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Abstract

Time-varying adjacency matrices encoding
the presence or absence of a relation among
entities are available in many research fields.
Motivated by an application to studying dy-
namic networks among sports teams, we pro-
pose a Bayesian nonparametric model. The
proposed approach uses a logistic mapping
from the probability matrix, encoding link
probabilities between each team, to an em-
bedded latent relational space. Within this
latent space, we incorporate a dictionary
of Gaussian process (GP) latent trajecto-
ries characterizing changes over time in each
team, while allowing learning of the number
of latent dimensions through a specially tai-
lored prior for the GP covariance. The model
is provably flexible and borrows strength
across the network and over time. We provide
simulation experiments and an application to
the Italian soccer Championship.

1 INTRODUCTION

There is an increasing availability of dynamic rela-
tional data allowing links between pairs of entities to
change over time. Examples can be found in social
network analysis, where friendship relations are mon-
itored over time, and broader application settings in
which interest focuses on forecasts and on inferences on
the dynamic relational structure among pairs of units,
such as countries, products, assets, and teams. Figure
1 shows an example of time-varying adjacency matri-
ces constructed using Italian soccer Championship re-
sults. Specifically, each Championship is divided into
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two seasons, and for every season, each team plays
against all the others giving rise to a sequence of V ×V
time varying symmetric matrices {Yt, t ∈ T ⊂ <+},
with V the number of teams. The matrix Yt has en-
tries yij,t = yji,t = 1 if team i and team j tie the
match at time t and yij,t = yji,t = 0, otherwise. There
is a literature on statistical applications in soccer (see
e.g., Dixon and Coles, 1997), but analyses via network
models are lacking, while providing useful contribu-
tions for sport betting and results of interest to fans.
We follow this direction of research by treating ties as
relational data.

Spatial analysis of choice data (DeSarbo and Hoffman,
1987; DeSarbo et al., 1998) provides a possible frame-
work for exploring binary matrices, with generaliza-
tions available also in the dynamic case (Sarkar et al.,
2007; Xiong et al., 2010). Beside scalability, theoreti-
cal and computational issues, these models are specifi-
cally tailored for embedding problems in co-occurrence
data encoding links between two different types of en-
tities (i.e. author-words, etc.). Our focus is instead on
dynamic modeling of one-mode binary matrices.

Traditional literature in social networks analysis via
Exponential Random Graph Models (ERGM) (Erdös
and Rény, 1959; Holland and Leinhardt, 1981; Frank
and Strauss, 1986), and generalizations for dynamic in-
ference (Robins and Pattinson, 2001; Guo et al., 2007),
represent overly restrictive approaches in modeling of
one-mode binary matrices. Solutions can be degen-
erate (Handcock et al., 2003), and questions remain
about tractability, coherence, flexibility and other key
issues (Chatterjee and Diaconis, 2013).

Alternative classes of models provide node clustering
methods via Stochastic Block Models (SBM) (Now-
icki and Snijders, 2001) and Infinite Relational Models
(IRM) (Kemp et al., 2006), with dynamic generaliza-
tions covering discrete dynamic evolution via hidden
Markov models (Ishiguro et al., 2010) and continu-
ous time analysis via extended Kalman filter (Xu and
Xero, 2013). We instead embed the nodes in a low-
dimensional latent Euclidean space, with coordinate

194



Bayesian Logistic Gaussian Process Models for Dynamic Networks

Verona
Livorno
Catania
Genoa
Torino
Chievo
Napoli

Bologna
Atalanta

Sampdoria
Cagliari

Fiorentina
Parma

Juventus
Udinese
Roma
Milan

Lazio 
Inter

In
te
r

La
zi

o 
M
ila
n

R
om
a

U
di
ne
se

Ju
ve
nt
us

Pa
rm
a

Fi
or
en
tin
a

C
ag
lia
ri

Sa
m
pd
or
ia

At
al
an
ta

Bo
lo
gn
a

N
ap
ol
i

C
hi
ev
o

To
rin
o

G
en
oa

C
at
an
ia

Li
vo
rn
o

Ve
ro
na

1997/1998 2 Data

In
te
r

La
zi

o 
M
ila
n

R
om
a

U
di
ne
se

Ju
ve
nt
us

Pa
rm
a

Fi
or
en
tin
a

C
ag
lia
ri

Sa
m
pd
or
ia

At
al
an
ta

Bo
lo
gn
a

N
ap
ol
i

C
hi
ev
o

To
rin
o

G
en
oa

C
at
an
ia

Li
vo
rn
o

Ve
ro
na

2002/2003 2 Data

In
te
r

La
zi

o 
M
ila
n

R
om
a

U
di
ne
se

Ju
ve
nt
us

Pa
rm
a

Fi
or
en
tin
a

C
ag
lia
ri

Sa
m
pd
or
ia

At
al
an
ta

Bo
lo
gn
a

N
ap
ol
i

C
hi
ev
o

To
rin
o

G
en
oa

C
at
an
ia

Li
vo
rn
o

Ve
ro
na

2007/2008 2 Data

In
te
r

La
zi

o 
M
ila
n

R
om
a

U
di
ne
se

Ju
ve
nt
us

Pa
rm
a

Fi
or
en
tin
a

C
ag
lia
ri

Sa
m
pd
or
ia

At
al
an
ta

Bo
lo
gn
a

N
ap
ol
i

C
hi
ev
o

To
rin
o

G
en
oa

C
at
an
ia

Li
vo
rn
o

Ve
ro
na

2012/2013 2 Data

Figure 1: Example of time-varying adjacency matrices built using Italian Championship results. Purple color refers to 0
values and sky blue to 1 values.

trajectories equipped with GP priors, providing a con-
tribution closer to the literature on latent space models
(Hoff et al., 2002) and Mixed Membership Stochastic
Block models (MMSB) (Airoldi et al., 2008), which
allow each node to belong to multiple blocks with
fractional membership. Dynamic latent space models
(Sarkar and Moore, 2005) and MMSB models (Xing et
al., 2010) rely on several layers of approximation with-
out theory available to justify accuracy. Heaukulani
and Ghahramani (2013) enforce latent feature propa-
gation via hidden Markov chains, but the time con-
stant assumption for the feature-interaction matrix
and the equally spaced time grid evolution are not suit-
able in many applications. In contrast, we consider a
simple Gibbs sampling algorithm for our model, which
converges to the exact posterior, online learns the di-
mension of the latent space and allows an irregular
grid of observations.

The paper is organized as follows. In Section 2, we
describe the general model structure focusing on prior
specification, properties and posterior computation. A
simulation study is examined in Section 3, and an ap-
plication to Italian soccer Championship results is pre-
sented in Section 4. The complete Gibbs sampling
algorithm and proofs of theorems are provided in Du-
rante and Dunson (2013).

2 DYNAMIC MODEL

2.1 Dynamic Model Formulation

We propose a nonparametric Bayesian dynamic model
for relational data, which efficiently exploits a latent
space representation of network data while incorpo-
rating time dynamics via Gaussian process latent fac-
tors. Specifically, letting Yt be the symmetric adja-

cency matrix at time t ∈ T and π(t) be the cor-
responding symmetric probability matrix having en-
tries πij(t) = pr(yij,t = 1) for every i = 1, . . . , V and
j = 1, . . . , V , the model defines

yij,t|πij(t) ∼ Bern(πij(t)) t ∈ T , (1)

independently for each i = 2, . . . , V and j = 1, . . . , i−
1, with

E[yij,t|πij(t)] = πij(t) =
1

1 + e−sij(t)
, (2)

for each i = 2, . . . , V and j = 1, . . . , i − 1. To avoid
modeling separately 1

2V (V − 1) stochastic processes,
one for each time-varying similarity measure sij(t),
and to borrow strength across the network, sij(t) is
constructed via a quadratic combination of a set of
latent coordinates for unit i and unit j. Specifically

sij(t) = µ(t) + xi(t)
Txj(t), (3)

with xi(t) = [xi1(t), . . . , xiH(t)]T for i = 2, . . . , V and
xj(t) = [xj1(t), . . . , xjH(t)]T for j = 1, . . . , i − 1, pro-
viding the following matrix factorization

S(t) = µ(t)1V 1TV +X(t)X(t)T , (4)

where S(t) is a V × V real symmetric matrix
with latent similarity entries sij(t) and X(t) =
[x1(t), x2(t), . . . , xV (t)]T .

As a result the link probabilities are modeled via a
logistic regression, with µ(t) a baseline process char-
acterizing the overall propensity to form links and
xi(t)

Txj(t) inducing a higher probability of a link (i.e.,
yij,t = 1) when i and j have latent coordinates in the
same direction. This formulation is also intuitive in
practical applications. Recall our motivating example
of soccer, and assume for simplicity µ(t) = 0 and only

195



Daniele Durante, David B. Dunson

two latent coordinates representing for example de-
fense and scoring abilities, respectively. Then matches
between teams with defense and scoring characteristics
in the same directions (i.e. both high defense and scor-
ing, both low defense and high scoring, etc.) will have
a higher probability of ending with a tie, while teams
with opposite abilities (i.e. high defense and scoring
against low defense and scoring) will more likely lead
to matches in which one of the two wins.

Such a representation provides also a provably flex-
ible model in which the lower triangular matrix ele-
ments of any symmetric probability matrix π(t) can
be represented as in (2), with latent similarities spec-
ified as in (3); see Durante and Dunson (2013) for
proofs. Non-uniqueness of matrix factorization in (4)
is not an issue, since we are taking a Bayesian ap-
proach to inference and are not directly interested
in the non-identifiable parameters (Bhattacharya and
Dunson, 2011). We obtain identifiability in a Bayesian
sense for the induced similarity matrix S(t) and prob-
ability matrix π(t), which are of interest for inference.
By avoiding identifiability restrictions on parameters
(Bollen, 1989; Hoff et al., 2002), we substantially im-
prove simplicity and efficiency of computations.

2.2 Prior Specification

Our prior choice is motivated by computational
tractability and a desire to obtain a nonparametric
Bayesian approach, implying that the formulation is
flexible in the sense of ‘large support’. This means
that our prior can generate time-varying adjacency
matrices within an arbitrarily small neighborhood of
the ‘truth’, allowing the truth to fall in a wide class.
We choose independent priors, ΠX and Πµ, for XT =
{X(t), t ∈ T } and µT = {µ(t), t ∈ T } in order to in-
duce a large support prior Ππ for πT = {π(t), t ∈ T }
through (2) and (3). Automatic strategies for select-
ing the number of coordinates in latent space models
are typically lacking or computationally sub-optimal
(e.g., requiring re-running for different choices of di-
mension). We propose an extension of Bhattacharya
and Dunson’s (2011) latent factor selection method
from Gaussian latent factors to Gaussian process la-
tent factors. Specifically, we let

xih(·) ∼ GP(0, τ−1h cX),

independently for all i = 1, . . . , V and h = 1, . . . ,H,
with cX a squared exponential correlation function
cX(t, t′) = exp(−κX ||t − t′||22), which favors unequal
spacing and continuous time analysis, and τ−1h a
shrinkage parameter defined as

τh =
h∏
k=1

ϑk, ϑ1 ∼ Ga(a1, 1), ϑk ∼ Ga(a2, 1), k ≥ 2.

Note that if a2 > 1 the expected value for ϑk is greater
than 1. Hence, as h goes to infinity, τh tends to infin-
ity, shrinking xih(·), for every i = 1, . . . , V towards
zero. This provides a flexible prior for xih(·) with a
local shrinkage parameter τ−1h that enforces many la-
tent coordinates being close to 0 as h increases. To
conclude prior definition, we choose

µ(·) ∼ GP(0, cµ),

with cµ(t, t′) = exp(−κµ||t− t′||22).

Such a specification can generate a time-varying sym-
metric probability matrix that is arbitrarily close to
any function {π(t), t ∈ T }. Intuitively, large support
on continuous symmetric similarity matrix functions
{S(t), t ∈ T } relies on the continuity of the Gaus-
sian process coordinate functions. Since for each fixed
t = t0, xih(t0) are independently Gaussian distributed,
X(t0)X(t0)T is distributed according to a sum of in-
dependent Wishart random variables. Combining the
large support of the Wishart distribution with the one
of the Gaussian for the baseline µ(t0), provides large
support for the induced prior ΠS . Since π(t) is ob-
tained via a one to one continuous increasing function
of S(t), we will map non-null probability subsets of the
space of S(t) into non-null probability subsets of the
space of π(t), providing the desired large support for
the induced prior Ππ. Refer to Durante and Dunson
(2013) for proof of large support property for ΠS , and
Ππ. This ensures that our specification is sufficiently
flexible to characterize any true generating process,
and hence can be viewed as nonparametric given suf-
ficiently flexible Gaussian process priors.

2.3 Posterior Computation

Posterior computation is performed exploiting a re-
cently proposed data-augmentation scheme based on
a new class of Pólya-Gamma distributions; see Polson
et al. (2013) for a detailed description and Choi and
Hobert (2013) for recent results on uniform ergodic-
ity of the resulting algorithm. The approach provides
a strategy for fully Bayesian inference exploiting the
representation of binomial likelihoods parameterized
by log-odds via a mixture of Gaussians with respect
to Pólya-Gamma distributions.

Specifically assuming a Bayesian logistic regression
setting where yi ∼ Bern(1/[1 + e−ψi ]), i = 1, . . . , n,
ψi = xTi β and β having Gaussian prior β ∼ Np(b, B),
the resulting Gibbs sampler alternates between two
full conditional conjugate steps

ωi|β, xi ∼ PG(1, xTi β) and β|y, ω, x ∼ Np(µβ ,Σβ),

where Σβ = (XTΩX + B−1)−1 and µβ = Σβ(XT z +
B−1b); with z = [y1−1/2, . . . , yn−1/2]T and Ω is the
diagonal matrix with ωi’s entries.
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Recalling model (1), with probabilities defined as in
(2) and latent similarities from (3), for i = 2, . . . , V ,
j = 1, . . . , i − 1 and t ∈ T0 = {t1, . . . , tT }, and tak-
ing a fixed truncation level H∗ (see Bhattacharya and
Dunson (2011) for a methodadaptively choosing the
truncation levels), the Gibbs sampler for our model
alternatives between:

1. Update each augmented ωij,t from the full condi-
tional Pólya-Gamma posterior.

2. Given {yij,t}, X(t) and {ωij,t}, the full condi-
tional posterior distribution for µ(t) with t ∈ T0 =
{t1, . . . , tT } is a T -variate Normal distribution.

3. Update the time-varying latent coordinate vec-
tor {xv(t) = [xv1(t), . . . , xvH∗(t)]T }tTt=t1 for every
unit v = 1, . . . , V from its conditional posterior.
Specifically, conditionally on X(−v) = {xj(t) : j 6=
v, t ∈ T0}, µ = [µ(t1), . . . , µ(tT )]T , {yij,t}, {ωij,t}
and {τh}; we can easily rewrite the conditional
model as a proper logistic regression with linear
predictors, and utilize the standard results from
Pólya-Gamma sampling scheme.

4. Conditioned on X(t) and {τh}, the global shrink-
age hyperparameters are sampled from their cor-
responding full conditional Gamma distributions.

5. Conditionally on µ(t) and X(t), latent similari-
ties sij(t) and link probabilities πij(t) are updated
from (3) and (2), respectively.

Missing at random values can be easily accommodated
by adding a further step imputing the unobserved links
from their conditional distribution given the current
state of the chain. Specifically:

6. Given X(t) and µ(t) sample each missing value
from its conditional distribution (1) with prob-
abilities specified as in (2) and latent similarity
measures obtained via the projection approach
defined in (3).

Step 6 provides also a strategy for predicting future
networks. Specifically, if we are interested in making
inference on π(tT+1) with tT+1 > tT given the ob-
served adjacency matrices Yt, t ∈ T0 = {t1, . . . , tT },
then we can simply perform the previous posterior
computations adding to the observed dataset {Yt}t∈T0
a new matrix YtT+1

of missing values and make infer-
ence on the posterior predictive distribution using the
samples of the Markov chain for π(tT+1).

3 SIMULATION STUDY

We provide a simulation study to evaluate the perfor-
mance of the proposed model in analyzing a dataset
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Figure 2: For some selected times t, plot of the true prob-
ability matrix π(t) (top), posterior mean π̂(t) from our
model (middle), and |π(t)− π̂(t)| (bottom).

constructed to mimic a possible generating process
with respect to the soccer application. The focus is on
the ability in correctly modeling the true underlying
probability processes and also on the performance with
respect to out of sample predictions. We also provide
a comparison between our proposed approach and the
estimated probability process for each time-varying bi-
nary outcome when using only temporal information
without exploiting matrix structure, showing the sub-
optimality of the latter in terms of bias. Although
our model is suitable for analyzing higher V and T
settings, we focus for simplicity on a relatively small
simulated dataset in which the results can be visual-
ized.

3.1 Estimating Performance

We consider 15×15 time varying adjacency matrices Yt
with t in the discrete set T0 = {1, 2, . . . , 40}. Links yij,t
are simulated according to model (1) with probabili-
ties obtained from (2) and latent similarities specified
as in (3). We generate the baseline process {µ(t)}40t=1

from a GP(0, cµ) with length scale κµ = 0.01, and
consider 2 time-varying latent coordinates {xi1(t)}40t=1,
{xi2(t)}40t=1 from Gaussian processes with length scale
κx = 0.01, independently for each unit i = 1, . . . , 15.
Data at the last time Y40 are held out in the estimation
process to evaluate the out of sample predictive perfor-
mance, and links between units 10 and 11 and all the
others are considered missing at times t = 20, . . . , 25
to assess the behavior with respect to missing data.
For inference we choose a truncation level H∗ = 10,
length scales κµ = κx = 0.05 and set a1 = a2 = 2
for the shrinkage parameters. We ran 5,000 Gibbs it-
erations which proved to be enough for reaching con-
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Table 1: Summary of the squared differences between
true µ(t), t = 1, . . . , 40 and true πij(t), t = 1, . . . , 40,
i = 2, . . . , V , j = 1, . . . , i − 1 and their corresponding
posterior mean estimated via our model.

mean 0.95% quantile max

µ(t) 0.018 0.042 0.077
π(t) 0.002 0.011 0.023

Table 2: Summary of the squared differences between
true µ(t), t = 1, . . . , 40 and true πij(t), t = 1, . . . , 40,
i = 2, . . . , V , j = 1, . . . , i − 1 and their corresponding
posterior mean estimated via independent approach.

mean 0.95% quantile max

µ(t) 0.700 2.744 3.016
π(t) 0.025 0.074 0.101

vergence and discarded the first 1,000. Mixing was
assessed by analyzing the effective sample sizes of the
MCMC chains for the quantities of interest (i.e. πij(t),
for i = 2, . . . , V , j = 1, . . . , i−1 and t ∈ T0) after burn-
in. Most of these values concentrate around ≈ 1,700
effective samples on a total of 4,000, providing a good
mixing result.

The comparison in Figure 2 between true probability
matrices and their corresponding posterior mean for
some selected time t, highlights the good performance
of our model in correctly estimating the true underline
data generating process and making predictions. The
latter can be noticed by comparing true and estimated
probability matrices at t = 40, recalling that in our
simulation we allowed Y40 to have missing entries and
we were interested in analyzing the predictive perfor-
mance of our model with respect to π(40). Good per-
formance is further confirmed by an area underneath
the ROC curve of 0.87.

Tables 1 and 2 compares the performance of our model
with respect to µ(t) and π(t), and the inferential re-
sults when the mean process and probability processes
are estimated with the same setting of our model but
using only the time series of the corresponding yij,t
without borrowing strength across the network. The
sub-optimality of the independent approach is appar-
ent in terms of biased estimates. Appropriately bor-
rowing of information across the network provides sub-
stantially improved estimates, while accurately select-
ing the dimension of the latent space. In particular,
we find that the estimated τ̂−1h values start at 0.8 and
0.7 for h = 1 and 2, respectively, but drop to small
values for h ≥ 3, limiting the influence of later factor

trajectories. Additionally, hyperparameter sensitivity
benefits from borrowing of information across the net-
work over time, in particular with respect to the length
scale in GP prior. We obtain similar results when in-
stead letting κµ = κx = 0.03, κµ = κx = 0.1 and
κµ = κx = 0.5 in sensitivity analyses.

4 DYNAMIC SOCCER NETWORKS

We apply our model to Italian soccer Championships
results from 1993 to 2013. Specifically, given the re-
sults in each match we focus on the time-varying Yt
matrices having entries yij,t = yji,t = 1 if team i and
team j tie the match at time t (teams are similar),
and yij,t = yji,t = 0 if one of the two wins the match
(teams are dissimilar), and we are interested in the
underlying dynamic network structure and prediction.

4.1 Data Analysis

Since for each Championship the last 3 teams are rel-
egated in the lower category, and the first 3 teams of
the lower category take their place, we choose the 19
teams that played most of the Championships in the
time window considered (i.e, V = 19). The total num-
ber of Championships considered is 20, giving rise to
a time grid t ∈ T0 = {1, 2, . . . , 41} since each one is
divided in two seasons, and t = 41 is associated to a
matrix Y41 of missing values used for predicting the
outcomes in the first season of the 2013/2014 Cham-
pionship. Finally, given the non-negligible number of
missing values, and since most of them are not miss-
ing at random (i.e if team i is in the lower category
at time t, then yij,t is missing for all j 6= i), we prefer
to impute such values according to our model inter-
pretation. Specifically if yij,t is missing and only one
of the two teams is in the lower category, we define
yij,t = 0 assuming the team in the lower category is
weaker than those playing in the top category, thus
a possible match is more likely to end with the top
one winning it. If at time t both teams are in the
lower category, we impute yij,t = 1 assuming them to
be more similar and therefore more likely to tie the
match. We could have alternatively defined our model
and inference algorithm to allow teams to move in and
out of the network, but prefer to avoid the resulting
complexity in our descriptions.

4.2 Results

We apply model (1), with probabilities specified as in
(2) and latent similarity measures obtained via the
projection approach in (3). For posterior computa-
tion we run 5,000 Gibbs iterations with a burn-in of
1,000, setting H∗ = 15, length scales κµ = κx = 0.03
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Figure 3: For some selected seasons, plot of the observed data matrices Yt (top), and posterior mean π̂(t) (bottom).
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Figure 4: For selected matches, plot of the observed time
varying outcomes (black dots), point-wise posterior mean
π̂ij(t) (blue lines) and 0.95 highest posterior density (hpd)
intervals (colored blue areas). Red lines and areas are the
same quantities for the posterior predictive distribution.

and a1 = a2 = 2. Similarly to the simulation study,
most of the chains have effective sample sizes around
2,000 on a total of 4,000 after burn-in, showing good
mixing. We find that the first six latent factors are
the most informative, with the remaining 9 latent pro-
cesses being concentrated near zero. It was interesting
to us that this many latent factors were needed.

Figure 3 shows a graphical comparison between the ob-
served data matrices Yt and the estimated probability
matrices π̂(t), for some seasons, showing the good per-
formance of the proposed model in adaptively learn-
ing the data structure, confirmed also by a ROC curve
having an area underneath of 0.94. Similar results are
provided in Figure 4 showing the time-varying point-
wise posterior mean and 0.95 hpd intervals for some
selected matches. It is worth noticing that the local
adaptivity of the estimated trajectories is not due to an
over-parameterization of the model since the shrink-
age prior on τh and the choice of small length scales
in the GP covariance functions imply smooth trajec-
tories and a parsimonious model formulation. Thus
adaptivity is provided by the information borrowed in
the network for each time t.

Note also that, as expected, when similar teams such
as Milan vs Lazio (both top teams) play, tying prob-
abilities seem to be in general higher, with cycles due
to the fact that in some specific seasons a team may
be stronger than the corresponding opponent. On the
other hand, matches between a top team (i.e Juventus)
and a low team (i.e Livorno) have a higher probability
of not ending with a tie, as expected.

Figure 5 provides interesting insight into the network
structure among Italian soccer teams. Specifically
we represent three different weighted networks, with
weights given by (a) the average estimated tying prob-

ability π∗ij =
∑40
t=1 π̂ij(t)/40, (b) the predicted tying

probability for the new season π∗∗ij = π̂ij(t = 41) and
(c) the probability π∗∗∗ij obtained by averaging over
Championships 2004/2005 and 2005/2006, related to
the betting scandal in Italian soccer, which caused
penalties for the teams supposed to be most involved
(i.e. Juventus, Lazio, Fiorentina and Milan). A rea-
sonable global network structure with teams having
similar strength most closely related among each other
and relative positions respecting the overall ranking of
the teams is provided in plot (a). Note how the rela-
tive position of Naples changes when considering the
predicted network in (b) which assigns more weight
to the recent Championships when Naples had a top
ranking performance, differently from older seasons in
which they were also relegated in lower categories. Fi-
nally, analyzing the network during Championships
2004/2005 and 2005/2006 in (c), we interestingly learn
close relationships among the teams supposedly most
involved in the betting scandal in those seasons.

5 DISCUSSION

We proposed a Bayesian nonparametric dynamic
model for adjacency matrices, borrowing information
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(a) Aggregated Network (b) Predicted Network (c) Network in betting scandal

Figure 5: Left: weighted network visualization with weights obtained averaging π̂(t) over T0. Middle: Predicted weighted
network visualization for the first season of 2013/2014 Italian soccer Championship with weight matrix given by the fore-
casted π(t). Right: weighted network visualization with weights obtained averaging π̂(t) over Championships 2004/2005
and 2005/2006. Edge dimensions are proportional to the corresponding value of the averaged probability matrix, with
colors going from red to green as the corresponding weight goes from 0 to 1. Nodes are colored with respect to prior
knowledge on teams strength (Left and Middle plots), and penalties received after the betting scandal during 2004/2005
and 2005/2006 Championships (Right plot).

across time and the network structure of the data un-
der investigation and allowing for dimensionality re-
duction. The model has been constructed using latent
similarity measures defined by the dot product of la-
tent coordinate vectors, with entries evolving in con-
tinuous time via Gaussian process priors. The shrink-
age hyperprior allows us to automatically learn the
dimension of the latent space and ensures a parsimo-
nious definition of the model, with the risk of over-
parameterization due to a higher number of latent
features avoided. The Pólya-Gamma data augmenta-
tion strategy allows us to define a simple and efficient
Gibbs sampler for posterior computations based on full
conditional conjugate posterior distributions, which is
promising in terms of scaling to moderately large V ,
and easily handling missing values as well as forecast-
ing problems. Scalability to large T could be, instead,
improved via stochastic differential equations models
approximating the GP prior on the latent coordinate
processes (Zhu and Dunson, 2013).

Our model has a broad range of applicability, with dy-
namic social network analysis and time-varying binary
evaluations among units providing two natural fields
of application. Further directions of research could be
devoted to the definition of similar models for discrete
valued dynamic matrices, which could provide useful
tools for analyzing the scoring difference in sport appli-
cations, as well as edge valued dynamic social networks
or datasets with comparison among units expressed on
a Likert scale.
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