Approximate Slice Sampling for Bayesian Posterior Inference

Christopher DuBois*
GraphLab, Inc.

Anoop Korattikara*

UC Irvine

Abstract

In this paper, we advance the theory of large
scale Bayesian posterior inference by intro-
ducing a new approximate slice sampler that
uses only small mini-batches of data in ev-
ery iteration. While this introduces a bias
in the stationary distribution, the computa-
tional savings allow us to draw more samples
in a given amount of time and reduce sam-
pling variance. We empirically verify on three
different models that the approximate slice
sampling algorithm can significantly outper-
form a traditional slice sampler if we are al-
lowed only a fixed amount of computing time
for our simulations.

1 Introduction

In a time where the amount of data is expanding at an
exponential rate, one might argue that Bayesian pos-
terior inference is neither necessary nor a luxury that
one can afford computationally. However, the lesson
learned from the “deep learning” literature is that the
best performing models in the context of big data are
models with very many adjustable degrees of freedom
(in the order of tens of billions of parameters in some
cases). In line with the nonparametric Bayesian phi-
losophy, real data is usually more complex than any
finitely parameterized model can describe, leading to
the conclusion that even in the context of big data the
best performing model will be the most complex model
that does not overfit the data. To find that boundary
between under- and overfitting, it is most convenient
to over-parameterize a model and regularize the model
capacity back through methods such as regularization
penalties, early stopping, adding noise to the input

Appearing in Proceedings of the 17" International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2014, Reykjavik, Iceland. JMLR: W&CP volume 33. Copy-
right 2014 by the authors.

Dept. of Computer Science

185

Max Welling
Informatics Institute
University of Amsterdam

Padhraic Smyth
Dept. of Computer Science
UC Irvine

features, or as is now popular in the context of deep
learning, dropout. We believe deep learning is so suc-
cessful because it provides the means to train arbitrar-
ily complex models on very large datasets that can be
effectively regularized.

Methods for Bayesian posterior inference provide a
principled alternative to frequentist regularization
techniques. The workhorse for approximate posterior
inference has long been MCMC, which unfortunately
is not (yet) quite up to the task of dealing with very
large datasets. The main reason is that every iter-
ation of sampling requires O(N) calculations to de-
cide whether a proposed parameter is accepted or not.
Frequentist methods based on stochastic gradients are
orders of magnitude faster because they effectively ex-
ploit the fact that far away from convergence, the in-
formation in the data about how to improve the model
is highly redundant. Therefore, only a few data-cases
need to be queried in order to make a good guess on
how to improve the model. Thus, a key question is
whether it is possible to design MCMC algorithms that
behave more like stochastic gradient based algorithms.
Some methods have appeared recently [1, 13, 5] that
use stochastic minibatches of the data at every iter-
ation rather then the entire dataset. These methods
exploit an inherent trade-off between bias (sampling
from the wrong distribution asymptotically) and vari-
ance (error due to sampling noise). Given a limit on
the total sampling time, it may be beneficial to use
a biased procedure if it allows you to sample faster,
resulting in lower error due to variance.

The work presented here is an extension of [5] where
sequential hypothesis testing was used to adaptively
choose the size of the mini-batch in an approximate
Metropolis-Hastings step. The size of the mini-batch
is just large enough so that the proposed sample is
accepted or rejected with sufficient confidence. That
work used a random walk which is well known to be
rather slow mixing. Here we show that a similar strat-
egy can be exploited to speed up a slice sampler [10],
which is known to have much better mixing behav-

x. The first two authors contributed equally.

Approximate Slice Sampling for Bayesian Posterior Inference

ior than an MCMC sampler based on a random walk
kernel.

This paper is organized as follows. First, we review
the slice sampling algorithm in Section 2. In Section
3, we discuss the bias-variance trade-off for MCMC al-
gorithms. Then, we develop an approximate slice sam-
pler based on stochastic minibatches in Section 4. In
Section 5 we test our algorithm on a number of mod-
els, including Li-regularized linear regression, multi-
nomial regression and logistic regression. We conclude
in Section 6 and discuss possible future work.

2 Slice Sampling

Slice sampling [10] is an MCMC method for sam-
pling from a (potentially unnormalized) density Py(6),
where # € © C R”, by sampling uniformly from the
D + 1 dimensional region under the density. In this
section, we will first introduce slice sampling for uni-
variate distributions and then describe how it can be
easily extended to the multivariate case.

We start by defining an auxiliary variable &,
and a joint distribution p(#,h) that is uniform
over the region under the density (i.e. the set
{(6,h): 0 € ©,0 <h < Py(6)}) and 0 elsewhere. Since
marginalizing p(#,h) over h yields Py(f), sampling
from p(6,h) and discarding h is equivalent to sam-
pling from Py(#). However, sampling from p(6,h) is
not straightforward and is usually implemented as an
MCMC method where in every iteration ¢, we first
sample hy ~ p(h|f;—1) and then sample 0; ~ p(6|hs).

Sampling h: ~ p(h|f;—1) is trivial since p(h|6:—1)
is just Uniform[0, Py(f:—1)]. For later convenience,
we will introduce the uniform random variable u; ~
Uniform[0,1], so that h; can be defined determin-
istically as hy = w;Py(6;—1). Now, p(lh:) is a
uniform distribution over the ‘slice’ Sfus,6:—1]
{9 : Po(e) > utPo(Gt_l)}. Samphng 0, ~ p(9|ht) is
hard because of the difficulty in finding all segments
of the slice in a finite amount of time.

The authors of [10] developed a method where instead
of sampling from p(6|h;) directly, a ‘stepping-out’ pro-
cedure is used to find an interval (L, R) around 6;_;
that includes most or all of the slice, and 6, is sampled
uniformly from the part of (L, R) that is on S{us, 0¢—1].
Pseudo code for one iteration of slice sampling is shown
in Algorithm 1. A pictorial illustration is given in Fig-
ure 1.

The stepping out procedure involves placing a window
(L, R) of width w around 6;_; and widening the inter-
val by stepping away from 6;_; in opposite directions
until L and R are no longer in the slice. The maximum
number of step-outs can be limited by a constant V..

186

Note that the initial placement of the interval (L, R)
around 0;_; in Algorithm 1 is random, and Vi.y is
randomly divided into a limit on stepping to the left,
Vi, and a limit on stepping to the right, Vr. These are
necessary for detailed balance to hold, as described in
[10].

Once a suitable interval containing all or most of the
slice has been found, 6, is sampled by repeatedly draw-
ing a candidate state 0,0, uniformly from (L, R) until
it falls on the slice S. At this point, we set 0; < Oprop
and move to the next iteration. If a proposed state
Oprop does not fall on the slice, the interval (L, R) can
be shrunk to (L, Oprop) OF (fprop, R) such that 6;_; is
still included in the new interval. A proof that Algo-
rithm 1 defines a Markov chain with the correct sta-
tionary distribution p(6, k) can be found in [10].

Algorithm 1 Slice Sampling

Input: 6, 1, w, Vinax
Output: 6,
Draw u; ~ Uniform|0, 1]
// Pick an initial interval randomly:
Draw @ ~ Uniform|0, 1]
Initialize L <+ 0;_1 —ww and R <+ L +w
// Determine maximum steps in each direction:
Draw @ ~ Uniform0, 1]
Set Vi, < Floor(Vinax®) and Vg + Vipax — 1 =V
// Obtain boundaries of slice:
while Vi, > 0 and 0nSlice(L,0;_1,u;) do
Vi~V —1
L+—L—-w
end while
while Vi > 0 and 0nSlice(R,0;_1,u;) do
Ve« Vg -1
R+~ R+w
end while
// Sample until proposal is on slice:
loop
Draw 7 ~ Uniform[0, 1]
Oprop < L +1(R— L)
if OnSlice(fprop; 0i—1,u:) then
0¢ < Oprop
break
end if
if Hprop < 0;_1 then
L < Opr0p
else
R+ Oprop
end if
end loop

The algorithm uses Procedure OnSlice, both dur-
ing the stepping-out phase and the rejection sampling
phase, to check whether a point (L, R or Op.0p) lies
on the slice S[u¢, 0;_1]. In a practical implementation,

Running heading author breaks the line

<

e
b\

1 Il !

L

0

~ T

T >

Ot 0t+1 eprop

Figure 1: Illustration of the slice sampling procedure. Left: A “slice” is chosen at a height h and with endpoints
(L, R) that both lie above the unnormalized density (the curved line). Right: We sample proposed locations
Oprop until we obtain a sample on the slice (in green), which is our 6,41. The proposed method replaces each
function evaluation (represented as dots) with a sequential hypothesis test.

Procedure 2 OnSlice

Input: ¢, 0, u
Output: Is ¢ on Sluy, 6;—1]7
1: return Py(6') > uPy(6)

Py(0) is calculated only once per iteration of the slice
sampler, and does not have to be recomputed every
time Procedure 2 is used.

One way to generalize the slice sampling algorithm to
multiple dimensions is to pick a direction in parameter
space in each iteration and update € only in the cho-
sen direction. The direction can be picked uniformly
at random from one of the co-ordinate directions or
from all possible directions. It is also valid to cycle
through the co-ordinate directions instead of picking
one at random.

Relative to other MCMC techniques, slice sampling
can allow for larger moves, allowing one to reduce au-
tocorrelation in the samples of the Markov chain and
thereby explore the parameter space more efficiently.
The technique has been extended to multivariate dis-
tributions [12], truncated normal distributions [7], la-
tent Gaussian models [8, 11], and others.

3 The Bias Variance Trade-off

The samples produced by an MCMC algorithm such
as slice sampling are used to estimate the expecta-
tion of a function f(6) with respect to the distribution
Py(9), i.e. we estimate I = (f)p, using an empiri-
cal average I = T ZtT:1 f(6:), where {6y,...,0r} are
T samples from the Markov chain. Since the equilib-
rium distribution of the Markov chain is Py(6), I is
an unbiased estimator of I, if we ignore burn-in. The

. . . O—?‘ PDT 2 .
variance of the estimator is V ~ —==— where ¢ 7P 18
the variance of f with respect to Py and 7 is the inte-

grated auto-correlation time (a measure of correlation

187

between successive samples of the Markov chain).

For many problems of interest, it is quite difficult
to collect a large number of samples to estimate I
with sufficiently low variance. A common example is
Bayesian posterior inference given a dataset with bil-
lions of data points. Evaluating the posterior distri-
bution is very expensive because it involves computing
the likelihood of every datapoint in the dataset. Since
a typical MCMC method has to do this at least once
for each sample that it generates, we can collect only
a limited number of samples in a reasonable amount
of computational time. As a result, the variance of I
is often too high to be of much practical use.

However, if we are willing to allow some bias in the
stationary distribution of the Markov chain, we do
not have to evaluate the posterior density exactly
in each step. This will allow us to speed up the
Markov chain simulation and collect a large number
of samples to reduce variance quickly. The higher the
bias we can tolerate, the faster we can reduce vari-
ance. This bias-variance trade-off has been exploited
to develop efficient approximate MCMC algorithms
such as Stochastic Gradient Langevin Dynamics[13],
Stochastic Gradient Fisher Scoring[l] and sequential
Metropolis-Hastings[5].

Instead of the target distribution F,, approximate
MCMC algorithms converge to a slightly biased sta-
tionary distribution P., where € is a knob of the al-
gorithm that controls the amount of bias. Thus, we
will estimate I = (f)p, with I = T Zthl f(6;) where
the 6;’s are samples from P, instead of Py. As in [5],
the quality of the estimator I can be assessed using its
risk. The risk of I can be defined as R = E[(I — I)?],
where the expectation is over multiple runs of the
Markov chain. There are two contributors to risk,
bias (B) and variance (V'), and these are related as
R = B2 + V. If we ignore burn-in, it can be shown
o']%’ p.T
that B = (f)p, — (f)p. and V = —~7

Approximate Slice Sampling for Bayesian Posterior Inference

The optimal setting of € that minimizes the risk de-
pends on the computational time available. If we have
an infinite amount of computational time, we can bring
down the variance to zero by drawing an infinite num-
ber of samples and we set ¢ = 0 so that the bias is zero
as well. This is the setting which traditional unbiased
MCMC methods use. However, given an finite amount
of computational time, this setting is not optimal. It
might be more beneficial to allow a small amount of
bias if we can decrease variance faster. This motivates
the need for approximate MCMC algorithms such as
[1, 13, 5]. In the next section, we will develop a new
approximate MCMC algorithm by replacing the ex-
pensive density comparisons in slice sampling with a
sequential hypothesis test as in [5].

4 Approximate Slice Sampling

In Bayesian posterior inference, we are given a
dataset X consisting of N independent observations
{z1, ...z} which we model using a distribution p(z|6)
parameterized by § € RP. We choose a prior distribu-
tion p(#) and the goal is to generate samples from the
posterior distribution Py (0) o p(6) vazl p(z]0).

A typical sampling algorithm must evaluate the poste-
rior density exactly, atleast once for each sample that
it generates. In slice sampling, this evaluation is per-
formed by the OnSlice procedure which tests whether
a given point (L,R or Op.0p) lies on the slice or not.
When the dataset has billions of datapoints, comput-
ing the posterior density is very expensive as it requires
O(N) evaluations of the likelihood. Note that, in slice
sampling, this has to be done multiple times for each
sample we generate. As noted in [5], performing O(N)
computations for 1 bit of information, i.e. whether a
point is on the slice, is not a cogent use of compu-
tational resources. Therefore, in this section, we will
develop an approximate slice sampling algorithm by
cutting down the computational time of the OnSlice
procedure.

The OnSlice procedure determines whether a point 6’
is on the slice S[u, 8] by checking if Py(6") > uPy(h).
When P, is a Bayesian posterior distribution, we can
take the logarithm of both sides of this inequality and
divide by N to rephrase the test as p > pg, where:

1 p(0i—1)
=1 d
po = 7 log {ut PN
L&
= Eﬂ l; where [; = logp(z;;60') —logp(x;;6;)

(1)

ie., if g > pg, we can conclude that 6 lies on the
slice. In other words, we are testing if the mean of the

188

finite population {l;...Ix} is greater than a constant
that does not depend on the data.

A similar scenario appears in the Metropolis-Hastings
algorithm, where the mean difference in log-likelihoods
is compared to a constant to determine whether to ac-
cept or reject a proposed sample. A sequential hy-
pothesis testing procedure was recently proposed in
[5] to cut down the computational budget of this com-
parison. We can easily apply this test to efficiently
compare 1 and pg in the slice sampling algorithm.

The sequential test is follows. We randomly draw a
mini-batch X = {z;...z,} of size n < N without re-
placement from X and compute the difference in log-
likelihoods {l1,...,l,}. The goal is to use the sample

mean [= — > 1, I; to decide whether the population
n

mean u is greater than pg or not. We can do this
confidently if the difference between [and p is signif-
icantly larger than s, the standard deviation of I. If
not, we can add more data to the mini-batch until we
can make a more confident decision.

More formally, we test the null hypothesis Hq : p = pg
vs the alternate H, uw # po. To do this, we
first compute the sample standard deviation s;

\/2?21(11' —1)2/(n—1) and then estimate the stan-

dard deviation of [as:

S n

:% 1_N
VI-%

Here + is a finite population correction factor
to account for the correlation between samples drawn
without replacement from a finite population. Then,
we compute the test statistic:

S

(2)

:i—Mo
s

t (3)
If n is large enough for the central limit theorem to
hold, ¢ follows a standard Student-t distribution with
n — 1 degrees of freedom when the null hypothesis
i = po is true. To determine whether [is signif-
icantly different from pg, we compute the probabil-
ity d = 1 — ¢p_1(]t]) where ¢,_1(.) is the cdf of the
Student-t distribution. If ¢ is less than a suitably cho-
sen threshold e, we can reject the null hypothesis and
confidently say that [is different from po. In this case,
we can decide that 6’ is on the slice if [> pg, or that
6 is not on the slice if I < puq.

If § is greater than e, the difference between [and
1o is not large compared to the standard deviation
of I. In this event, we add more data to the mini-
batch to increase the precision of I. We keep adding
more data until 0 falls below €. At this point, we have
enough precision in [to decide whether # is on the

Running heading author breaks the line

slice or not. This procedure will necessarily terminate
because when n = N, the standard deviation s = 0,
I =p,t=2400and § =0 < e. Also, in this case, we
will make the correct decision since I = p.

The sequential test is illustrated in Procedure
OnSliceApprox. Here we start with a mini-batch of
size n = m and increase n by m datapoints until a
decision is made. An efficient, but approximate, slice
sampling algorithm can be obtained by replacing all
calls to the OnSlice procedure in Algorithm 1 with
OnSliceApprox.

Procedure 3 OnSliceApprox

Input: ¢, 0, u, e, m

Output: Is ¢ on S[uy, 6;1]7
. Initialize mean estimates [< 0 and 2 < 0
. Initialize n < 0

1

2

8 po = 37 [logu+log p(9) — log p(6")]

4: loop

5. Draw mini-batch X of size min (m, N —n) with-
out replacement from Xy and set Xy + Xn\X

6: Update [and I2 using X, and n < n + |X|
n (12— ()2

7 Estimate std s < 4/1 — —¢{/ ———

stimate std s v\ o1
[—

8 Compute § + 1 — ¢,,_1 (‘ Ho)

9: if § < e then

10: break

11: end if

12: end loop

13: return [> pyg

It should be noted that our algorithm will behave er-
ratically if the central limit theorem does not hold.
This may happen, for example, when the dataset is
sparse or has extreme outliers. However, the central
limit assumption can be easily verified empirically at a
few values of € before running the algorithm to avoid
such pathological situations.

5 Experiments

In this section we evaluate the ability of the proposed
approximate slice sampler to obtain samples from sev-
eral posterior distributions of interest at a reduced
computational cost.

5.1 Banana dataset

We first consider posterior inference of § = (61,02)|y
under the model

y1|9NN(01+9§,0§) GJNN(O,O'Z)

189

We generate N = 1000 observations where 61 +602 = 1,
o7 = 4 and oj = 1, similar to [6]. The variables 6,
and 5 have a highly correlated posterior distribution.

Figure 2 shows a density estimate of samples using € =
0.1,0.01,0.001 and 0.0 with Vi,ax = 100 and w = 0.25.
We see that the approximate slice sampler provides a
good estimate of the posterior even with fairly large
values of €. Even with ¢ = 0.1 we observe that the
marginal distributions match the true posterior with
€ = 0 quite well.

In Figure 3 we show the total time required for a given
number of iterations of the Markov chain for each set-
ting of €, as well as summaries of the number of data
points seen and the number of tests performed per
iteration. For larger values of ¢ we achieve significant
time savings, evidently because fewer data points have
been used. It appears that the number of tests used
stays constant across the choice of e. We see that the
number of data points required to make the statistical
decisions for those tests decreases as € increases. As
fewer data points are required, the time required to
perform 10000 iterations in turn decreases.

5.2 L; Regularized Linear Regression

Next, we test our method on the posterior distribution
of a linear regression model with a Laplacian prior on
the parameters. We trained the model using a 100K
subset of the Million Song Dataset year prediction
challenge[2]. The goal is to predict the release year
of a song from audio features. There are 90 features
to which we added a constant feature of ones.

We use the risk in estimating the ‘average prediction’
as a measure to compare the relative performance of
the exact and approximate slice sampling algorithms.
The average prediction is defined as the expectation
of the prediction under the posterior distribution, i.e.
Ep(9xv) [P(2*|60)], where 2* is a test point. To compute
risk, we first compute the true average prediction using
a long run (100K samples) of the exact slice sampling
algorithm initialized at the mode of the distribution.
Then, we run the exact and approximate slice samplers
at different values of € for 500 seconds. On average,
we obtained T = 12214, 48122 and 104732 samples
with € = 0, 0.2 and 0.3 respectively in 500 secs of
computation. Each algorithm is run 10 times, and the
risk is calculated as the squared error in the estimated
mean prediction averaged over the 10 Markov chain
simulations. We plot the risk in the average prediction,
futher averaged over 1000 randomly chosen test points,
for different values of € in Figure 4. ¢ = 0 denotes the
exact slice sampling algorithm.

For a typical sampling algorithm, the risk is initially
dominated by the burn-in bias. Burn-in usually hap-

Approximate Slice Sampling for Bayesian Posterior Inference

0.001

0.01

N
il
o 04
=
£
14
oy
T T T b T T b T T T T T T
-4 -2 2 -4 -2 0 2 -4 -2 0 -4 -2 0 2
thetal
thetal | theta2
1.0+ epsilon
0
B 2]
2 s |ooos
8 8 [oo
0.5-
m -
0.0-

Figure 2: Effect of the tuning parameter € on the quality of the approximate sampler for the banana-shaped
posterior. Top: Samples using Vi,.x = 100 and various settings of e. Bottom: Density estimates of the marginal
distributions. Even with ¢ = 0.1 the marginal distributions are fairly accurate.

25

= = N
15} @ S
L 1 L

Time elapsed (seconds)

o
1

density

2.0+

1.5+

0.5+

0.0+

2.0

154

density

0.5+

0.0+

epsilon

T
0

T T T
5000 7500 10000

Iteration

T
2500

T T T
1e+03 1e+04 1e+05
Number of data points seen

T T
10 100
Number of tests

Figure 3: Effect of € on computational requirements for MCMC for the banana-shaped posterior. Results from
five different random initializations are shown for each setting. Left: Time taken versus iteration for sampling
using the approximate slice sampler. Middle: Density estimate for the number of data points seen per iteration.

Right: Density estimate for the number of tests performed per iteration.

190

Running heading author breaks the line

Log Risk

200 300 400 500
Time (sec)

100

Figure 4: Risk in average prediction of test data for a
linear regression model with a Laplacian prior

pens very fast, after which the risk is dominated by the
sampling variance and reduces as O(1/T). For approx-
imate MCMC algorithms, after collecting a large num-
ber of samples, the sampling variance will eventually
be dominated by the asymptotic bias in the stationary
distribution. This can be seen in Figure 4. Algorithms
with a high e are able to burn-in and reduce variance
quickly. After collecting a large number of samples,
their asymptotic bias will dominate the variance and
prevent the risk from reducing further. The exact slice
sampler is slower to burn-in and reduce variance, but
it can achieve zero risk given an infinite amount of
computational time.

5.3 Multinomial Regression

We then tested our method on a multinomial regres-
sion model trained on the MNIST dataset of handwrit-
ten digits. There are 60000 training points with 784
dimensions each. We reduced the dimensionality to 50
using PCA and added a constant feature of ones. Since
there are 10 classes, this resulted in a 459 dimensional
parameter vector. We chose a Gaussian prior over the
parameters.

We plot the risk in estimating the average prediction in
Figure 5. As in the previous experiment, ground truth
was computed using 100K samples collected from the
exact slice sampler and the risk was computed by av-
eraging the squared error over 10 Markov chains for
each value of e. We also average the risk over 10 ran-
domly chosen test points. We ran each algorithm for
one hour and obtained T = 13805, 27587, 56409 and
168624 samples for ¢ = 0, 0.05, 0.1 and 0.2 respec-
tively.

The lowest risk after one hour of computation was
achieved by the approximate slice sampler with the
highest bias in the stationary distribution. Thus, even
after one hour of computation, the risk is still domi-

191

Log Risk

2000 3000 4000

Time (sec)

1000

Figure 5: Risk in average prediction of test data for a
Multinomial Regression model

nated by sampling variance. If we were to run for a
very long time, we would expect the exact slice sam-
pler to outperform all the approximate algorithms.

5.4 Logistic Regression

Finally, we test the performance of our approximate
slice sampler on the posterior distribution of a logis-
tic regression model. The model was trained on the
Covertype dataset[2], where the goal is to predict for-
est cover type using cartographic variables. There are
7 cover types in the dataset, but we trained a 1-vs-rest
classifier for the most populous class (Lodgepole pine).
There were a total of 464809 training points with 54
features (to which we add a ‘constant’ feature of ones).
We chose a Gaussian prior over the parameters.

To compute ground truth, we used a long run (100K
samples) of the exact slice sampler initialized from the
mode of the distribution. Then, we ran the exact and
approximate slice sampling algorithms at different val-
ues of € for 3 hours each. We obtained T" = 14808,
19182, 54156 and 289497 samples with ¢ = 0, 0.05,
0.075 and 0.1 respectively. In Figure 6, we plot the
risk in estimating the average prediction of 10,000 ran-
domly chosen test points.

The risk is initially dominated by the burn-in bias,
and then by sampling variance. Approximate MCMC
algorithms with higher values of € are able to reduce
both of these very quickly as shown in Figure 6. As
more computational time becomes available, risk will
eventually be dominated by the bias in the stationary
distribution. In Figure 6, this can be seen for e = 0.1
which initially reduces risk very fast but is eventually
outperformed by the less biased algorithms. However,
this crossover does not happen until a large amount of
computational time (= 8000 secs) has passed.

Approximate Slice Sampling for Bayesian Posterior Inference

—e=0

—e=0.05

—¢=0.0075
e=0.1

4

_6h

Log Risk

——

6000 8000 10000 12000

Time (sec)

2 . .
0 2000 4000

Figure 6: Risk in average prediction of test data for a
Logistic Regression model

6 Conclusion

We have shown that our approximate slice sampling al-
gorithm can significantly improve (measured in terms
of the risk) the traditional slice sampler of [10] when
faced with large datasets. The relative performance
gain is a function of the amount of allowed computing
time relative to the size of the dataset. For relatively
short times (which can still be long in absolute terms
for very large datasets) there is more to be gained by
using stochastic minibatches because the error due to
sampling noise (variance) is expected to dominate the
risk. Reversely, for very long simulation times one can
draw enough samples to drive the error due to sam-
pling noise to near zero with the standard slice sampler
and so it is best to avoid error due to bias.

In our experiments we found that the performance gain
for the multinomial regression model was most signif-
icant (up to a factor of 7 for one hour of simulation).
For L, regularized linear regression and logistic regres-
sion, the performance gains were more modest. The
reason for this discrepancy is that likelihood calcula-
tions (which we speed up) comprise a more significant
fraction of the total computing time for the multino-
mial model than for the other two models. We thus
expect that for more complex models the gains could
potentially be even larger.

Having freed MCMC algorithms from the need to be
asymptotically unbiased some intriguing new possibil-
ities arise. First, stochastic minibatch updates should
be incorporated into samplers such as Hamiltonian
Monte Carlo algorithms [9, 3] and their Riemannian
extensions [4] which are the state of the art in the field.
But to save even more computation, one could imag-
ine storing likelihood computations which can later
be used to predict likelihood values when the MCMC
sampler returns to a neighboring region. Proving con-

192

vergence or controlling the error will be an important
challenge.

Acknowledgements

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1216045
and by the Office of Naval Research/Multidisciplinary
University Research Initiative under Grant No.
N00014-08-1-1015.

References

[1] S. Ahn, A. Korattikara, and M. Welling. Bayesian
posterior sampling via stochastic gradient Fisher
scoring. In Proceedings of the International Con-
ference on Machine Learning, 2012.

K. Bache and M. Lichman. UCI Machine Learn-
ing Repository, 2013.

2]
[3] Simon Duane, Anthony D Kennedy, Brian J
Pendleton, and Duncan Roweth. Hybrid Monte
Carlo. Physics Letters B, 195(2):216-222, 1987.

Mark Girolami and Ben Calderhead. Riemann
manifold Langevin and Hamiltonian Monte Carlo
methods. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 73(2):123-214,
2011.

Anoop Korattikara, Yutian Chen, and Max
Welling. Austerity in MCMC land: Cutting the
Metropolis-Hastings budget. In NIPS 2018 Work-
shop on Probabilistic Models for Big Data, 2013.

Shiwei Lan, Vassilios Stathopoulos, Babak Shah-
baba, and Mark Girolami. Langrangian dynami-
cal Monte Carlo. arXiv preprint arXiv:1211.8759,
2012.

Jingjing Lu. Multivariate slice sampling. PhD
thesis, Drexel University, 2008.

Iain Murray, Ryan Prescott Adams, and David JC
MacKay. Elliptical slice sampling. arXiv preprint
arXiv:1001.0175, 2009.

R Neal. MCMC using Hamiltonian dynamics.
Handbook of Markov Chain Monte Carlo, pages
113-162, 2011.

Radford M Neal. Slice sampling. Annals of statis-
tics, pages 705741, 2003.

Robert Nishihara, lain Murray, and Ryan P
Adams. Parallel MCMC with general-
ized elliptical slice sampling. arXiv preprint
arXiw:1210.7477, 2012.

Madeleine B Thompson and Radford M Neal.
Slice sampling with adaptive multivariate steps:

The shrinking-rank method. arXiv preprint
arXiw:1011.4722, 2010.

[10]

[11]

Running heading author breaks the line

[13] M. Welling and Y.W. Teh. Bayesian learning via
stochastic gradient Langevin dynamics. In Pro-
ceedings of the International Conference on Ma-
chine Learning, pages 681-688, 2011.

193

