec.motorcycles 5,461 4.552.21) | 4,453 376 (1.13) | 5,846 2.09 (0.32) | 5,654 1.20(0.10) | 5,207 1.37(0.11) (15,019 1.27(0.13)
rec.autos 5,506 3.66 (0.68) | 4,197 4.40(0.39) | 5,991 3.06(0.31) | 5202 2.03(0.32) | 5,339 2.05(0.35) (15,019 2.12(0.34)

only a very few labels, despite low values of c used. This
is due to the phase transition of the bias which is set to 1
for some values of the margin. This phenomena is more
evident in the Amazon (top row) and less in the RCV and
20NG datasets. We hypothesize that it is correlated with
the dimension, as it is higher, more examples needed to be
observed before O(-, -) or I'(+, -) will not be negative. Also,
both DAGGER algorithms perform better than AROW on
the 20NG datasets, and close to it on the sentiment datasets,
even though they query at most third than AROW.

Interestingly, in some datasets (e.g. Amazon 1 in Fig. 2(a)),
the test error is increasing when more labels are observed.
For less than 100K examples, it is reduced from about 6%
to 5%, then when more labels are observed (up to 7T00K),
the test error goes up to about 5.6%. We now focus in
the twenty 20NG datasets using Tab. 3 (more results are
in Tab. 4 and Tab. 5 in the supplementary material) where
we specify the number of queries and the average test er-
ror for all five algorithms (and AROW) for selected runs.
For the first block we set the value of the parameter ¢ such
that the number of queries for CBGZ-ridge does not exceed
1,500, and the number of queries for all other algorithms
does not exceed the number of queries of CBGZ-ridge per
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dataset. In other words, per dataset, CBGZ-ridge uses the
maximum number of queries compared to the other selec-
tive sampling algorithms. The error of the best performing
selective sampling algorithm is emphasized in bold fonts.
DAGGER-wemm is the best algorithm for 17 datasets, and
DAGGER-ridge for the remaining 3 datasets. Also, these
algorithms have a lower confidence interval than CBGZ-
ridge. The second block shows the results where the num-
ber of queries for CBGZ-ridge is limited to 6,000 (out of
about 15K examples). Now DAGGER-ridge is the best
for 16 datasets, and as before both DAGGER algorithms
are better than the other algorithms, and both have a per-
formance closer to the performance of AROW than of the
performance of CBGZ-ridge.

We illustrate the difference of CBGZ-ridge and DAGGER
in Fig. 3. We used the comp.windows.x dataset (line 18
in the second block of Tab. 3; dataset name and number
of updates are underlined). Fig. 3(a) shows the cumula-
tive number of queries for all three algorithms, CBGZ-
ridge made 5,604 queries, DAGGER-ridge 5,410 and
DAGGER-wemm 5, 598. Fig. 3(b) shows the difference
of cumulative number of queries of both DAGGER algo-
rithms with respect to the CBGZ-ridge algorithm. Note
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Figure 3: Cumulative number of queries (a,c) and difference of the DAGGER algorithms and CBGZ-ridge (b,d), for
comp.windows.x dataset (a,b), and ECAT-vs-rest (c,d). x-axis is plotted is log-scale, and y-axis of (a,c) also in log-scale.

the log scale used. observe the run, and in a higher rate
than of CBGZ-ridge; and DAGGER-ridge queries more
than CBGZ-ridge, in very early stages. Fig. 3(b) shows
that until about 3, 000 examples the DAGGER algorithms
query more and more aggressively than the CBGZ-ridge
algorithm. After that point, both DAGGER algorithms
query less aggressively, until they even make less queries
than CBGZ-ridge. Figs. 3(c),3(b) show similar trends with
ECAT-vs-rest dataset (row 8 of Tab. 4). To conclude, both
DAGGER algorithms query more aggressively in earlier
rounds, where the wemm based version is more aggressive.

6 Related Work

Selective sampling and active learning, such as query-by-
committee [19] and “apple tasting” [20], were studied in
the past decades. Clearly, we can not cover all that work.
Recent papers [4, 5] discuss stochastic query decisions for
active learning. Their methods are designed for general
PAC-learnable classes. We focus in linear methods, and
use natural quantities such as margin p; and confidence r;.

Cesa-Bianchi et al [10] and Orabona et al [23] developed
algorithms for selective sampling in the stochastic setting.
The decisions of their algorithms are based on a quantity
r; (aka upper confidence interval). If r; is small there is no
need to query, and if it is large, there is. Intuitively, if x;
lies in the span of the preceding examples (computed via
A;) the algorithm has enough “knowledge” from previous
examples about the direction of x;, and there is no need
to query. These algorithms are in fact ignoring the margin
|pi|, and have a domestic query rule, although the authors
mention that stochastic queries are possible.

Much of recent work on linear functions is based on a quan-
tity called the margin. It is used in active learning [24], per-
ceptron active learning [16], and SVMs for selective sam-
pling is also based on the margin [7, 8] (also use a finite
period of non-stop querying and later sporadic querying).
The work of Cesa-Bianchi et al [11] is the closest to our
work, and has a stochastic rule with the same form as (3)
with F(|p;|,r;) = p; and f(r;) = 0 (conservative).

Each of these quantities lacks information (separately).
Consider for example the case of an input x; for which p; is
small and r; is large. Methods that focus only in p; will de-
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cide to query (as the margin is close to zero), even though
it could be the case that enough samples like x; were al-
ready observed, yet there is large label noise at this region.
Here, p; would be small, so there is no need to query for
this input. This information could be inferred from the fact
that r; is not large, which means that indeed x; was ob-
served many times. On the other hand, a medium value of
r; means that x; was observed a few times already, and thus
methods that consider only this quantity would decide not
to query, even though it might be the case that this example
lies in a region with inputs hard to predict (as p; is small),
and thus it is valuable to query. We take the best of these
two approaches by considering both quantities.

Finally, recently, few works were published about second
order algorithms for classification, e.g. the second order
Preceptorn [9], confidence weighted classifiers [13], and
adaptive regulariztion of weights (AROW) [15].

7 Conclusion

We presented two new online learning selective sampling
algorithms, that may query a label of each input example.
Our algorithms use both margin and a notion of uncertainty
(or variance), to stochastically decide if to query. The al-
gorithms are doubly aggressive, both for querying and up-
dating. We analyzed the algorithms in the worst-case mis-
take bound setting, and showed that under proper choice
of the learning parameter c, they may work as well as algo-
rithms that observe all labels. Experiments with 33 datasets
coming from three document classification tasks show that
our algorithms perform best compared to the other algo-
rithms, and occasionally, outperform algorithms that ob-
serves all the input labels. DAGGER-wemm seems outper-
form DAGGER-ridge when only few inputs are queried,
either by being able to query a few input (see Tab. 4,Tab. 5)
or having low errors (see Tab. 3). We plan to extend the
algorithms for multi-class problems and other settings.
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