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Abstract

Pan-sharpening, a method for constructing high
resolution images from low resolution obser-
vations, has recently been explored from the
perspective of compressed sensing and sparse
representation theory. We present a new pan-
sharpening algorithm that uses a Bayesian non-
parametric dictionary learning model to give an
underlying sparse representation for image re-
construction. In contrast to existing dictionary
learning methods, the proposed method infers
parameters such as dictionary size, patch spar-
sity and noise variances. In addition, our reg-
ularization includes image constraints such as a
total variation penalization term and a new gra-
dient penalization on the reconstructed PAN im-
age. Our method does not require high resolution
multiband images for dictionary learning, which
are unavailable in practice, but rather the dictio-
nary is learned directly on the reconstructed im-
age as part of the inversion process. We present
experiments on several images to validate our
method and compare with several other well-
known approaches.

1 Introduction

Remote sensing technology has developed rapidly in recent
decades. There are currently a variety of optical remote
sensors, such as IKONOS, Pléiades and QuickBird, col-
lecting satellite imagery with varying spatial and spectral
resolutions. Due to physical constraints, many of these re-
mote sensors do not collect images that are simultaneously
of high spatial and spectral resolution [11]. As a result,
data provided by most satellites comprise a high resolu-
tion panchromatic (PAN), i.e., gray-scale image, and sev-
eral low resolution multispectral (LRMS) images, which
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include the color spectrum and other frequencies such as
near infrared. In many remote sensing applications, such as
classification, feature extraction and positioning, the corre-
sponding high resolution multispectral (HRMS) images are
desired. Pan-sharpening is a method whereby the spectral
information in the LRMS images is fused with the spatial
information in the PAN image to output an approximation
of the underlying HRMS images [3].

Various methods have been proposed for pan-sharpening.
The most common are based on a projection-substitution
approach, which assumes that the PAN image is equiv-
alent to a linear combination of the HRMS images [12].
Among the projection-substitution methods, intensity-hue-
saturation (IHS) [19, 1, 16], principal component analysis
(PCA) [17], and the Brovey transform [7] are the most pop-
ular because of their relatively straightforward implemen-
tation and fast computation. These three methods recon-
struct HRMS images with good spatial details, but tend to
have significant spectral distortions because the PAN and
HRMS images do not share the same spectral range.

Recently, another approach has been to treat the fusion
problem as an ill-posed inverse problem and employ a reg-
ularization scheme that encourages a reconstruction having
the desired image characteristics. One example is moti-
vated by compressed sensing (CS), which uses sparse reg-
ularization. The CS-based methods in [12, 5] are successful
attempts at pan-sharpening in which LRMS image patches
are assumed to have a sparse representation with respect to
a patch-level dictionary. In these methods, a dictionary is
randomly sampled (not learned) from either pre-obtained
HRMS images or the PAN image itself. A limitation of
these approaches is that important parameters such as the
dictionary size and patch-specific sparsity are preset rather
than learned from the data, and also that it leaves the dic-
tionary quality to chance. Other dictionary learning algo-
rithms use HRMS images to learn the dictionary off-line,
but these are often unavailable in practice.

Motivated by the sparse representation perspective, in this
paper we propose a pan-sharpening method that uses a
beta-Bernoulli process as a Bayesian nonparametric prior
for dictionary learning [18, 15]. Compared with the pre-
vious CS-based pan-sharpening methods, the proposed
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model has the following unique properties:

1. It uses a Bayesian nonparametric dictionary learning
approach [15, 21] to learn the dictionary directly on
the reconstructd HRMS images of the current itera-
tion for the problem at hand, as opposed to images
obtained off-line. The model infers a sparse represen-
tation by learning the number of dictionary elements
and the sparse coding of each patch.

2. We consider image properties not considered by other
pan-sharpening approaches. We include the total vari-
ation (TV) as a penalty term for the pan-sharpened
images and use the alternating direction method of
multipliers (ADMM) to derive an efficient optimiza-
tion procedure [4, 8]. We also consider a first deriva-
tive penalty for the PAN/HRMS fidelity term, which
reduces the spectral distortion of the reconstructed
HRMS images.

2 Pan-sharpening and dictionary learning

Images obtained by optical remote sensors contain both a
high resolution panchromatic (i.e., black and white) image
(PAN) and low resolution multispectral images (LRMS).
The spectral bands typically consist of the colors red, green
and blue, as well as a near infrared band. The goal is to fuse
the color information of the LRMS images with the spatial
information of the PAN image to obtain a high resolution
multispectral image (HRMS).

In this paper, for concreteness we consider the case where
the LRMS images are downsampled by a factor of four. We
represent each of the M ×N LRMS images in vectorized
form as yb ∈ RMN , where b indexes a spectral band (RGB
and NIR). This observed data is treated as a noisy version
of the corresponding 4M × 4N HRMS images, which are
vectorized as xb ∈ R16MN . We follow the standard ap-
proach of assuming that the measured yb follows from fil-
tering xb through a predefined and shared subsampling and
blurring matrix H ∈ RMN×16MN and adding noise,

yb = Hxb + εb. (1)

The monochromatic PAN image is usually considered to be
a linear combination of the unknown HRMS images,

yP =
∑4
b=1 wbxb + εP . (2)

The vector yP ∈ R16MN represents the vectorized 4M ×
4N PAN image, εP is a Gaussian noise vector and the
weights (w1, . . . , w4) are predefined.

The pan-sharpening problem is to use the measured
data yP , y1, y2, y3, y4, along with settings for H and
(w1, . . . , w4) to recover the underlying HRMS images
x1, x2, x3, x4 via some predefined inversion model. For

Algorithm 1 Dictionary Learning with BPFA
1. Construct a dictionary D = [d1, . . . , dk], with
dk ∼ N (0, L−1IL) for each k.

2. Draw probability πk for each dk,
πk ∼ Beta(cγ/K, c(1− γ/K)).

3. For the ith patch in X:
(a) Draw the weight vector si ∼ N (0, γ−1s IK).
(b) Draw the binary vector zik ∼ Bernoulli(πk).
(c) Define αi = si ◦ zi by an element-wise product.
(d) Construct the patch RiX = Dαi + εi with noise

εi ∼ N (0, γ−1ε IL).

4. Construct the image using the average of all RiX that
overlap on a given pixel.

this inversion, we propose using a Bayesian nonparametric
(BNP) dictionary learning model based on the beta process
called BPFA [15].

2.1 BNP dictionary learning for pan-sharpening

Sparse dictionary learning methods attempt to find a sparse
basis for patches extracted from an image class of interest.
The canonical dictionary learning approach is with the K-
SVD model [2], which iterates between orthogonal match-
ing pursuits and least squares to learn a matrix factoriza-
tion of patches extracted from images. In this paper we
instead focus on a BNP dictionary learning model. This
model performs dictionary learning in a similar manner
as K-SVD, in that it iterates between learning a weighted
binary coefficient matrix and a regularized least squares
dictionary. However in addition, Bayesian nonparametric
methods provide the flexibility of allowing the data to de-
termine the complexity of the model [9].

We learn a dictionary using the reconstructed HRMS im-
ages of the current iteration. Therefore, the “data” is
slightly changing with each iteration. We extract

√
q ×√q

patches from these reconstructed HRMS images, one cen-
tered on each pixel, and put them in a matrix X . Let Ri
be the ith patch extraction operator, which is a q × 16MN
matrix containing a one in each row and zeros elsewhere.
The ith column in the 4q × 16MN matrix X is

Xi = [Rix1;Rix2;Rix3;Rix4] ∈ R4q.

A dictionary learning model learns a factorization of this
matrix, X = Dα+E, where D is a 4q ×K dictionary, α
is a K × 16MN coefficient matrix and E is noise.

We use the BPFA model shown in Algorithm 1 for dictio-
nary learning from X . This model treats the columns of
D as Gaussian vectors and α as being a weighted binary
matrix, S ◦ Z. The matrix S contains Gaussian random
variables, and a row of Z is drawn from a Bernoulli pro-
cess using a row-specific probability. This probability has a
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beta distribution prior that is nonparametric through its pa-
rameterization; the parameters are set such that, for a large
K, many of the probabilities will be so small that an entire
row of Z will contain all zeros [18]. In this case the cor-
responding dictionary element is removed from the model.
Therefore, unlike K-SVD which will learn a full dictionary
of size K, the BPFA model will learn a dictionary that is
smaller than the initial setting of K, and is in some sense
“appropriate” for the data at hand because the actual size of
the dictionary is determined by the data. As K → ∞, this
approximation converges to the beta process [10].

This model allows for learning an overcomplete dictionary
with the size of the dictionary not being preset (assuming
K is large enough). Additionally, conjugate gamma prior
distributions can be placed on the noise precisions γs and
γε, which allows for these values to be inferred.

2.2 Total variation and high frequency constraints

We discuss two other image constraints that we consider
for our reconstruction algorithm before presenting the final
objective function and inference algorithm.

The first constraint is the total variation (TV) of the recon-
structed HRMS images. TV regularization was introduced
for image denoising by Rudin, Osher and Fatemi in [13],
and has since evolved into a more general tool for solving
a wide variety of image restoration problems, including de-
convolution and inpainting. The isotropic TV norm of a
vectorized image x is defined by

‖x‖TV =
∑
i ‖Bix‖2 =

∑
i

√
|Bhi x|2 + |Bvi x|2. (3)

The vectors Bhi and Bvi are the rows of Bi ∈ R2×16MN ,
which is a finite difference matrix that has two nonzero en-
tries in each row corresponding to the partial derivatives of
x at the pixel i along the horizontal and vertical directions.
An efficient algorithm was explored by [8].

Another aspect of pan-sharpening algorithms is to use the
PAN image for its high resolution spatial information. Mo-
tivated by Equation (2), most models do this by incorpo-
rating a squared error term for yP ≈

∑
b wbxb [3]. A

drawback of this approach is that the weights wb need sig-
nificant tuning to minimize the spectral distortion that this
tends to introduce in the learned xb. In fact, the informa-
tion we wish to exploit in the PAN image yP is the high
frequency edge details, while the low frequency (color) in-
formation is provided by the LRMS y1, . . . , y4. Therefore,
we propose using the squared error of the horizontal and
vertical derivatives of the residual instead. This will en-
force that

∑
b wbxb agrees with yP in the edge details only

and allow for the spectral information in y1, . . . , y4 to in-
form the smooth regions of the corresponding HRMS im-
ages x1, . . . , x4 that we learn.

3 Bayesian nonparametric pan-sharpening

We combine the three elements of the model from Section
2 in the following algorithm for pan-sharpening.

3.1 A BNP pan-sharpening model

Let the set ϕi = {D, si, zi, γε, γs, π} denote the param-
eters for the BPFA dictionary learning model and f(ϕi)
be the log joint likelihood of the BPFA algorithm for all
prior terms. We define the gradient matrix Gi, which is a
2× 16MN matrix of zeros except for a +1 and−1 in each
row for the horizontal and vertical directions as defined by
pixel i. The objective we seek to maximize is:

L(x1, x2, x3, x4,ϕ) = (4)

v1
2

∑
b

‖Hxb − yb‖22 +
v2
2

∑
i

‖Gi(
∑
b wbxb − yP )‖22

+
∑
i

γε
2
‖RiX −Dαi‖22 + f(ϕi) +

λg
2

∑
b

‖xb‖TV .

The first row contains the squared error fidelity term for
the multispectral information of each band b; this enforces
that the downsampling/blurring of our reconstruction xb is
in agreement with the observed yb. The second term in
the first row enforces that the gradient of the approximate
PAN image from the reconstructions is in agreement with
the gradient of the observed PAN image; this term is where
the high resolution edge information from the PAN image
is enforced. The second row contains the beta process prior
on the stacked patches from each xb and a TV penalty term.
This attempts to learn HRMS reconstructions that have a
sparse dictionary representation and little noise. The goal
is to find a (local) optimal solution for L with respect to
the HRMS images (x1, . . . , x4) and the dictionary learning
parameters ϕ.

3.2 An optimization algorithm

We next summarize our algorithm for approximately op-
timizing the non-convex objective function L. Our algo-
rithm incorporates regularized least squares, MCMC sam-
pling and the alternating direction method of multipliers
(ADMM) algorithm for TV minimization. ADMM is a
general algorithmic approach to convex optimization [4].
For our model, ADMM works by performing dual as-
cent on the augmented Lagrangian objective function in-
troduced for the total variation coefficients for each spectral
band. Though our overall objective is not convex because
of the dictionary learning terms, we note that when holding
the dictionary learning parameters fixed, the resulting TV
denoising problem for which we use ADMM is convex.

The ADMM algorithm entails modifying the objective
function as follows: For the bth spectral band, we re-write
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the TV coefficients for the ith pixel as βi,b := Bixb. We
introduce the vector of Lagrange multipliers ηi,b, and then
split βi,b from Bixb by relaxing the inequality via an aug-
mented Lagrangian. This results in the following modifica-
tion to the TV portion of the objective:

‖xb‖TV →
λg
2

∑
i

‖βi,b‖2 +
∑
i

ηTi,b(Bixb − βi,b)

+
ρ

2

∑
i

‖Bixb − βi,b‖22.

From the ADMM theory, this objective will have optimal
values βi,b∗ and x∗b with βi,b∗ = Bix

∗
b , and so the equality

constraints will be satisfied. Following the standard conve-
nient re-parameterization, we let ui,b := (1/ρ)ηi,b to ab-
sorb ui,b within the squared term [4, 8].

The resulting augmented objective function can be split
into three separate sub-problems that are cycled through in
each iteration. One problem is for TV, one for BPFA and
one for reconstructing the HRMS:

P1 : βi,b
′ = arg min

β

λg
2
‖βi,b‖2+

ρ

2
‖Bixb−βi,b+ui,b‖22.

P2 : ϕ′ = arg min
ϕ

∑
i

γε
2
‖RiX−Dαi‖22+f(ϕi).

P3 : x′b = arg min
xb

ρ

2
‖Bixb−βi,b′+ui,b‖22

+
∑
i

γε
2
‖Rixb −D′bα′i‖22

+
v1
2
‖Hxb − yb‖22 +

v2
2

∑
i

‖Gi(
∑
b wbxb − YP )‖22.

u′i,b = ui,b +Bix
′
b − βi,b′, i = 1, . . . , 16MN. (5)

We let Db denote the part of the dictionary relevant to band
b. (We recal that we combine the spectral bands to learn a
dictionary on vectorized

√
q×√q× 4 blocks.) The update

of the Lagrange multiplier ui,b follows from the ADMM
algorithm [4].

For each sub-problem, we use the most recent values of all
other parameters. Solutions for P1 and P3 are globally op-
timal and in closed form. Since P2 is non-convex, we can-
not perform the desired minimization, and so an approxi-
mation is required. Furthermore, this problem requires it-
erating through several parameters, and so a local optimal
solution cannot be given in closed form either. Our ap-
proach is to update variables for P2 by a combination of
MCMC sampling and least squares. We next present the
updates for these sub-problems.

3.2.1 P1 sub-problem: Total variation

We can solve for βi,b exactly for each pixel i =
1, . . . , 16MN by using a generalized shrinkage operation,

βi,b
′

= max{‖Bixb + ui,b‖2 −
λg
ρ
, 0} · Bixb + ui,b

‖Bixb + ui,b‖2
.

We recall that after updating xb, we update the Lagrange
multiplier for this part as u

′

i,b = ui,b +Bix
′

b − βi,b
′
.

3.2.2 P2 sub-problem: BNP dictionary learning

We give the variable updates for BPFA in the appendix. We
make one update for each variable in this step.

3.2.3 P3 sub-problem: HRMS image reconstructions

In this sub-problem we reconstruct each HRMS spectral
band xb for b = 1, . . . , 4. This is a least squares problem
and has a closed form solution, but requires a special ap-
proach to make it computationally tractable.

For notational convenience, we define the spatial dif-
ferences matrices B = [BT1 , . . . , B

T
16MN ]T and G =

[GT1 , . . . , G
T
16MN ]T . We also defined the stacked

vectors βb = [β1,b
T , . . . ,β16MN,b

T ]T and ub =
[uT1,b, . . . , u

T
16MN,b]. For band b, the least squares problem

for xb has a solution that satisfies(
ρBTB +

∑
iR

T
i Ri + v1H

TH + v2w
2
bG

TG
)
xb

= ρBT (βb − ub) + qxBPFA
b + v1H

T yb

+ v2wbG
TG(yP −

∑
m6=b wmxm). (6)

The vector xBPFA
b = (1/q)

∑
iR

T
i Dbαi is the reconstructed

HRMS image for band b according to the BPFA dictionary
learning model. We need to solve for xb to get the recon-
struction.

The left matrix is too large to invert. However, we can solve
this problem exactly by working within the Fourier domain.
Let θb = Fxb be the Fourier transform of xb. We replace
xb withFT θb and take the Fourier transform of each side of
Equation (6). This diagonalizes the matrix on the left hand
side, which can be seen as follows: The product of the finite
difference operator matrix BTB yields a circulant matrix,
which has the rows of the Fourier matrix F as its eigen-
vectors. Therefore FBTBFH diagonalizesBTB to give a
matrix of eigenvalues Λ1. The matrix GTG is the same as
BTB since it is also a spatial finite difference matrix, and
so has the same eigenvalues. HTH is a different circulant
matrix and so has unique eigenvalues Λ2, though the same
Fourier basis as eigenvectors. The matrix

∑
iRiRi = qI

and so the product of Fourier matrices cancel.
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Table 1: Quality metrics of different methods on IKONOS
images from Figure 1.

RMSE CC WB ERGAS Q4

Brovey 0.120 0.851 0.599 10.07 0.776
Wavelet 0.079 0.898 0.618 6.76 0.760

PCA 0.140 0.601 0.350 12.08 0.600
FIHS 0.156 0.577 0.429 13.99 0.537

Adaptive IHS 0.077 0.916 0.666 6.39 0.761
BPFA 0.074 0.921 0.697 6.13 0.794

BPFA+TV 0.071 0.923 0.686 5.95 0.814
BPFA w/o Gi 0.079 0.917 0.676 6.22 0.778

This reduces the problem to solving 16MN one dimen-
sional problems in the Fourier domain for each band:

θbi = Fi
(
ρBT (βb − ub) + qxBPFA

b + v1H
T yb

+ v2wbG
TG(yP −

∑
m6=b wmxm)

)
/

(q + (ρ+ v2w
2
b )Λ1,i + v1Λ2,i). (7)

We then invert θb using the inverse Fourier transform to
obtain the reconstruction xb for spectral band b.

4 Experiments

In this section, we evaluate our proposed models, denoted
BPFA+TV and BPFA (without TV), on three remote sens-
ing images. The data sets are as follows:

1. IKONOS. This dataset consists of a 512 × 512 PAN
image and low resolution multispectral images of di-
mension 128 × 128 pixels each. The MS images have
four bands, RGB and near infrared (NIR).

2. Pléiades. The data set from the Pléiades satellite con-
tains a 256 × 256 PAN image and four LRMS images
of 64 × 64 pixels each.

3. QuickBird. In this experiment we have a 512 × 512
PAN image and four 128 × 128 LRMS images.

For all experiments we extract 4 × 4 × 4 patches from the
reconstructed HRMS images of the current iteration, for
a dictionary of 64 dimensions. We initialize the dictionary
size to 256. We also setw1 = 0.25, w2 = 0.25, w3 = 0.25,
w4 = 0.25 and λg = 0.1. The BPFA hyperparameters
c, γ, e0, f0, g0, h0 are all set to one.

We compare the performance with other existing fusion
methods, namely, model-based fusion [1], Brovey trans-
form [7], the fast IHS (FIHS) [19], a PCA-based method
[17], wavelet-based image fusion [14] and the adaptive IHS
method [16]. Since there are no ground truth HRMS im-
ages for IKONOS and Pléiades, to compare these algo-
rithms we re-project the fused images and compare with

Table 2: Quality metrics of different methods on Pléiades
images from Figure 2.

RMSE CC WB ERGAS Q4

Brovey 0.274 0.791 0.235 65.522 0.252
Wavelet 0.110 0.877 0.754 8.304 0.794

PCA 0.144 0.830 0.537 11.056 0.635
FIHS 0.133 0.790 0.642 10.503 0.666

Adaptive IHS 0.109 0.901 0.754 8.223 0.771
BPFA 0.102 0.898 0.812 7.78 0.835

BPFA+TV 0.096 0.906 0.814 7.23 0.836
BPFA w/o Gi 0.103 0.897 0.807 7.758 0.836

Table 3: Quality metrics of different methods on QuickBird
images from Figure 3.

RMSE CC WB ERGAS Q4

Brovey 0.133 0.924 0.695 6.388 0.761
Wavelet 0.069 0.939 0.646 4.625 0.757

PCA 0.247 0.608 0.422 17.295 0.586
FIHS 0.161 0.655 0.507 11.410 0.564

Adaptive IHS 0.058 0.958 0.720 3.843 0.811
BPFA 0.059 0.965 0.733 3.609 0.821

BPFA+TV 0.053 0.967 0.745 3.453 0.824
BPFA w/o Gi 0.057 0.967 0.731 3.523 0.749

the ground truth LRMS images. For the QuickBird experi-
ment we have the ground truth HRMS images. After some
parameter tuning, we set v1 = 50, v2 = 70 and the ADMM
parameter ρ = 3 for the IKONOS image and set v1 = 10,
v2 = 30 and the ADMM parameter ρ = 5 for the Pléiades
image for the BPFA+TV pan-sharpening model. For the
QuickBird image we set v1 = 10, v2 = 30 and the ADMM
parameter ρ = 20 for BPFA+TV pan-sharpening model.

4.1 Reconstruction results

The pan-sharpening results for the different algorithms are
shown in Figure 1 for IKONOS, in Figure 2 for Pléiades
and Figure 3 for QuickBird. By visually comparing the fu-
sion results, we can see that while several algorithms have
equally clear edges, they exhibit significant spectral distor-
tion. For example, the red blocks in the IKONOS image
are much brighter than the original LRMS images for the
PCA-based model and several algorithms have spectral dis-
tortion in the vegetation areas for the Pléiades image. The
model-based method is more blurry than BPFA+TV, and
the wavelet-based results exhibit a stair-casing effect. The
BPFA results do not appear to be as sharp as some other
algorithms, such as adaptive IHS. This may be because the
dictionary learning algorithm, which averages 16 values for
each pixel, is slightly “denoising” these edges.

In pan-sharpening, the spectral quality is considered as im-
portant as the spatial quality, but is more difficult to judge
visually – especially considering that there are bands in the
non-visible spectrum. Therefore we quantitatively evalu-
ate the reconstructions using the following standard pan-
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(a) Low resolution MS image (b) High resolution PAN image (c) Brovey transform (d) Wavelet-based method

(e) Model-based IHS (f) PCA (g) Adaptive IHS (h) BPFA+TV

Figure 1: IKONOS images and pan-sharpening results for different methods.

(a) Low resolution MS image (b) High resolution PAN image (c) Brovey transform (d) Wavelet-based method

(e) FIHS (f) PCA (g) Adaptive IHS (h) BPFA+TV

Figure 2: Pléiades images and pan-sharpening results for different methods.
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(a) Low resolution MS image (b) High resolution PAN image (c) Original HRMS image

(d) Wavelet-based method (e) FIHS (f) PCA

(g) Brovey transform (h) Adaptive IHS (i) BPFA+TV

Figure 3: QuickBird images and pan-sharpening results for different methods.

sharpening quality metrics [20]: Root mean square error
(RMSE), Correlation coefficient (CC), Wang-Bovik mea-
sure (WB), ERGAS and Q4. We show quantitative results
in Tables 1-3 for each image, where we highlight the best
result in bold. From these tables, we see that BPFA and
BPFA+TV perform very competitively compared with the
other methods in its ability to accurately learn the spectral

content of the HRMS images. We also show results without
using the first derivative penalty, that is, replacing Gi with
the identity matrix when penalizing the PAN reconstruc-
tion. We can see an advantage to our method of only focus-
ing on the high frequency edge information within the PAN
image and allowing the spectral information in the smooth
regions to only be determined by the LRMS images. We
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(a) Dictionary

(b) Dictionary probabilities

(c) Patch sparsity histogram

Figure 4: Dictionary learning results for QuickBird.

also notice that in general penalizing the total variation has
a positive impact.

4.2 BNP dictionary learning results

We show example dictionary learning results for the Quick-
Bird image in Figure 4. In Figure 4(a), we show the 4×4×4
dictionary as 8 × 8 patches by putting the dictionary el-
ements along the third dimension into quadrants within a
cell. In Figure 4(b) we show a sample of the dictionary
probabilities, where we can see that most of the dictionary
elements have very small probability. Roughly speaking,
about 50 of the 256 dictionary elements have significant
probability. Figure 4(c) shows a histogram of the patch
sparsity for one sample. Here we see that the patches use
a variable number of dictionary elements, which is deter-
mined probabilistically through the sampler. Also, each
patch has a low rank representation using the learned dic-
tionary since each patch has 64 dimensions and on average
15 basis functions are needed per patch.

5 Conclusion

We have proposed a new dictionary learning approach to
pan-sharpening that uses a Bayesian nonparametric model
to learn a sparse patch-level basis. We also considered a
total variation penalty for reconstruction, and a gradient
penalty on the PAN image to enforce high frequency fi-
delity while minimizing spectral distortion. Experimental
results on three images showed that the proposed model im-
proves the spectral content of the reconstructions over other
commonly used methods. This suggests that our algorithm
has potential uses for other problems where spectral con-
tent is important, such as hyperspectral imaging [21].

Appendix: An algorithm for BPFA

a) Update D: The least squares update for the dictionary is

D = XαT (ααT + (L/γε)IL)−1. (8)

The matrixX is constructed from the patches of the HRMS
images of the current iteration.

b) Update αi: From Algorithm 1, αi := ziksik. We up-
date zik first stochastically by sampling from a Bernoulli
distribution with probability

pik ∝ πk

√
1 +

γε
γs
dTk dk exp

{
γε
2

(dTk ri,−k)2

γs/γε + dTk dk

}
,

1− pik ∝ 1− πk, (9)

where ri,−k is the residual error in approximating the ith
patch ignoring the kth dictionary element. The correspond-
ing least squares weight sik is

sik = zikd
T
k ri,−k/(γs/γε + dTk dk), (10)

and we then calculate the weight vector, αi = si ◦ zi.

c) Update γε: The least squares solution is

γε = (2g0 + LN1)/(2h0 +
∑

i
‖RiX0 −Dαi‖22). (11)

We observe that this is approximately the inverse of the
empirical squared error.

d) Update πk: We update πk stochastically via Gibbs sam-
pling from a beta distribution as follows,

πk ∼ Beta(a0 +
∑
i zik, b0 +

∑
i(1− zik)). (12)

We observe that πk will be close to the empirical fraction
of times that dictionary element dk is used by the patches
for the previous iteration.
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