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Abstract

Sparsity is a fundamental topic in high-
dimensional data analysis. Perhaps the most
common measures of sparsity are the `p-
norms, for 0 ≤ p < 2. In this paper, we
study an alternative measure of sparsity, the
truncated `2-norm, which is related to other
`p-norms, but appears to have some unique
and useful properties. Focusing on the n-
dimensional Gaussian location model, we de-
rive exact asymptotic minimax results for es-
timation over truncated `2-balls, which com-
plement existing results for `p-balls. We then
propose simple new adaptive thresholding es-
timators that are inspired by the truncated
`2-norm and are adaptive asymptotic mini-
max over `p-balls (0 ≤ p < 2), as well as
truncated `2-balls. Finally, we derive lower
bounds on the Bayes risk of an estimator, in
terms of the parameter’s truncated `2-norm.
These bounds provide necessary conditions
for Bayes risk consistency in certain prob-
lems that are relevant for high-dimensional
Bayesian modeling.

1 INTRODUCTION

Many methods for prediction and estimation in high-
dimensional data analysis are designed to exploit ad-
ditional structure that may be present, but not com-
pletely obvious, in a given dataset. Important exam-
ples of this type of structure include the existence of
an interesting low-dimensional latent subspace, which
is crucial for principal component and factor analysis-
based methods (Jolliffe, 2002), and sparsity, which is
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the main focus of this paper. Broadly speaking, spar-
sity measures the extent to which a (typically high-
dimensional) signal may be described by relatively few
elements of some prespecified basis; if the signal is
sparse, then only a handful of basis vectors may be
required to accurately describe it. Sparse methods
— that is, methods designed to exploit sparsity, like
thresholding (Donoho and Johnstone, 1994a, 1995),
lasso (Tibshirani, 1996) and other penalized estima-
tion procedures (Zhang, 2010; Fan and Lv, 2011) —
have proven to be extremely successful tools for high-
dimensional data analysis in a wide range of applica-
tions, e.g., (Donoho, 1995; Wright et al., 2009; Erlich
et al., 2010).

The performance of sparse methods generally hinges
on some measure of sparsity in the underlying sig-
nal. Perhaps the most common measures of spar-
sity are the `p-norms, with 0 ≤ p < 2 (Abramovich
et al., 2006; Donoho, 2006) [here, we restrict our at-
tention to quadratic loss functions; otherwise, an alter-
native range of `p-norms might be of interest (Donoho
and Johnstone, 1994b)]. For θ = (θ1, ..., θn)> ∈ Rn
and 0 < p < ∞, the `p-norm is defined by ||θ||p =
(
∑n
i=1 |θi|p)1/p; the `0-norm ||θ||0 = |{i; θi 6= 0}| is the

number of nonzero components of θ. (For 0 ≤ p < 1,
the `p-norm is not a genuine norm; however, following
standard practice, we still refer to it as such.) The `0-
and `1-norms deserve special attention. The `0-norm is
especially appealing from an intuitive perspective and
is closely identified with hard-thresholding estimators
and “subset selection” methods (Foster and George,
1994; Breiman, 1996). The `1-norm plays a key role in
soft-thresholding and lasso procedures; moreover, sig-
nificant computational advantages are often associated
with the `1-norm (Tropp, 2006).

In this paper, we present a collection of results for
an alternative measure of sparsity: the truncated `2-
norm,

||θ||t,σ2 =

{
n∑
i=1

(θ2
i ∧ σ2)

}1/2

.
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Here σ2 > 0 is the noise-level for the problem under
consideration and θ2

i ∧ σ2 = min{θ2
i , σ

2}. In what
follows we typically take σ2 = 1; indeed, define ||θ||t =
||θ||t,1. We will refer to || · ||t as both the truncated
`2-norm and, for convenience, the `t-norm. As with
the `p-norm for 0 ≤ p < 1, the `t-norm is not a true
norm. Generally, a vector is considered to be (`p-)
sparse if its `p-norm is small, for some p ∈ [0, 2) ∪ {t}
(in this notation, t serves as a token for indicating the
`t-norm; that is, taking p = t refers to the `t-norm).

The truncated `2-norm has appeared elsewhere in the
literature on sparse estimation, often in the context of
oracle inequalities (Donoho and Johnstone, 1994a; Fos-
ter and George, 1994; Zhang, 2005; Candès and Tao,
2007). However, in some aspects, existing theory for
`t-sparsity is less fully developed than for other `p-
norms. In this paper, we hope to demonstrate that
significant new insights into high-dimensional sparse
estimation problems can be gained by further studying
the truncated `2-norm. Focusing on the n-dimensional
Gaussian location model, which is a cornerstone for
the development and understanding of more complex
statistical models (Johnstone, 2013), the three main
technical contributions of this paper are: (i) we derive
exact asymptotic minimax results for estimation over
truncated `2-balls, assuming n → ∞ and the spar-
sity condition n−1||θ||2t → 0; (ii) we identify simple
new adaptive thresholding estimators that are inspired
by the truncated `2-norm; and (iii) we derive lower
bounds on the Bayes risk of an estimator, in terms of
the parameter’s truncated `2-norm.

Taking a broader view of this paper’s potential im-
plications, our results suggest that the truncated `2-
norm gives necessary and sufficient conditions for the
successful application of “sparse methods” in high-
dimensions. Thus, estimating the truncated `2-norm,
or some proxy [e.g., κt(θ) defined in (13) below], might
provide a simple summary measure of sparsity for
high-dimensional datasets. This could be useful for
exploratory data analysis in high dimensions. Further-
more, the lower bounds on Bayes risk derived in this
paper may provide guidance on identifying effective
priors for Bayesian inference in high-dimensional data
analysis.

1.1 Overview of the paper

Section 2 covers preliminaries. We introduce the sta-
tistical model, some basic definitions and notation, and
discuss some well-known elementary results involving
the truncated `2-norm.

Sections 3–4 contain minimax and adaptive thresh-
olding results. These results are related to work
by Donoho et al. (1992), Donoho and Johnstone

(1994b), Johnstone and Silverman (2004), Zhang
(2005), Abramovich et al. (2006), Jiang and Zhang
(2009) and others, who studied asymptotic minimax-
ity over `p-balls (0 ≤ p < 2). Here, we extend re-
sults from (Donoho et al., 1992; Donoho and John-
stone, 1994b) to truncated `2-balls and propose simple
new estimators that are adaptive asymptotic minimax
over `p-balls and truncated `2-balls. In these results,
we assume a sparsity condition, i.e., that the relevant
`p-balls are very small. We emphasize that the asymp-
totic minimax results in Sections 3–4 paper are sharp;
that is, we obtain the constants, as well as the rates.

In Section 5, we present lower bounds for Bayes risk
that depend on the truncated `2-norm. Lower bounds
and Bayes risk often play a key role in minimax anal-
yses; however, our approach in Section 5 is somewhat
different. In particular, our results in Section 5 re-
quire no sparsity assumptions, are valid for a broad
class of prior distributions, and give lower bounds on
the Bayes risk in terms of a quantity closely related to
the truncated `2-norm. These results may shed some
light on the consequences for high-dimensional prob-
lems when sparsity assumptions do not hold. This, in
turn, could have significant practical implications for
conducting valid statistical inference in high dimen-
sions and Bayesian modeling. Two examples related to
high-dimensional Bayesian modeling — the Bayesian
lasso (Park and Casella, 2008) and the horseshoe prior
(Carvalho et al., 2010) — are discussed at the end of
Section 5.

Section 6 contains a concluding discussion. Proofs may
be found in the Supplementary Material.

2 PRELIMINARIES

2.1 Notation and Definitions

We assume that the observed data consists of a single
n-dimensional Gausian random vector x ∼ N(θ, In),
with unknown mean parameter θ = (θ1, ..., θn)> ∈ Rn.

For an estimator θ̂ = θ̂(x) of θ, define the risk

R(θ̂;θ) = Rn(θ̂;θ) =
1

n
Eθ

{
||θ̂(x)− θ||22

}
. (1)

The subscript θ in the expectation on the right-hand
side of (1) serves to emphasize that x ∼ N(θ, In) and
that the expecation is conditional on θ.

In Sections 3–4, the performance of an estimator θ̂ will
primarily be measured by its maximal risk over some
subset Θ ⊆ Rn,

R(θ̂; Θ) = sup
θ∈Θ

R(θ̂,θ). (2)

In Section 5, the Bayes risk plays a more prominent
role; we defer the definition of Bayes risk until then.

160



Lee H. Dicker

For the maximal risk (2), we are primarily interested
in cases where Θ is an `p-ball. For θ ∈ Rn and p ∈
[0,∞) ∪ {t}, define the standardized `p-norm

ηp(θ) = ηp,n(θ) =


n−1||θ||0 if p = 0,

n−1||θ||pp if 0 < p <∞,
n−1||θ||2t if p = t.

Define the `p-ball with standardized radius η ≥ 0 by

Bpn(η) = {θ ∈ Rn; ηp(θ) ≤ η}.

As seen below in (10), focusing on the standardized
`p-norm facillitates a more direct comparison between
`p-balls with different p; additionally, it helps to em-
phasize connections between `p-norms and p-th mo-
ments of prior distributions (see Section 5).

We use the following asymptotic notation throughout
the paper. Suppose that {aι}ι∈I , {bι}ι∈I are two col-
lections of numbers indexed by some set I. We write
aι ∼ bι, if aι/bι → 1 under some specified limiting con-
ditions ι → ι0; we write aι . bι, if lim sup aι/bι ≤ 1.
The notation aι = O(bι) means that there is a constant
C ∈ R such that |aι| ≤ Cbι for all ι ∈ I. .

2.2 Basic Results for `t-Balls

In this subsection, we discuss some well-known in-
equalities for soft-thresholding that illustrate the use-
fulness of the `t-norm and are closely related to many
of the results that follow. For x, y ∈ R, let x ∨
y = max{x, y}. Define the soft-thresholding function
sλ(x) = sign(x) {(|x| − λ) ∨ 0} (x ∈ R, λ ≥ 0) and

the corresponding soft-thresholding estimator θ̂λ =
θ̂λ(x) = (sλ(x1), ..., sλ(xn))>. Soft-thresholding is
one of the fundamental sparse estimators (Donoho and
Johnstone, 1994b,a); it is closely related to lasso and
has inspired many other thresholding and penalized
estimation procedures (Tibshirani, 1996; Fan and Li,

2001). Notice that ||θ̂λ||0 < n with positive probabil-
ity; this provides one simple justification for referring
to soft-thresholding as a “sparse estimator.”

Let λuniv = {2 log(n)}1/2 and define the universal

thresholding estimator θ̂univ = θ̂λuniv
(Donoho and

Johnstone, 1994a). Then

1

2
ηt(θ) ≤ inf

λ≥0
R(θ̂λ;θ) (3)

≤ R(θ̂univ;θ) (4)

≤ {2 log(n) + 1}
{

1

n
+ ηt(θ)

}
(5)

for θ ∈ Rn. The inequality (3) follows from Lemma
8.3 of (Johnstone, 2013); (4) is trivial; (5) follows

from Proposition 8.8 of (Johnstone, 2013). The in-
equalities (3)–(5) imply that the performance of soft-
thresholding is determined, up to a log-factor, by the
(standardized) `t-norm of θ.

To see where other sparse `p-norms fit in, notice that

ηt(θ) ≤ ηp(θ), θ ∈ Rn, 0 ≤ p < 2. (6)

[In fact (6) holds for 0 ≤ p ≤ 2, but the `2-norm is
less relevant for the present discussion of sparsity.] It
follows from (5) and (6) that if θ ∈ Rn and 0 ≤ p < 2,
then

R(θ̂univ;θ) ≤ {2 log(n) + 1}
{

1

n
+ ηp(θ)

}
. (7)

Hence, the risk of θ̂univ is small when ηp(θ) is small.
On the other hand, there is no corresponding lower
bound on infλ≥0R(θ̂λ;θ) involving the `p-norm for
0 ≤ p < 2. Thus, while good upper bounds on
R(θ̂univ;θ) are available in terms of the `p-norm for
all p ∈ [0, 2)∪{t}, lower-bounds like (3) are only valid
for the truncated `2-norm.

Most of the results in this paper may be viewed as
extensions or refinements of the inequalities (3)–(5).
The results in Sections 3-4 are, in a sense, refine-
ments of the upper bound (5). Indeed, the results in
Section 3 largely parallel existing results for `p-norms
(0 ≤ p < 2), which may themselves be viewed as refine-
ments of (7); the adaptation results in Section 4 further
demonstrate how results for `p-norms (0 ≤ p < 2) may
follow easily from results on `t-norms, similar to how
(7) follows from (5)–(6).

Our results for Bayes risk in Section 5 build on the
lower bound (3). While (3) applies only to threshold-
ing estimators, the lower bounds in Section 5 are valid
for all estimators θ̂ and involve a Bayesian analogue
of ηt(θ).

3 MINIMAX RISK OVER `t-BALLS

For p ∈ [0,∞) ∪ {t}, define the minimax risk over
Bpn(η),

rpn(η) = inf
θ̂
R{θ̂;Bpn(η)} = inf

θ̂
sup

θ∈Bpn(η)

R(θ̂;θ),

where the infimum is taken over all measurable estima-
tors θ̂ = θ̂(x). Our first result gives exact asymptotics
for the minimax risk rtn(η), as n → ∞, η → 0, and
implies that soft-thresholding is asymptotically min-
imax. (Corresponding results are available for hard-
thresholding estimators; we focus on soft-thresholding
here because it is slightly more convenient mathemat-
ically.) For η > 0, define the thresholding level

λη = {2 log(η−1)}1/2.
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Theorem 1. If n→∞, η → 0 and η ≥ n−1, then

rtn(η) ∼ R{θ̂λη ;Btn(η)} ∼ 2η log(η−1).

Theorem 1 gives the exact asymptotic minimax risk
over `t-balls of radius η, and implies that soft-
thresholding at level λη = {2 log(η−1)}1/2 is an asymp-
totically minimax estimator. The condition η → 0 in
Theorem 1 is a sparsity condition, which ensures that
the signal θ is `t-sparse; the condition η ≥ n−1 is a sig-
nal strength condition which ensures that the signal is
not too small.

Theorem 1 is closely related to existing work by
Donoho, Johnstone, and coauthors on `p-balls, with
0 ≤ p < 2. The results in (Donoho et al., 1992) imply
that if n→∞, η → 0 and η ≥ n−1, then

r0
n(η) ∼ R{θ̂λη ;B0

n(η)} ∼ 2η log(η−1); (8)

in (Donoho and Johnstone, 1994b), it was shown that
if 0 < p < 2, n→∞, η → 0 and ηn/{log(n)}p/2 →∞,
then

rpn(η) ∼ R{θ̂λη ;Bpn(η)} ∼ η{2 log(η−1)}1−p/2. (9)

The result for `0-balls (8) is key to proving Theorem
1. Indeed, (6) implies that

Bpn(η) ⊆ Btn(η), 0 ≤ p < 2, η ≥ 0. (10)

Hence,

2η log(η−1) ∼ r0
n(η) ≤ rtn(η) ≤ R{θ̂λη ;Btn(η)}. (11)

Theorem 1 follows upon proving that R{θ̂λη ;Btn(η)} .
2η log(η−1). Details may be found in the Supplemen-
tary Material.

In addition to playing an important role in the proof
of Theorem 1, the inclusion (10) provides some geo-
metric insight into the relationship between `t- and
`p-sparsity (0 ≤ p < 2). Figure 1 provides a graphical
illustration of the `p-balls for p = t, 0, 1, n = 2 and
η = 5/8, which clearly depicts the inclusions (10).

Theorem 1 and (8) imply that it is just as difficult to
estimate θ over `t- as it is to estimate θ over `0-balls
(since the minimax risk in Theorem 1 and (8) are the
same). On the other hand, Theorem 1 and (9) imply
that it is slightly easier to estimate θ over `p-balls for
0 < p < 2 (by a factor of {2 log(η−1)}p/2).

−2 −1 0 1 2

−
2

−
1

0
1

2

lp −Balls for p=t,0,1.

θ1

θ 2

p = t
p = 1
p = 0

Figure 1: The `p-balls Bpn(η) for p = t, 0, 1, n = 2 and
η = 5/8. Observe that B0

n(η), B1
n(η) ⊆ Btn(η).

To see how Theorem 1 relates to the upper bound for
universal thresholding in (5), observe that if n → ∞,
ηt(θ)→ 0 and ηt(θ) ≥ n−1, then Theorem 1 implies

R{θ̂ληt(θ)
;θ} . 2ηt(θ) log{ηt(θ)−1} (12)

=

[
log{ηt(θ)−1}

log(n)

]
× 2ηt(θ) log(n)

. 2ηt(θ) log(n).

It follows that, in the specified setting, the upper
bound (12) improves upon the upper bound for univer-
sal thresholding in (5). Hence, it may be beneficial to
threshold at level λ = ληt(θ), as opposed to λ = λuniv.
However, in practice, it is typically unreasonable to
assume that ηt(θ) is known; thus, it is not possible

to implement the estimator θ̂ληt(θ)
. This issue is ad-

dressed in the next section, where we discuss adaptive
thresholding.

4 ADAPTIVE THRESHOLDING

Since ηt(θ) is typically unknown, a reasonable strategy

is to replace ηt(θ) in θ̂ληt(θ)
with an estimate. One ob-

stacle to this approach is that it is challenging to accu-
rately estimate ηt(θ); according to Zhang (2005), ηt(θ)
is only estimable at logarithmic rates. On the other
hand, Zhang (2005) proposed a surrogate for ηt(θ) that
is more easily estimated. Define

κt(θ) = 1− 1

n

n∑
i=1

e−θ
2
i /4. (13)

It is elementary to check that

e− 1

4e
ηt(θ) ≤ κt(θ) ≤ ηt(θ). (14)
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The main implication of (14) is that if ηt(θ)→ 0, then
κt(θ)→ 0 at the same rate, and conversely. Hence, by
estimating κt(θ), we can estimate the rate of ηt(θ); it
turns out that this is sufficient to construct an adaptive
asymptotically minimax thresholding estimator, with
properties similar to those of θ̂ληt(θ)

.

Define

κ̂t = 1− 1

n

n∑
i=1

√
2e−x

2
i /2.

It is easily seen that κ̂t is an unbiased estimator for
κt(θ) with Var(κ̂t) = O(n−1). Now define the adap-
tive thresholding level

λ̂ =

[
2 log

{(
κ̂t ∨

1

n

)−1
}]1/2

. (15)

Theorem 2. Let θ̂λ̂ be the soft-thresholding estimator

at level λ̂, defined in (15). Suppose that p ∈ [0, 2)∪{t}
is fixed. If n→∞, η → 0, and η{n/ log(n)}1/2 →∞,
then

R{θ̂λ̂;Bpn(η)} ∼ rpn(η).

Theorem 2 implies that θ̂λ̂ is asymptotically minimax
over `p-balls, for all p ∈ [0, 2)∪{t}, assuming the spar-
sity condition η → 0 and the signal strength condition
η{n/ log(n)}1/2 → ∞. The estimator θ̂λ̂ is an adap-
tive thresholding estimator because the thresholding
level adapts to the various `p-norms and the radius η.

The signal strength condition η{n/ log(n)}1/2 →∞ in
Theorem 2 is considerably stronger than that in The-
orem 1 and those required for (8)–(9). This is because
of the error inherent in κ̂t for estimating κt. It may be
of interest to investigate how much the signal strength
condition in Theorem 2 can be relaxed, either by more
carefully analyzing θ̂λ̂ or considering other related es-
timators.

Other adaptive estimators, which are asymptotically
minimax over `p-balls for a range of values p and radii
η, have been previously proposed. Some of these es-
timators are relatively complex (Johnstone and Sil-
verman, 2004; Zhang, 2005; Jiang and Zhang, 2009).
Abramovich et al. (2006) proposed adaptive thresh-
olding estimators based on procedures for controlling
the false discovery rate in multiple testing problems;
their work is probably the most relevant for compar-
ison to Theorem 2. The main result of Abramovich
et al. (2006) (Theorem 1.1) requires η ≥ n−1{log(n)}5,
which is a substantially weaker signal strength con-
dition than that in Theorem 2; but their result also
requires η ≤ n−δ for some fixed δ > 0, which is a
stronger sparsity condition than in Theorem 2.

The proof of Theorem 2 contains two key elements and
may be found in the Supplementary Material. The

first key point is the approximation

R(θ̂λ̂;θ) ≈ R{θ̂ληt(θ)
;θ}. (16)

The second key is the following proposition, which is
proved in the Supplementary Material.

Proposition 1. Fix 0 ≤ p < 2. If n→∞ and η → 0,
then

sup
θ∈Bpn(η)

R{θ̂ληt(θ)
;θ} . η

{
2 log(η−1)

}1−p/2
.

Proposition 1 further illustrates the usefulness of the
`t-norm vis-à-vis other `p-norms. Indeed, together
with (8)–(9), Proposition 1 implies that if one thresh-
olds at a level determined by the `t-norm, i.e., λ =
ληt(θ), then asymptotic minimaxity over `p-balls fol-
lows automatically, for each 0 ≤ p < 2. Theorem 2
follows by combining (16) with Proposition 1 and (8)–
(9).

5 BAYES RISK AND LOWER
BOUNDS

5.1 General Results

In the previous sections, we focused largely on soft-
thresholding estimators and minimax risk over `p-balls
(p ∈ [0, 2) ∪ {t}) with shrinking radius η. Taking
a broader view, the techniques employed above —
whereby one considers the maximal risk of a specific
estimator (e.g., soft-thresholding) over some restricted
parameter space (e.g., an `p-ball) — illustrate a com-
mon method for obtaining minimax upper bounds.
Lower bounds on minimax risk are generally derived
using Bayesian arguments, which involve bounding the
Bayes risk for a sequence of approximately least favor-
able prior distributions (in the proof of Theorem 1, we
avoid direct use of Bayesian arguments by appealing to
the lower bound (11); the proof of (8), which is crucial
for (11), relies heavily on Bayesian techniques).

Beyond its role in minimax arguments, a detailed
analysis of Bayes risk may be useful for more prac-
tical purposes in high-dimensional Bayesian model-
ing. Conditioning on hyperparameters as necessary,
many previously proposed prior distributions π for
high-dimensional Bayesian inference are n-fold prod-
ucts of a symmetric one-dimensional distribution π,
i.e., π = ⊗(n)π (Park and Casella, 2008; Carvalho
et al., 2010). The Bayes risk

r(π) = inf
θ̂

∫
R
Eθ

[
{θ̂(x)− θ}2

]
dπ(θ) (17)

= inf
θ̂

∫
Rn
Eθ

{
||θ̂ − θ||2

}
dπ(θ),
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where x ∼ N(θ, 1) in the first expectation above, seems
to be a reasonable measure for gauging the appropri-
ateness of these priors and the effectiveness of the as-
sociated Bayes procedures in high dimensions. For in-
stance, if τ ∈ T ⊆ Rk is a hyperparameter for fur-
ther specifying π = π(·|τ ), then we should hope that
for some choice of τ ∈ T , the Bayes risk r{π(·|τ )}
is very small; otherwise, it would be impossible to
conduct effective inference using the class of priors
{π(·|τ ); τ ∈ T}. Moreover, in problems where spar-
sity is an important feature, it may be useful to char-
acterize priors from {π(·|τ ); τ ∈ T} by some sparsity-
related measure [e.g., ηt(π), defined in (18) below] that
can be linked to their Bayes risk. In the remainder of
this subsection, we take some intial steps towards this
goal; some examples are considered in the next sub-
section.

If θ ∼ π = ⊗(n)π and n is large, then

ηt(θ) =
1

n
||θ||2t ≈

∫
R
|θ|2 ∧ 1 dπ(θ).

This motivates the following definition for the trun-
cated `2-norm of π,

ηt(π) =

∫
R
|θ|2 ∧ 1 dπ(θ). (18)

Similarly, define

ηp(π) =

∫
R
|θ|p dπ(θ), 0 < p <∞.

A vector θ ∈ Rn is considered to be sparse if ηp(θ) is
small (p ∈ [0, 2)∪{t}); thus, it seems reasonable that a
“sparse” prior π should have small ηp(π). On the other
hand, if η2(π) is also very small, then signal strength is-
sues may limit the effectiveness of any estimation pro-
cedure (Donoho and Jin, 2004). Hence, we focus on the
variance standardized `p-norm, νp(π) = ηp(π)/η2(π),
as a measure of sparsity in what follows. The next
theorem is our main result in this section. It is proved
in the Supplementary Material.

Theorem 3. Let π be a probability distribution on R
that is symmetric about 0 and has finite variance. Let
νt(π) = ηt(π)/η2(π) be the variance standardized `t-
norm of π. Then

r(π) ≥ η2(π)√
2

[{
1

4e2
νt(π)

}
∧ e−8/νt(π)

]
.

Theorem 3 implies that if {πn} is a sequence of sym-
metric prior distributions with finite variance, then
r(πn)/η2(πn) → 0 implies νt(πn) → 0. Conse-
quently, if the priors {πn} have bounded variance, then
the νt(πn) → 0 is a necessary condition for Bayes

risk consistency, i.e., r(πn) → 0. In settings where
η2(πn) → 0, consistency holds automatically because

r(πn) ≤ η2(πn) [to see this, take θ̂ = θ̂null = 0 in (17)];
in these settings, Theorem 3 implies that νt(πn)→ 0 is
a necessary condition for the existence of an estimator
that substantially outperforms θ̂null.

Theorem 3 does not apply to infinite variance priors
and may be less informative for studying classes of
prior distributions with unbounded variance. This is
a significant issue that we address in a fairly ad hoc
manner in the examples below; a more systematic ap-
proach is desirable and is a topic for future research.

More broadly, Theorem 3 gives a lower bound on the
performance of Bayesian methods in terms of the prior
distribution’s `t-norm. It seems unlikely that similar
lower bounds are available for other sparse `p-norms.
This complements our previous observation in Section
2.2 that lower bounds for soft-thresholding like (3) do
not appear to exist for other `p-norms (0 ≤ p < 2) and
further highlights interesting features of the truncated
`2-norm.

5.2 Examples

5.2.1 The Laplace prior

The Laplace prior

πL(θ|b) = (2b)−1e−|θ|/b, θ ∈ R, b > 0.

has frequently been associated with soft-thresholding
and lasso procedures (Tibshirani, 1996). Park and
Casella (2008) provide a Bayesian analysis of πL, fo-
cused mostly on computational issues in regression set-
tings. Here, we study the Bayes risk of πL, using tools
from the previous subsection.

It is elementary to check that

νt{πL(·|b)} = 1−
(

1 +
1

b

)
e−1/b.

Since

inf
0<b≤B

νt{πL(·|b)} = 1−
(

1 +
1

B

)
e−1/B > 0

for any positive real number B, Theorem 3 implies
that r{πL(·|b)}/η2{πL(·|b)} is bounded away from 0
for any bounded collection of hyperparameters b. On
the other hand, η2{π(·|b)} → ∞ as b → ∞, which
implies that the bound in Theorem 3 is trivial for
unbounded b. Still, by direct calculation or by ap-
pealing to more general results, e.g. Theorem 5.3 of
(Mukopadhyay and DasGupta, 1993), one can check
that infB<b r{πL(·|b)} > 0. We conclude that

inf
0<b<∞

r{πL(·|b)}
η2{πL(·|b)} ∧ 1

> 0.
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This may be viewed as a kind of inconsistency re-
sult for Laplace priors πL when used in certain high-
dimensional problems.

5.2.2 The horseshoe prior

Carvalho et al. (2010) proposed the horseshoe prior
for high-dimensional Bayesian modeling. Under the
horseshoe prior πH(·|τ),

θ|ψ ∼ N(0, ψ2),

where ψ follows a Cauchy(τ) distribution with density

f(ψ|τ) =
1

π

(
τ

τ2 + ψ2

)
, ψ ∈ R, τ > 0.

Clearly, if τ > 0, then η2{πH(·|τ)} =∞ and Theorem
3 does not apply. However, it may still be informative
to examine the Bayes risk r{πH(·|τ)}.

Supressing the dependence of πH on τ in our notation,
basic properties of conditional expectation imply that

r(πH) ≥ EπH

[
{EπH

(θ|x, ψ)− θ}2
]
, (19)

where the subscript πH in the expectation above indi-
cates that x|θ ∼ N(θ, 1) and θ ∼ πH. Conditional on
ψ, (x, θ) are jointly Gaussian. It follows that

EπH
(θ|x, ψ) =

ψ2

1 + ψ2
x

and

EπH

[
{EπH(θ|x, ψ)− θ}2

∣∣∣ψ] =
ψ2

1 + ψ2
.

Combining this with (19), we obtain

r(πH) ≥ 1

π

∫
R

ψ2

1 + ψ2

(
τ

τ2 + ψ2

)
dψ =

τ

τ + 1
.

It follows that if τ is bounded away from 0, then so
is the Bayes risk r(πH). Furthermore, if τ → 0, then
r(πH) can converge to 0 at a rate no faster than τ .

The results in the previous paragraph suggest that
only small values of τ could potentially yield priors
πH(·|τ) with arbitrarily small Bayes risk. This, in
turn, suggests that the horseshoe may be most effec-
tive when τ is small or if τ follows some hyperprior
that is concentrated near 0.

6 Conclusions

In this paper, we derived exact asymptotic minimax
results for truncated `2-balls in the Gaussian location
model. We proposed simple adaptive thresholding es-
timators, which are inspired by the truncated `2-norm

and are adaptive asymptotic minimax over `p-balls for
all p ∈ [0, 2) ∪ {t}. Additionally, we used the trun-
cated `2-norm to derive lower bounds on the Bayes
risk in estimation problems that may have implications
for high-dimensional Bayesian modeling; in particular,
our lower bounds provide necessary conditions for ef-
fective Bayesian inference in certain high-dimensional
problems. One limitation of our lower bounds is that
they only apply to prior distributions with finite vari-
ance. Relaxing this requirement, or identifying other
analytcal methods for understanding the behavior of
infinite variance priors in high-dimensional Bayesian
models is an area of interest for future research. Ex-
tending this work to other statistical settings, e.g., re-
gression models, is also of interest.
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