
Technical Appendix

Threshold DNFs An exponentially large standard
DNF is required to represent a threshold DNF. Con-
sider a threshold DNF with just a single term con-
taining all n of the binary variables x1, . . . , xn, and let
the threshold value be n

2 , with each variable having
equal weight. Consider any standard DNF for this n

2
threshold function, and let T be any term in it. If T
has fewer than n

2 variables appearing unnegated, then
T has a satisfying assignment with fewer than n

2 bits
on, which is a contradiction. Furthermore, if T has
any variables appearing negated, then these variables
can be removed, and all previously satisfying assign-
ments for T will remain satisfying. Thus, the smallest
T will contain only unnegated variables, and at least n

2
of them. The DNF formula must contain such a term
for every possible subset of n

2 bits, of which there are
exponentially many.

Section 5 Assumptions In Section 5 we assume
that the tree is binary and that the distribution P is
given over the leaves only. To remove the first assump-
tion, rather than summing over {x, y | x + y = i}, we
use another dynamic program that calculates the prob-
ability that exactly i amount of weight is distributed
among the children of u. The approach is similar to
calculating the probability that exactly k out of n bi-
ased coins come up heads. To remove the second as-
sumption, we check at each node u (not just the leaves)
whether u corresponds to a literal in T , and if so, we
make a case analysis similar to the one currently re-
stricted to our base case.

Lemma 1. The GenAssign subroutine for DNF for-
mulas generates an assignment v ∈ V with probability
P̂ (v)/P̂ (T).

Proof. Let x1, . . . , xm denote variables in the order
as they appear in the loop from lines 5 to 12, where
m = n − |T |. Let v be the assignment generated by
GenAssign(P, T, ε). Let li = (xi, vxi

). The probability
that v was generated is

P̂ (T ∧ l1)

P̂ (T)
× P̂ (T ∧ l1 ∧ l2)

P̂ (T ∧ l1)
× . . .× P̂ (v)

P̂ (T ∧ l1, . . . , lm)
.

After cancelling terms, we have P̂ (v)/P̂ (T).

Lemma 2. The GenAssign subroutine for threshold
DNFs generates an assignment v ∈ V with probability
P (v)/P (T).

Proof. The probability that an assignment v is gener-

ated is:

Pr[QT
r (i)]∑W (T)

i=q Pr[QT
r (i)]

×

Pr[r = vr] Pr[QT
r (i) | r = vr]

Pr[QT
r (i)]

×

Pr[QT
rL(x) | r = vr] Pr[QT

rR(y) | r = vr]

Pr[QT
r (i) | r = vr]

×

Pr[rL = vrL | r = vr] Pr[QT
rL(x) | rL = vrL]

Pr[QT
rL(x) | r = vr]

×

Pr[rR = vrR | r = vr] Pr[QT
rR(y) | rR = vrR]

Pr[QT
rR(y) | r = vr]

× . . .

After cancelling terms, we have

Pr[r = vr] Pr[rL = vrL | r = vr] Pr[rR = vrR | r = vr] . . .∑W (T)
i=q Pr[QT

r (i)]

=
Pr[r = vr ∧ rL = vrL ∧ rR = vrR . . .]

P (T)

=
P (v)

P (T)
.

Lemma 3. The GenAssign subroutine for threshold
DNFs generates an assignment v ∈ V such that v sat-
isfies T .

Proof. It suffices to prove that the process generates
an assignment v in which the weighted sum of satisfied
literals is equal to i, where i ≥ q is the value we chose
in the first step. We will use induction to prove the fol-
lowing more general claim. For any internal node u, if
we have chosen the value for the weighted sum of sat-
isfied literals in u’s subtree to be i, then the generated
assignment will meet this requirement.

Suppose we are at a leaf node u where l = (u, 1) ∈ T
and we have chosen uP = b. We then choose i with
probability proportional to Pr[QT

u (i)]. The only values
for i which correspond to a nonzero probability are
w(l) and 0. In order for u’s literal to be satisfied, u’s
value must be 1. So if we have chosen i to be w(l), then
we should choose u’s value to be 1 with probability 1.
According to the subroutine, we choose the value for
u to be 1 with probability equal to

Pr[u = 1 | uP = b] Pr[QT
u (w(l)) | u = 1]

Pr[QT
u (w(l)) | uP = b]

=
Pr[u = 1 | uP = b](1)

Pr[u = 1 | uP = b]

= 1.

On the other hand, if we have chosen i to be 0, then
we should choose u’s value to be 0 with probability 1.
According to the process, we choose the value for u to
be 0 with probability equal to

Pr[u = 0 | uP = b] Pr[QT
u (0) | u = 0]

Pr[QT
u (0) | uP = b]

=
Pr[u = 0 | uP = b](1)

Pr[u = 0 | uP = b]
= 1.

The case where l = (u, 0) ∈ T follows similarly. For the
inductive step, suppose we are at a node u and have
chosen the value i. According to the subroutine, we
have also chosen values x, y for the subtrees of uL and
uR, such that x+ y = i. By the induction hypothesis,
we can assume that the conditions were met for uL
and uR. Thus, the weighted sum of satisfied literals in
the subtree of u will be equal to x+ y = i.

