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Abstract

Topic modeling for large-scale distributed
web-collections requires distributed tech-
niques that account for both computational
and communication costs. We consider topic
modeling under the separability assumption
and develop novel computationally efficient
methods that provably achieve the statisti-
cal performance of the state-of-the-art cen-
tralized approaches while requiring insignifi-
cant communication between the distributed
document collections. We achieve trade-
offs between communication and computa-
tion without actually transmitting the doc-
uments. Our scheme is based on exploiting
the geometry of normalized word-word co-
occurrence matrix and viewing each row of
this matrix as a vector in a high-dimensional
space. We relate the solid angle subtended
by extreme points of the convex hull of these
vectors to topic identities and construct dis-
tributed schemes to identify topics.

1

Large and web-scale document collections are ubiqui-
tous as evidenced by Google online libraries, Twitter
streaming, and Flickr image hosting databases. Such
large-scale collections are generally archived in dis-
tributed servers worldwide. The goal of this paper
is topic discovery, i.e., extract the common dominant
themes among a corpus. Due to the distributed nature
of the corpora and limited communication bandwidth
between servers, new techniques that account for both
computation and communication costs are required.
In this paper, we develop novel computationally effi-
cient methods that provably achieve the statistical per-
formance of the state-of-the-art centralized approaches
while requiring insignificant communication between
distributed servers which contain documents.
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We consider a corpus of M documents composed of
words drawn from a vocabulary of size W among L
servers. As is now common (Blei, 2012) we view each
document as a collection of N i.i.d word drawings from
an unknown W x 1 document word-distribution vec-
tor. Each document word-distribution vector is mod-
eled as an unknown probabilistic mixture of K < W
unknown W x 1 latent topic word-distribution vec-
tors. These are grouped into a topic matrix 8 and
are shared among the M documents. Each document-
specific mixture over topics is assumed to be sampled
i.id from a prior, e.g., Dirichlet in Latent Dirichlet
Allocation (LDA) (Blei et al., 2003) and Log-normal
in Correlated Topic Model (Blei and Lafferty, 2007).
The goal is to estimate the latent topic-word distribu-
tion matrix (3) from the empirical word-frequencies of
all documents (X) while keeping communication and
computation costs low.

Topic modeling has been extensively studied and has
resulted in a number of different approaches. Our ap-
proach here is based on Nonnegative Matrix Factor-
ization (NMF) with additional separability assump-
tion on the topic matrix. The separability assumption
amounts to existence of “novel” words unique to each
topic. While the general NMF problem, even with-
out the distributed aspect, is known to be NP-hard
(Vavasis, 2009), it has recently been shown that un-
der the separability assumption NMF has a polyno-
mial time solution (Arora et al., 2012). A key step in
the solution strategy in this setting is the identifica-
tion of novel words corresponding to each topic (e.g.,
Arora et al., 2013; Ding et al., 2013). Once the novel
words are identified, the topic matrix can be estimated
by means of linear regression.

Our focus here is on distributed methods for novel
word detection since the linear regression can be effi-
ciently parallelized. For H = W/L documents/server
one of our schemes has a O(HNK + W) computa-
tion cost/server and communication cost that scales as
O(WK) bits/server. The previously proposed state-
of-the-arts (e.g., Arora et al., 2013; Ding et al., 2013),
however, are not particularly amenable to paralleliza-
tion. Furthermore, our parallelization has other ben-



efits namely better computational efficiency at the
cost of modest communication. Indeed, to achieve
similar statistical efficiency as our method, their cen-
tralized approach (i.e. even ignoring communication
costs) requires higher computation cost - O(M N?/e?+
WK/e%) for Arora et al. (2013) and O(MN? + W?)
for Ding et al. (2013). Next for a lower computational
cost namely, O(HN?/e? + WK/e?) for Arora et al.
(2013) or O(HN? + W?) for Ding et al. (2013) per
server which are comparable to our scheme, their sta-
tistical accuracy degrades significantly.

Our scheme hinges on exploiting the geometry of the
normalized word-word co-occurrence matrix. Words
are associated with row vectors of this matrix and the
novel words correspond to extreme points of the con-
vex hull spanned by these row vectors. It follows that
the solid angle subtended by each novel word (i.e., the
associated row vectors) is strictly positive but iden-
tically zero for non-novel words. The essence of our
scheme then boils down to detecting whether or not
the solid angle for a word is non-zero. We can do this
through random projections. Specifically, we project
each word along random directions and the number
of times a word achieves a maximum value along a
random direction is proportional to the solid angle.
This process of random projections followed by count-
ing the number of times a word is a maximizer can be
efficiently parallelized leading to our results.

1.1 Related Work

Topic models and their distributed variations have
been studied before. Bayesian based approaches at-
tempt to fit a MAP/ML estimate to the data using
heuristics such as variational Bayes (Blei et al., 2003)
and Gibbs Sampling (Griffiths and Steyvers, 2004).
To deal with a distributed corpus techniques such
as collapsed Gibbs sampling and distributed MAP
inference have been proposed (Asuncion et al., 2009;
Newman et al., 2009). These distributed approaches
appear to empirically achieve the performance of their
centralized counterparts. An alternative approach
is based on NMF with appropriate regularization
(Cichocki et al., 2009). Distributed variants of NMF
have been proposed (Liu et al., 2010; Gemulla et al.,
2011) based on stochastic gradient descent to account
for communication costs. Nevertheless, to our best
knowledge, none of the distributed approaches pro-
posed so far come with statistical, computational, and
communication guarantees.

One possible direction is to attempt to parallelize
existing topic modeling algorithms that do come
with computational and statistical guarantees. While
the general problem is known to be ANP-hard
(Arora et al., 2012), a recent trend shows that the
topic discovery problem lends itself to polynomial
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time solutions with additional structural assumptions
(e.g., Anandkumar et al., 2012, 2013; Arora et al.,
2012, 2013; Ding et al., 2013; Recht et al., 2012;
Kumar et al., 2013).

The setup of our paper is closely related to Arora et al.
(2012, 2013); Ding et al. (2013) that consider topic
models under the so called separability assumption
on the topic matrix, 3, and simplicial assumption on
the normalized second order moments of topic prior
L. Nevertheless, it is unclear how to directly paral-
lelize these approaches. For instance, the key step of
Arora et al. (2013) is based on Gram-Schmidt type of
process over rows of the (normalized) empirical word-
word co-occurrence matrix. Gram-Schmidt process
being inherently sequential, it is hard to parallelize this
key step. Similarly, the key step in Ding et al. (2013)
scans each row of the normalized second order mo-
ments and declares a word ¢ as novel if in the i-th row,
the diagonal term is the maximum by some margin.
In the worst case, this step scales as O(W?) irrespec-
tive of number of documents. For our distributed con-
text this step has either a computational cost/server
or a communication cost/server that scales as O(W?)
irrespective of the other model parameters.

The rest of this paper is organized as follows. In sec-
tion 2, we describe the main intuition which is geomet-
ric. In section 3, we provide the algorithms along with
their computational and communication costs. In sec-
tion 4, we summarize its statistical guarantees. In sec-
tion 5, we present a set of experiments to demonstrate
the superiority of the algorithms in various aspects.

2 Topic Geometry and Solid Angle

Let 8 (of size W x K) and X( W x M) denote the topic
matrix and the empirical word-by-document matrix.
We obtain X and X’ by first splitting each document
into two independent copies and then scaling the rows
to make them row-stochastic. Let L be the number of
distributed servers and X be empirical words counts
of the documents in the [-th node, which is a slice of X.
A fusion center controls the whole process and outputs
the estimated topics. We assume that the topic matrix
B is separable and let Cj be the set of novel words
of topic k£ and Cy be the set of non-novel words. A,
denotes the i-th row vector of a matrix A.

'A topic matrix 8 € RV*¥ is separable if for each

topic k, there is some word i, called novel word, such that
Birx > 0and B;; = 0, VI # k. Let a and R be the
mean and correlation matrix of the topic prior. R’
diag(a) 'R diag(a)”". A topic model is y-simplicial if
every row vector of R’ is at least v > 0 distant from the
convex hull of other rows of R’. To be precise, Arora et al.
(2013) and Ding et al. (2013) each requires stronger as-
sumption on the topic priors that each implies simplicial.



We denote the mean and correlation matrix of the
topic prior by the K x 1 vector a and K x K matrix
R respectively. We define the normalized second order
moment as R’ £ diag™'(a)Rdiag '(a) and assume
R’ to be vy-simplicial, i.e., its row vectors are extreme
points of the convex hull they themselves constitute.
This induces a simple geometric picture of the normal-
ized word co-occurrence matrix E 2 3'R/B'T (of size
W x W) where B’ = diag™'(Ba)3 diag(a) :

Lemma 1. Suppose that R’ is y-simplicial and 3 is
separable. Then, word i is a novel word if and only if
the i-th row of E is an extreme point of the convex hull
spanned by rows of E.

Proof. Tt is straightforward to check that Y = R/3'T
is simplicial. Note that 3 is row stochastic. For i € C,
Bl = 1, so the i-th row E; = Y. For i € Co, E; is
convex combination of at least two rows of Y. O

Figure 1: Schematic view of convex hull spanned by rows
of E. Word 1, 2,3 are novel, word 4,5 are non-novel. The
shaded regions depict the set of directions in which each
of the extreme points has the maximum projection along.
Solid Angle ¢;, for a novel word ¢, is the probability of the
i-th shaded region considering E; as the origin.

Fig. 1 illustrates the geometric property formalized in
Lemma 1, i.e., the novel words correspond to extreme
points of all rows of E. Thus novel words can be effi-
ciently detected through an extreme point finding al-
gorithm.  To solve this geometric problem, we ex-
ploit a key quantity, the normalized Solid Angle of
an extreme point, as indicated by the shaded angles
in Fig. 1. From a statistical viewpoint, it can be de-
fined as the probability that a certain point has the
maximum projection value along an isotropically dis-
tributed random direction. This value is strictly non-
zero iff it is an extreme point. Formally,

Definition 1. The normalized solid angle of word i is

(1)

where d is drawn from an isotropic distribution (e.g.,
spherical Gaussian).

qi £ PI‘(V], Ez 7é Ej : <E“d> > <Ej,d>)

Lemma 2. Suppose that R’ is y-simplicial and 3 is
separable. Then, q; > 0 if and only if i is a novel word.
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Lemma 2 depicts our high level approach : (1) Es-
timate the solid angles g;’s. (2) Select K words with
largest g;’s whose word co-occurrence patterns are dis-
tinct as novel words. (3) Estimate topic matrix using
constrained linear regression as in Arora et al. (2013)
and Ding et al. (2013).

Estimate Solid Angle through projections:

We can rewrite ¢; defined in (1) as,
4 = ]E(]I{Vj, IE: —Ej|l 2 ¢: Eid > Ejd}> (2)

where ( is some proper threshold. We first note that
the expectation in (2) can be well approximated by
an empirical mean by (i) first Projecting all the rows
of E along a few iid isotropic directions d’s and then
(7i) calculating the frequency that word ¢ maximizes
the projection values. On the other hand, it has been
shown that MX'X T £ E as the number of document
M — oo while N is fixed (c.f., Arora et al., 2013). In
sum we can estimate ¢; consistently and efficiently in
a centralized setting.

Estimate Solid Angle from distributed servers:

Now we consider the distributed settings where the M
documents are evenly distributed over L servers. Re-
call that our approach boils down to calculating the
projection values Ed and gathering the indices of the
maximizers for a few iid d’s. A simple implementa-
tion of this idea is to have each server first gener-
ate one independent random direction, then calculate
XOXMOTd, determine the the word which maximizes
the projection and transmit only its index to the fusion
center for novel word detection. (Fig. 2 (left))

The above scheme has low communication cost. How-
ever, as we shall see later, to obtain desired statistical
accuracy, it is crucial to calculate the projection values
Ed with as many documents as possible. We observe
that Ed ~ MX'XTd = M Y|, X'OXOTd, which
is a summation of L (W x 1) partial projection val-
ues that can be calculated locally. Thus if a common
set of P random directions has been pre-distributed to
the servers (or they have access to the same random
number generator with a common seed), they can com-
pute and transmit the partial projections to the fusion
center instead of sending the entire set of their local
documents. The solid angle estimates based on the
number of times the projection of the row-vectors cor-
responding to words is maximum can be calculated
at the fusion center. This scheme (Fig. 2, right) has
a higher but moderate communication cost (O(W P))
while its statistical accuracy can match that of a cen-
tralized algorithm which has access to the documents
from all the servers.

We refer to the scheme which is based on transmitting
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Figure 2: Two schemes to estimate solid angle :

the maximizer indices as Alg.Index and the scheme
based on transmitting partial projections as Alg.Value.
While Alg.-Index offers some intuitions in analysis,
Alg.-Value achieves all the desired performance.

3 Distributed Novel Words Detection

Algorithm 1 below sketches the key steps that are ap-
plicable to both Alg.-Index and Alg.-Value. The two
main steps are 1) Novel words detection; 2) Topic Es-
timation. Recall that M documents are stored on L
distributed servers (thus H = M/L docs/server) which
are connected to the Fusion Center.

Algorithm 1 Algorithm in High Level

Input: Text docs. X(l), X' on each node; Number
of topics K; Tolerances (,e > 0.

Output: Topic matrix 3.
(Node 1) M; +NovelWordDetect-Nodes(X D, X'® | ¢).
(Center) Set of Novel Words J <NovelWordDetect-
Center(M;, K, ).
B «EstimateTopics(Z, X, €)

3.1 Index passing scheme (Alg.-Index)
Algorithm 2 (Index Passing) NovelWordDetect-Nodes

Input: X, X, ¢

Output: Z;, indexes of words with max. projs..
Lo
EO  gx/OxOHOT
d® + a sample from an isotropic distribution

7 argmaxlgigw(]?]gl), d®)
I+ 71U {Z*}
G BO B~
for all k € jc

0]
2B} > ¢/2}

Je i BY, + BV 2B > ¢/2}

if VjeJg: <E,§),d<l>> > (EV,d0)
I« 1; U {k}

end if

Alg.-Index approximates the Solid Angles ¢; defined in
Eqn. (2) as follows,
L

.1 O 50
G =7 Y IVIE[ + Bj) —2E[) > ¢/2:
=1

Ea® > EYa®) (3)
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index passing (Left) and projection value passing (Right).

where W x W matrices EO = HX'OXOT and (;\(l)’s
are iid directions. Each indicator tests if word ¢ (Egl))
has the maximum projection along d”). This is carried
out within each server. To be more exact, for each
word 4, we only compare its projection value against
that of the words in the set J; = {j : E(l) + E(l)

E(l4 > (/2} which converge to J; = {j : E; # E;}
as H — oo (Ding et al., 2013). For a novel word i, J;
excludes all the other novel words of the same topic as
1 to avoid technical difficulties.

We can simplify the calculation of Eq. (3), as sketched
in Alg. 2. First we note that for each d¥), most of
the indicators in Eq. (3) would be zero. In fact, given
d®, we can first find the maximizer index i* and cor-
responding set J} Note that jl-* consists of novel
words for topics different from ¢* and the non-novel
words. Hence, all the words in Ji» should make the
indicator functions zero for the given I. As a conse-
quence, we only evaluate the indicators for words in

¢ ={1,...,W}\ Ji-, which have up to |Cy| elements
asymptotically, where k is the topic associated with
word i*. Moreover, in a typical dataset, maxy [Ck| is
of the order O(1).

Secondly, we note that the matrices E®’s do not need
to be calculated explicitly. Recall that the projec-
tion values EOdD = gX'OXOTAW and matrices
X' are sparse. Each W x 1 projection vector re-
quires O(HN) computation time. Similarly, for i*, all
the corresponding El(l) ;'s can be viewed as projecting
along d = e;+ whose only non-zero element is ¢*.

Algorithm 3 (Index Passing) NovelWordDetect-Center

,Z;, sent from nodes; XL+,

Input: Message 74, ...
X/EAD ¢ H, L, K
Output: J : Indices of K distinct novel words

ql,...,(jw%o.
foralll1 <i< Landj€eZ
gj < 4;+1/L

BRI+ . gX/(L+)X(L+D)T

J « FindNovelWords(EE+D {G1, ..., 4w}, K, ¢)

Alg. 3 summarizes steps for the fusion center. After
gathering the maximizer indices, the fusion center es-
timates the ¢;’s, sort them in a descending order, and



Algorithm 4 FindNovelWords
Input: E {G1,...,dw}, K,C
Output: J : Indices of K distinct novel words
T+, k0,71
while £ < K do
i + index of the j-th largest value of {q, . .

S qw}

if Vpe J: Epp+ Eii —2E;, > (/2 then
T« JUlit,k+k+1
end if
j—J+1
end while

select distinct novel words from the top as in Alg. 4.
We defer the consistency result in Sec.4. Its running
time and communication cost are summarized as fol-
lows and proved in supplementary section:

Proposition 1. The running time of Alg.-Index is
O(HN +W) per server. The total communication cost
is O(log(W)) bits/server.

3.2 Projection value passing (Alg.-Value)

Algorithm 5 and 6 outline the Alg.-Value. Similar in
structure to Alg.-Index, the main idea here is to use
all the M documents in the corpus to calculate the
projections and then estimate solid angles g;’s using
P globally synchronized directions d,,r = 1,..., P as
follows:

1 P

Gi=7 ZH(W» Ei;+ Ejj —2E;; > (/2

r=1

Since

L
Edr — Mi/i‘rdr _ MZX/(Z)X(UTCIT (5)
=1

the partial projection values i’(l)f((m—dr of size
W x 1 can be calculated locally and transmitted to the
fusion center. To synchronize d,’s across servers and
to transmit the partial projection values, each server
need to communicates O(W P) floating-point numbers.

The fusion center executes all the remaining proce-
dures. We point out to calculate Eqn. (5), rows of
X are normalized globally. Using similar tricks as in
Alg.-Index, we have:

Proposition 2. The running time of Alg.-Value is
O(HN P+W) per server and O(W PL+K?) for the fu-
sion center. The communication cost is O(W P) float-
ing numbers/server.

We refer to supplementary for the computational and
communication cost of each step. We further prove
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its sample complexity in Sec. 4. As demonstrated in
Sec. 5, it attains desirable performance on empirical
corpora.

Algorithm 5 (Value Passing) NovelWordDetect-node

Input: XO, XD P Directions: AV, ..., dP)
Output: V() : a W x P matrix containing the projec-
tion values of E() rows along the given P directions

VO MXOXOT [dM) ... dP)]
Algorithm 6 (Value Passing) NovelWordDetect-center
Input: Message VAV ... V1 gent from nodes; ¢, K
Output: J : Indices of K distinct novel words

Generate P iid directions d®,... d); Send to

each node, Call NovelWordDetect-Node.

V Zle VO and Vi: g «+ 0

foralll1<r <P

" argmax, <<y Vir
Qi+ < G- +1/P R
Jie <= {j: B o + Ej j — 2B j > (/2}
for all k € J&
Jp {j By +Ejj— 2B, > C/?}
if Vi€ Jy: Vi >V,
de < g +1/P
end if R
J + FindNovelWords(E, {¢i, ...

7qAW}uK7<)

We note that the topic estimation step is similar to
Ding et al. (2013); Arora et al. (2013). In this step,
the W number of regressions for estimation are de-
coupled and distributable. We defer the operational
details of this step to the supplementary.

4 Theoretical analysis

We present the sample complexity bound for the pro-
posed algorithms in this section. Recall that H, L,
and P denote the number of documents/server, the
number of servers, and the number of projections (in
Alg.-Value), respectively. a € R and R € RF*K are
the expectation and correlation matrix of topic prior.
Let R’ = diag ' (a)Rdiag '(a). We present the re-
sults when d’s are spherical Guassian. We also provide
sample complexity bounds for other isotopic priors in
the supplementary. For Alg.-Index, we have,
Theorem 1. Let R’ be vy-simplicial and the topic ma-
triz B be separable. Let dY) ~ N(0,Ty). Then, Alg.-
Index outputs all the novel words of K topics consis-
tently as both H, L. — oo. Furthermore, Y6 > 0, for

log(8W/q:) _ W2log"(8W/q)
H > maX{Cl 22 P2 g3 p*n*t
and for
I
L ey 08W/0)

a



Alg.-Index fails with probability at most §, where c;

. a;a;
to cg are some absolute constants, ¢ = min =%, n =
ij M

. _ . _ 2
\Jin, B, p= yming: 21 (1 — B ), and ¢ = p*/Ay
where Ay = maxeig(R’). gn = ming, >0 ¢; denotes the
minimum solid angle that is strictly positive.

Similarly, for Alg.-Value, we have,

Theorem 2. Let R’ be y-simplicial and the topic ma-
triz 3 be separable. Let d,, ~ N(0,Iy ). Then, Alg.-
Value outputs all the novel words of K topics consis-
tently as total number of documents M = HL — oo
and P — oco. Furthermore, Y6 > 0, for

log(3W/8)  W?2log(2W/qu) log(3W/3)
= max{cl o pPaRen’
and for
1
N CL)

N

Alg.-Value fails with probability at most §, where ¢y to
c3 are some absolute constants and other terms C, p,
M, ¢, qn are defined in Theorem 1.

Detailed proofs can be found in the supplementary. As
Theorem 1 and 2 shows, our approach requires only
the simplicial assumption, which is a weaker assump-
tion than that required for provable approaches that
are also practical such as those of Arora et al. (2013);
Ding et al. (2013).

5 Experimental Results

5.1 Dataset and Measures

Following Arora et al. (2013), we generate semi-
synthetic corpora to ensure that the synthetic doc-
uments resemble the dimensionality and sparsity of
the real word corpus. To this end, given a real-world
dataset, we first train an LDA model using Gibbs Sam-
pling (Griffiths and Steyvers, 2004) and obtain a topic
matrix By. We then generate a semi-synthetic corpus
using By and Dirichlet priors. We refer to it as Syn-
thetic. Note that (¢ is not guaranteed to be sepa-
rable. To ensure separability, we add one synthetic
novel words to each topic. We assign the probability
of novel word to be equal to the most probable word
in the topic. We then renormalize columns of the new
separable (W + K) x K topic matrix (3., so that it
is column stochastic. The dataset generated by Bsep
is referred to as Synthetic+novel.

For the real-world dataset we use New York Times
(NYT) articles data set (Frank and Asuncion, 2010).
Following Arora et al. (2013), we prune the vocab-
ulary based on document frequencies and then re-
move a standard stop-word list. After pruning, we get

}
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Figure 3: Performance of Alg.-Value as function of P when
L = 300, M = 300,000. Left: ¢; and Detection error;
Right: Computation and communication cost.
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Figure 4: Performance of Alg.-Value as function of L when
P =150 x K, M = 300,000. Left: ¢/; and Detection error;
Right: Computation and communication cost.

M = 300,000; W = 14, 943; average document length
N = 298. We train a LDA model with K = 100 on it
using Gibbs Sampling 2. We then generate synthetic
dataset for various M by fixing N = 300 and using a
Dirichlet prior with symmetric hyper-parameters 0.03.

We simulate the Fusion Center on an Intel Core™i7-
3820M CPU and 16GB RAM., and simulate distributed
servers on Intel Core™i5-3210M CPU and 8GB RAM.
We allows only 1 thread/server. For simplicity, we
report total number of floats/server to be transmitted
as the communication cost.

For semi-synthetic dataset, we compute the ¢; error
between the ground truth topics and the estimates.
We use bipartite matching based on ¢; distance to
match two set of topics. For the synthetic+novel
dataset, we further measure the Detection Error, de-
fined as the percentage of topics whose novel words are
not detected by the algorithms.

5.2 Properties of Alg.-Index and Alg.-Value

The time and statistical performance of Alg.-Index
and Alg.-Value depend on the number of nodes L
and the number of projections P. In this section, we
show these properties using the synthetic+novel NYT
dataset (W = 15043, K = 100). This will guide the
settings for rest of the experiments. For results in this
section, a MATLAB implementation is used to show
the relative time cost. All the results are averaged
across 5 random runs.

2 Code available at

http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm
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Figure 5: Performance of Alg.-Index vs. Alg.-Value as
function of L when P = 150 x K, M = 300,000. Left: ¢;
Error, (the x-axis is not uniform); Right: Computing time.

Figure 3 depicts the performance as function of P
when L is fixed. As P increases, the time cost grows
linearly while L1 error and miss detection rate de-
creases. These suggest that some moderate number
of projections suffices to achieve good statistical per-
formance. Fig. 4 on the other hand demonstrates the
case when P is fixed. The computation time of each
server scales inversely proportional to L, while the ac-
curacy remains the same level. This shows Alg.-Value
benefits for the fully distributed case without loss of
accuracy. Based on the above observations we choose
a large L for Alg.-Value and moderate P.

Next, we compare Alg.-Index vs Alg.-Value. To be fair,
for Alg.-Index, we perform P/L projections/server.
As the results in Fig. 5 shows, the ¢; error of Alg.-
Index is only comparable to Alg.-Value for very small
L < 4, with only marginal improvement in time cost.
This shows that the number of documents/server is
crucial to the success of Alg.-Index. Therefore, in prac-
tical cases, unless L is really small or there exist hard
constraints on communication, Alg.-Value is a better
choice.

5.3 Semi-synthetic Dataset

In this section, we show performance of our algorithms
on synthetic+novel NYT and synthetic NYT for vary-
ing M. We fix the number of nodes L = 200 and
P = 150 x K. We compare against centralized al-
gorithms RecoverL2 (Arora et al., 2013)% and DDP
(Ding et al., 2013). A Python implementation for our
algorithm is used for this section.

As summarized in Fig. 6, our distributed Alg.-Value ap-
proach can achieve similar estimation accuracy as the
centralized RecoverL.2 on both Synthetic+Novel and
Synthetic. This shows that our algorithm does not
lose statistical efficiency due to the distributed setup.
Moreover, the computation cost vs. error plot (Fig. 7)
fully depicts the merits of our approach, i.e., Alg.-
Value can achieve the same level of statistical accu-
racy with lower the computation cost than Recover.2
or DDP.

3
http://www.cs.nyu.edu/~halpern/files/anchor-word-recovery.zip
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Figure 6: ¢; error of estimated topic matrix for various
M on Upper: Synthetic+Novel NYT; Lower: Synthetic
NYT. P = 150K. The distributed Alg.-Value have similar
accuracy as the centralized RecoverL2.

=]
0ol : ~ 3 Alg.—-Index
: -©—-Alg.—Value
o8r - -fx RecoverlL2
o7t - -%-DDP
_ 06
S -
E 05F -
~ o4l &
0.3r *
\
0.2r N
Ex*"'z/,,
01r A‘*/‘E—A.‘*‘-_-‘.‘.—.—__‘_‘.A__*.
O0 160 260 360 460 . 560 660 760 860
Comp. Cost in sec.
Figure 7:  Computation cost vs. L1 error on

Synthetic+novel NYT. P 150 x K and M
50k, 200k, 300k, 500k, 1m, 2m. L = 200 parallel threads
are simulated for centralized RecoverL2 and DDP in Re-
gression. L = 200 for Alg.-Value. L = 4 for Alg.-Index.
Alg.-Value achieves the best accuracy-time tradeoff.

The C-implementation we used for Gibbs Sampling
requires 6918sec. in estimating topics using 100 itera-
tions for a M = 300,000 corpus. This is much longer
than the the time reported in Fig. 7.

5.4 Real world text corpus

We apply Alg.-Value on the real world NYT dataset
(W = 14,943; M = 300k). We adopt the held-out
probability as the performance metric as is now the
accepted standard. Following the same setting as in
Arora et al. (2013), we randomly select 60k documents
for testing (240k for training). Again, P = 150 x K
and L = 200 are used.

We report the held-out (log) probability normalized by
the total number of words in test docs. (averaged over
5 runs) in Table 1. We compare against Recovell.2



(Arora et al., 2013) and the baseline Gibbs Sampling
approach (Griffiths and Steyvers, 2004). Gibbs pro-
duces the best description power. Alg.-Value and Re-
coverL2 has somewhat worse performance than Gibbs.
This could be attributed to the missing novel words
that appear only in the test set, which is crucial to the
success of RecovelL2 and Alg.-Value.

Table 1: Held-out log probability on NYT dataset for var-
ious K.

K | Recoverl2 Gibbs Alg.-Value
50 | -8.22 -7.42 -8.54
100 | -7.63 -7.50 -7.35
150 | -8.03 -7.31 -7.94

Table 2: Examples of estimated topics on NYT by Alg.-
Value

“weather” weather wind air storm rain cold
“feeling” feeling sense love character heart emotion
« — election zzz_florida ballot vote zzz_al_gore
election

recount
“game” yard game team season play zzz_nfl

We show example topics extracted by our Alg.-Value
on the entire NYT dataset in Table 2. For each topic,
its most frequent words are listed. As we can see, the
estimated topics do form recognizable themes.

5.5 The Swimmer Image Dataset

Following Ding et al. (2013) , we apply our algorithm
on a synthetic swimmer image dataset introduced by
Donoho and Stodden (2004). There are M = 256 bi-
nary images, each of W = 32 x 32 = 1024 pixels. Each
image represents a swimmer composed of four limbs,
each of which can be in one of 4 distinct positions,
along with an invariant torso. By interpreting pixel
positions as words, each image is viewed as a doc-
ument composed of non-zero valued pixel positions.
Since each position of a single limb features unique
pixels in the image, the topic matrix, 3, satisfies the
separability assumption with K = 16 “ground truth”
topics that correspond to 16 single limb positions. In
this dataset, the second order moments R’ is rank-
deficient (Ding et al., 2013).

Following Ding et al. (2013), body pixel in original bi-
nary image is set to 10 and background pixel values 1.
We then choose a “clean” images, suitably normalized,
as an underlying distribution across pixels and gener-
ate a “noisy” document with N = 200 “words” sam-
pled from it. Examples are shown in Fig. 8. We prune
the vocabulary according to document frequency.

We compare Alg.-Value against centralized Recover.2-
Cen (Arora et al.; 2013) and DDP-Cen (Ding et al.,
2013). Since M = 256 is rather small in the original
dataset, we sampled M = 8192 images from the origi-
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nal with replacement and simulated L = 32 servers.
Each server contains 256 images, the same as the
original data. In addition, we consider a naive dis-
tributed version of RecoverL.2 and DDP (denoted by
RecoverL2-Dis and DDP-Dis resp.), where each server
runs the algorithm independently with its local docu-
ments and then averaged the estimated topics across
nodes. The topics are aligned by means of ¢; metric.

@ [ M) [ (9
DI T

Figure 8: (a) Example “clean” images in Swimmer
dataset; (b) Corresponding images with sampling “noise”;
(c) Examples of ideal topics.
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Figure 9: Computation cost vs. L1 error on swimmer
dataset. P = 150 x K, M = 8192, L = 32. Alg.-Value
achieves the best accuracy-time tradeoff, while handles the
rank deficient R’.

The computing time vs ¢; error Fig. 9 reveals the same
story as Fig. 7. Again, we can see that our distributed
algorithm can achieve minimum error rate with much
shorter running time. We note that the DDP-Dis re-
sults in higher error rate than reported in (Ding et al.,
2013) (where M = 256). One reason is that when
we sample M = 8192 images with replacement from
the original 256 images, the L = 256 images on each
server do not necessarily contains all the K = 16 top-
ics. DDP-Cen has an accuracy which is comparable
to that of Alg.-Value, but this comes at the price of a
much higher computational cost. RecoverL2 perform
consistently bad since rank(R’) = 13 < K = 16, which
forces Gram-Schmidt process to stop at a early stage.
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