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Abstract

We introduce a Bayesian discrete-time frame-
work for switching-interaction analysis un-
der uncertainty, in which latent interactions,
switching pattern and signal states and dy-
namics are inferred from noisy (and possibly
missing) observations of these signals. We
propose reasoning over full posterior distri-
bution of these latent variables as a means
of combating and characterizing uncertainty.
This approach also allows for answering a
variety of questions probabilistically, which
is suitable for exploratory pattern discovery
and post-analysis by human experts. This
framework is based on a fully-Bayesian learn-
ing of the structure of a switching dynamic
Bayesian network (DBN) and utilizes a state-
space approach to allow for noisy observa-
tions and missing data. It generalizes the
autoregressive switching interaction model of
Siracusa et al. [1], which does not allow ob-
servation noise, and the switching linear dy-
namic system model of Fox et al. [2], which
does not infer interactions among signals.
Posterior samples are obtained via a Gibbs
sampling procedure, which is particularly ef-
ficient in the case of linear Gaussian dynam-
ics and observation models. We demonstrate
the utility of our framework on a controlled
human-generated data, and climate data.

1 Introduction

We consider the problem of inferring time-varying in-
teractions over multi-dimensional time-series data. In
contrast to previous work we address noisy and un-
certain measurement models and the possibility of
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Figure 1: Dynamic Bayesian Network (DBN) represen-
tation of switching interaction among four signals. They
initially evolve according to interaction graph E1. At time
point 4, the interaction pattern changes, and they evolve
according to interaction graph E2. Self-edges are assumed.

missing data. Furthermore, by construction of the
model we allow for marginalization over model param-
eters enabling efficient Bayesian inference over discrete
structure elements. Analyzing such interactions is im-
portant in many domains such as biology, finance, so-
cial networks, Earth sciences, transportation, games,
etc. We formulate this as the problem of learning the
structure of a switching dynamic Bayesian network as
depicted in Figure 1.

Inferring interaction structures over multi-dimensional
time-series presents a formidable challenge owing to
the super-exponential number of possible directed
graphs. With limited data available, there may ex-
ist a large number of structures that explain the data
well. Structure point estimates (e.g., MAP) are likely
to yield incorrect interactions. The problem is exac-
erbated when the structure varies over time and time-
series state is not observed directly, but rather by some
noisy observation process.

Here, we propose a Bayesian approach for reasoning
over interaction structures. The resulting model allows
for efficient calculation of marginal event probabilities
corresponding to such questions as “Does object A de-
pend on object B, given that it interacts with object
C?” or “Which object is the most influential, i.e., has
the most objects that depend on it?”.
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To this end, we develop a Bayesian switching state-
space interaction model (SSIM), presented in Section
5, that accounts for noisy and missing observations.
We define interaction graphs in Section 3. To ad-
dress computational challenges, we use a modular prior
over structures with bounded in-degree, as described
in Section 4. A Gibbs sampling inference procedure
is presented in Section 6. In addition, we derive
a novel numerically-stable message-passing algorithm
for “batch” sampling of a state sequence in a linear
Gaussian state-space model that allows deterministic
dependence relationships (Section 6.1). In Section 7,
we demonstrate utility of our approach on realistic
human-generated data as well as real data.

2 Related work

The proposed model integrates inference over struc-
tures, dynamic switching, and latent state-space mod-
els. All have been the subject of extensive research.
Change point detection was first a subject of interest
in the area of quality control, but has since become
an important problem in time-series analysis domains.
A huge number of online and offline, Bayesian and
non-Bayesian, parametric and nonparametric meth-
ods have been developed. Basseville and Nikiforov
[3] and Polunchenko and Tartakovsky [4] provide an
overview of these methods. Most of these methods
assume segment independence. In contrast, switch-
ing dynamic systems (SDS) – also called state-space
switching models (SSM) – allow coupling between seg-
ments through dynamics parameters, which is typi-
cally modeled via latent switching states. They com-
bine state-space modeling with switching point detec-
tion. Inference in SDS models is done via approximate
methods (Pavlovic et al. [5, 6]), EM algorithm (Oh
et al. [7]), or sampling (Fox et al. [8, 2]). Most of
related work deals with switching linear dynamic sys-
tems (SLDS) since they allow for simpler inference but
are still widely applicable.

In recent years, a number of methods for learning
changing structure among time-series have been sug-
gested. For example, Xuan and Murphy [9] combine
inference over undirected graphs with change-point de-
tection. Optimization techniques have been used to
estimate time-varying undirected networks (Kolar et
al. [10]), as well as time-varying DBNs (Song et al.
[11]). Jiang et al. [12] use EM algorithm to obtain the
MAP estimate of a switching DBN. Lebre et al. [13]
and Robinson and Hartemink [14] use MCMC sam-
pling method to learn time-varying DBNs. However,
the number of sampled structures may not be sufficient
to adequately represent the posterior over structures.
Siracusa and Fisher [1] develop a method based on
prior modularity for efficient reasoning over the struc-

ture posterior. The model we propose is most closely
related to the work of [1]. It differs (in fact, from most
available methods) in that we do not assume direct
observation and allow for missing data. The result is
a more expressive and robust model at the cost of a
more complex inference procedure.

3 Interaction graphs and DBN

Our goal is to reason over time-varying interactions
(dependence structures) between N multivariate sig-
nals. We assume that signals evolve according to
a Markov process over discrete time points t =
0, 1, . . . , T . The latent state associated with signal i at
time point t > 0 depends on the state of a subset of sig-
nals pa(i, t) at time point t−1. We refer to pa(i, t) as a
parent set of signal i at time point t. While the preced-
ing implies a first-order Markov process, the approach
extends to higher-ordered Markov processes. A collec-
tion of directed edges Et = {(v, i); i = 1, . . . , N, v ∈
pa(i, t)} forms an interaction graph at time point t,
Gt = (V,Et), where V = {1, . . . , N} is the set of all
signals. That is, there is an edge from j to i in Gt if
and only if signal i at time point t depends on signal
j at time point t − 1. We say that the parent signals
pa(i, t) influence signal i at time t.

Let Xi
t denote a (multivariate) random variable that

describes the latent state associated to signal i at time
point t. Then, signal i depends on its parents at time

t according to a probabilistic model p(Xi
t |X

pa(i,t)
t−1 , θit)

parametrized by θit, where X
pa(i,t)
t−1 denotes a collection

of variables {Xv
t−1; v ∈ pa(i, t)}. Furthermore, we as-

sume that conditioned on their parents at the previous
time point, signals are independent of each other:

p(Xt|Xt−1, Et, θt) =

N∏
i=1

p(Xi
t |X

pa(i,t)
t−1 , θit) , (1)

where Xt = {Xi
t}Ni=1 (i.e., Xt is a collection of vari-

ables of all signals at time point t) and θt = {θit}Ni=1.
Structure Et and parameters θt determine a depen-
dence model at time t, Mt = (Et, θt). Finally, we
express a joint probability of all variables at all time
points, X, as

p(X) = p(X0|θ0)
T∏

t=1

p(Xt|Xt−1, Et, θt)

=

N∏
i=1

p(Xi
0|θi0)

T∏
t=1

N∏
i=1

p(Xi
t |X

pa(i,t)
t−1 , θit). (2)

The stochastic process of Eq. 2 can be represented
using a dynamic Bayesian network (DBN), such that
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there is a one-to-one correspondence between the net-
work and the collection of interaction graphs over time,
as shown in Figure 1.

4 Prior on interaction structure

Let us assume for a moment that the dependence
model is homogenous in time, i.e., Et ≡ E, pa(i, t) ≡
pa(i), and θt ≡ θ. Let p(E;β) be the prior probability
of structure E, parameterized by β. In the most gen-
eral form, β is a collection of parameters {βE} (one
parameter for each structure), such that βE is propor-
tional to the prior probability of E:

p(E;β) =
1

B
βE ∝ βE , (3)

where B =
∑

E βE is a normalization constant.

Let p(θ|E; γ) be the prior probability of θ, parameter-
ized by γ. For now, we do not assume any particular

form of the dependence models, p(Xi
t |X

pa(i)
t−1 , θi). Note

however that the prior on parameters, θ, may depend
on the structure. Since different structures may dif-
fer in the number of parents (for some signals), they
may also require parameters of different dimension-
ality. Thus, γ is indeed a collection {γE} of sets of
hyperparameters, such that p(θ|E; γ) = p(θ; γE).

Learning (static) Bayesian network structures (under
reasonable assumptions) is NP hard [15]. The number
of possible structures is superexponential in the num-
ber of nodes, which is also true for the number of in-
teraction graphs (2N

2

). A modular prior on structure
and parameters [16, 17, 18, 19] is typically introduced
to reduce the complexity of inference over structures:

• p(E;β) =
∏N

i=1 p(pa(i);β) (structure modularity)

• p(θ|E; γ) =
∏N

i=1 p(θ
i|E; γ) (global parameter in-

dependence)

• p(θi|E; γ) = p(θi|pa(i); γ) (param. modularity).

This assumption is, for static BNs, typically combined
with a known ordering of variables [16, 17] or a proce-
dure for sampling such orderings [19]. Since loops are
allowed in the interaction graph (Figure 1), ordering
of variables/signals is irrelevant and parent sets can
be chosen independently for each signal [1]. There-
fore, the modular prior assumption directly reduces
the number of structures to exponential (N2N ). As
will be discussed in Section 6.2, modularity and inde-
pendence of parent sets are reflected in the structure
posterior. Note that as a result of modular prior as-
sumption, β is no longer a collection of parameters
per structure, but rather a collection of parameters

{βi,pa(i)} (one parameter for each possible parent set
of each signal), such that

p(pa(i);β) =
1

Bi
βi,pa(i) ∝ βi,pa(i) , (4)

where Bi =
∑

s βi,s are normalization constants.

If, in addition, the number of parents of each signal
is bounded by some constant M (a structure with
bounded in-degree [17, 18, 19]), the number of par-
ent sets to evaluate is further reduced to O(NM+1),
which is polynomial in N , while the total number of
structures with non-zero probability is still superexpo-
nential (2O(NlogN)). More generally, using any poly-
nomially large subset of parent sets per signal leads to
a polynomial complexity of structure inference.

5 State-space switching interaction
model (SSIM)

In order to learn time-varying interaction from time-
series data, we assume that the dependence model
switches over time between K distinct models, M̃k =
(Ẽk, θ̃k), k = 1, . . . ,K. More formally, for each time
point t, Mt = M̃k for some k, 1 ≤ k ≤ K. One
interaction may be active for some period of time, fol-
lowed by a different interaction over another period of
time, and so on, switching between a pool of possible
interactions. This is illustrated in Figure 1. Let Zt,
1 ≤ t ≤ T , be a discrete random variable that repre-
sents an index of a dependence model active at time
point t; i.e., Mt = M̃Zt

, Zt ∈ {1, . . . ,K}. We can
now rewrite the transition model (Equation 1) as

p(Xt|Xt−1, Zt, Ẽ, θ̃) = p(Xt|Xt−1, ẼZt , θ̃Zt)

=
N∏
i=1

p(Xi
t |X

p̃a(i,Zt)
t−1 , θ̃iZt

) , (5)

where (Ẽ, θ̃) = {(Ẽk, θ̃k)}Kk=1 is a collection of
all K models and p̃a(i, k) is a parent set of sig-
nal i in Ẽk. We can also rewrite Equation 2
as p(X|Z, Ẽ, θ̃) = p(X0|θ0)

∏T
t=1 p(Xt|Xt−1, Zt, Ẽ, θ̃),

where Z = {Zt}Tt=1. To distinguish from signal state,
we call Zt a switching state (at time t) and Z a switch-
ing sequence. Furthermore, we assume that Z forms a
first order Markov chain:

p(Z) = p(Z1)

T∏
t=2

p(Zt|Zt−1) = πZ1

T∏
t=2

πZt−1,Zt , (6)

where πi,j is a transition probability from state i to
state j and πi is the initial probability of state i.

Finally, we model that the observed value Y i
t of signal

i at time t is generated from its state Xi
t via a prob-

abilistic observation model p(Y i
t |Xi

t , ξ
i
t) parametrized
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Figure 2: State-space switching interaction model (SSIM).

by ξit. For simplicity, we assume that the observation
model is independent of the state (ξit = ξi, ∀t, i),

p(Y |X, ξ) =
T∏

t=0

N∏
i=1

p(Y i
t |Xi

t , ξ
i), (7)

where Y = {Yt}Tt=1 is the observation sequence and ξ
is the collection of parameters {ξi}Ni=1.

The full SSIM generative model, shown in Figure 2, in-
corporates probabilistic models described above along
with priors on structures and parameters:

• Multinomials π are sampled from Dirichlet priors
parametrized by α as
(π1, . . . , πK) ∼ Dir(α1, . . . , αK),
(πi,1, . . . , πi,K) ∼ Dir(αi,1, . . . , αi,K) ∀i.

• K structures Ẽk and parameters θ̃k are sampled
from the corresponding priors as
Ẽk ∼ p(E;β), θ̃k ∼ p(θ|Ẽk; γ), ∀k.

• Parameters of the observation model are sampled
as ξi ∼ p(ξi; δ), ∀i.

• Initial values X0 and Y0 are generated as X0 ∼
p(X0|θ0) and Y0 ∼ p(Y0|X0, ξ).

• For each t = 1, 2, . . . , T (in that order), values of
Zt, Xt and Yt are sampled as
Zt ∼Mult(πZt−1,1, . . . , πZt−1,K) or
Zt ∼Mult(π1, . . . , πK) if t = 1,
Xt ∼ p(Xt|Xt−1, ẼZt

, θ̃Zt
) and Yt ∼ p(Yt|Xt, ξ).

The choice of dependence and observations models is
application specific and will impact the complexity of
some of the inference steps. For example, commonly
used linear Gaussian models (Section 5.1) allow effi-
cient inference in state space models, which is a sub-
procedure in our sampling algorithm (step 1 in Al-
gorithm 1). Also, the choice of conjugate priors on
parameters of dependence and observation models re-
sults in closed form expressions for sampling steps 4

and 5 in Algorithm 1, respectively. In this paper, we
focus on linear Gaussian models and their conjugate
priors, as described in Section 5.1.

5.1 Linear Gaussian SSIM (LG-SSIM)

Linear Gaussian state-space switching interaction
models (LG-SSIM) are an instance of SSIM in which
the dependence and observation models of each signal
i at each time point t are linear and Gaussian:

Xi
t = Ãi

Zt
X

p̃a(i,Zt)
t−1 + wi

t , wi
t ∼ N (0, Q̃i

Zt
)

Y i
t = CiXi

t + vi , vi ∼ N (0, Ri) .
(8)

Ãi
k and Q̃i

k are the dependence matrix and the noise
covariance matrix of signal i in the kth dependence
model (i.e., θ̃ik = (Ãi

k, Q̃
i
k)), while Ci and Ri are the

observation matrix and the noise covariance matrix of
the observation model of signal i (i.e., ξi = (Ci, Ri)).

We adopt a commonly used matrix normal inverse
Wishart distribution as a conjugate prior on the pa-
rameters (A,Q) of a linear Gaussian model:

p(A,Q;M,Ω, κ,Ψ) =MN(A;M,Ω, Q) IW (Q;κ,Ψ) .
(9)

Here, κ and Ψ are the degree of freedom and the in-
verse scale matrix parameters of the inverse Wishart
distribution, while M , Ω and Q are the mean, the
row covariance and the column covariance parameters
of the matrix normal distribution. Note that the two
distributions are coupled. The matrix normal distribu-
tion of the parameter A depends on the parameter Q
that is sampled from the inverse Wishart distribution.

6 Inference in SSIM and LG-SSIM

Exact inference for the SSIM is generally intractable.
Consequently, we develop a Gibbs sampling procedure
as described in Algorithm 1.

Algorithm 1 SSIM Gibbs sampler

1. X ∼ p(X|Z, Y, Ẽ, θ̃, ξ)
2. Z ∼ p(Z|X, Ẽ, θ̃, π)

3. π ∼ p(π|Z;α)

4. Ẽ, θ̃ ∼ p(Ẽ, θ̃|Z,X;β, γ)

5. ξ ∼ p(ξ|X,Y ; δ)

This algorithm is similar to that of [1], but with two
additional steps: sampling a latent state sequence X
(step 1), and sampling parameters ξ of the observation
model (step 5). Sampling parameters π of multinomi-
als given the switching sequence Z (step 3) is straight-
forward as the Dirichlet distribution is conjugate to
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the multinomial. The complexity of sampling param-
eters ξ (step 5) depends on the particular observation
model used. When a conjugate prior is available, as
in the LG-SSIM, this step is similarly straightforward.
Given the state sequence X and the dependence mod-
els {Ẽk, θ̃k}Kk=1, a sample of a switching sequence (step
2) is generated via a backward message-passing for-
ward sampling algorithm, as in [1].

6.1 Sampling state sequence (step 1)

Conceptually, sampling a state sequence X when all
other variables in the model are known can be per-
formed via the same backward message-passing for-
ward sampling algorithm as in step 2. Note that
the meaning of a backward message is mt(x) ∝
P (Yt+1, ..., YT |Xt = x, Z, Ẽ, θ̃, ξ). If analytic expres-
sions for messages are not available, MCMC methods
such as particle filtering (e.g., [20]) may be used. How-
ever, in the case of linear Gaussian dependence and ob-
servation models, as in LG-SSIM, all messages have a
form of a Gaussian distribution and can be compactly
represented with their mean and covariance, which can
be computed using the following standard information
filter recursive equations (e.g., as in Fox et al. [2]):

(Σm
t )−1 = AT

Zt+1
(Q−1

Zt+1
−Q−1

Zt+1
Σ∗t Q

−1
Zt+1

)AZt+1

(Σm
t )−1µm

t = AT
Zt+1

Q −1
Zt+1

Σ∗t Σ◦t
−1µ◦t ,

(10)

where Σ◦t
−1 = CTR−1C + Σm

t+1
−1 , Σ◦t

−1µ◦t =

CTR−1Yt+1+Σm
t+1
−1µm

t+1 , and Σ∗t
−1 = Q−1

Zt+1
+Σ◦t

−1.
For long sequences of missing data, Σm

t approaches
QZt+1 and intermediate values Q−1

Zt+1
−Q−1

Zt+1
Σ∗t Q

−1
Zt+1

are close to singular. Via the matrix equality (A +
B)−1 = A−1 − (I +A−1B)−1A−1BA−1, we derive al-
ternative recursive equations that yields a numerically
stable algorithm and allows for singular covariance ma-
trices, which we exploit to impose deterministic con-
straints between variables across time:

(Σm
t )−1 = AT

Zt+1
Σ∆

t Σ◦t
−1AZt+1

(Σm
t )−1µm

t = AT
Zt+1

Σ∆
t Σ◦t

−1µ◦t ,
(11)

where Σ◦t
−1 and Σ◦t

−1µ◦t are as above, and Σ∆
t = (I +

Σ◦t
−1QZt+1

)−1.

In the forward sampling procedure, at
each step t a sample of Xt is drawn from
a distribution P (Xt|X0:t−1, Z, Y, Ẽ, θ̃) ∝
P (Xt|Xt−1, ẼZt , θ̃Zt)P (Yt|Xt, ξ)m

t(Xt). Simi-
larly, this distribution has a closed form expression
(Gaussian) in the case of a LG-SSIM model. Again,
we derive equations for the mean µ′t and the co-
variance matrix Σ′t that do not require inversion of

dependence covariance matrices:

µ′t = G−1
t

(
G−1

t µ′t
)
, Σ′t = GtQZt

, where

G−1
t = I +QZt

CTR−1C +QZt
(Σm

t )−1

G−1
t µ′t = AZtXt−1 +QZtC

TR−1Yt +QZt(Σ
m
t )−1µm

t .

(12)

Note that missing observations require only a slight
modification of the algorithm. Namely, at each step
t rows of matrix C corresponding to missing observa-
tions at time t+ 1 should be set to zero.

6.2 Sampling dependence models (step 4)

By conditioning on Z and assuming their prior inde-
pendence, dependence models are also decoupled in
the posterior, and each can be sampled as

Ẽk, θ̃k ∼ p(Ẽk, θ̃k|{Xt, Xt−1}t:Zt=k;β, γ). (13)

We adopt the same approach as [19] and [1], and as-
sume a modular prior on each dependence model. It
follows that dependence models of signals are also in-
dependent in the posterior:

p(Ẽk, θ̃k|{Xt, Xt−1}t:Zt=k;β, γ)

=

N∏
i=1

p(p̃a(i, k), θ̃ik|{Xi
t , Xt−1}t:Zt=k;β, γ) , (14)

and that, for each signal i, posterior over its depen-
dence model is decomposed into a product of the pos-
terior over parent set and the posterior over parame-
ters given structure:

p(p̃a(i, k), θ̃ik | {Xi
t , Xt−1}t:Zt=k;β, γ)

= p(p̃a(i, k) | {Xi
t , Xt−1}t:Zt=k;β)

× p(θ̃ik | {Xi
t , X

p̃a(i,k)
t−1 }t:Zt=k , p̃a(i, k) ; γ) . (15)

For a given parent set, the conditional posterior over
parameters given the parent set and the marginal pos-
terior of the parent set (both given on the right-hand
side of Equation 15), can be computed efficiently when
a conjugate prior is used.

7 Experiments

We present experimental results on two sets of
data. The first is obtained in a controlled en-
vironment using joystick responses, while the sec-
ond analyzes publicly available climate data. We
use a latent-AR parametrization of the SSIM model,
in which the latent state at time t consists of a
(possibly vector-valued) variable of interest Oi at
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Figure 3: (top) Three assignments of tasks. Individual
tasks can be: F – “follow”, M – “stay in the middle be-
tween”, and “move arbitrarily” (otherwise). (bottom) Or-
der and duration of assignments.

time t and the previous r − 1 time points, i.e.,
Xi

t = [Oi
t Oi

t−1 . . . O
i
t−r+1]T . In all experiments,

we use the following prior on parent sets: βi,pa(i) =

1/(|pa(i)| + 1)b, where |pa(i)| is the number of par-
ents. When b > 0, the prior favors smaller parent
sets. We typically set a weak prior on state tran-
sition probabilities that favors self-transitions. Fi-
nally, we set the parameters of the matrix-normal
inverse-Wishart prior on the dependence and obser-
vation models similar to [2]. The exact settings
of the parameters will be included in the posted
code, at http://groups.csail.mit.edu/vision/

sli/projects.php?name=structure_inference.

7.1 Joystick (human generated) data

Most available temporal data is not annotated for in-
teractions. Furthermore, obtaining ground truth in-
teractions is difficult and, in most cases, subjective.
While that amplifies the importance of developing al-
gorithms that aid in uncovering such interactions, it
also makes the testing of these algorithms difficult.
Consequently, we created a simple experiment, from
so-called “joystick” data, where the structure is known
(although the parameterization is not). In the experi-
ment, five players control a joystick to move an object
on the screen in order to accomplish a task. There
are three different assignments of tasks shown in the
top of Figure 3. Assignments switch over time over
the duration of 4.5 minutes, as shown in the bottom
of the figure. To remove bias, a player only sees the
objects on which it depends. Positional (2D) data is
recorded every 1/10sec., so there is a total of 2701 time
points, including the initial one. This data is realistic
since it is human-generated and not synthesised from
the model. In addition, it contains interaction annota-
tions by design and is useful for validating the model.

We find that the best results are obtained when the
data is downsampled 3 times (total of 901 time points)
and AR order is 5, which we use in all experiments.
This order corresponds to a lag of 1.5 seconds. A 3
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Figure 4: Interaction analysis on Joystick data when max-
imum parents is 3 (left) and 5 (right). Top row are the
switching-state pairwise probability matrices. Bottom row
are edge posterior matrices at 0.5, 1.25 and 2 min.
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Figure 5: Results on Joystick data when K = 2 (left) and
K = 5 (right). Top row are switching similarity matrices.
Bottom row are edge posteriors at 0.5, 1.25 and 2 min.

times higher AR order would be required with the
original data in order to capture the dependencies of
the same length. However, the original data does not
provide much additional information due to high cor-
relation of samples at neighboring time points.

In all of the experiments, self-dependencies are as-
sumed and are included in the count of parents. Re-
sults with K = 3, b = 10, and maximum number of
parents set to 3 and 5, respectively, are shown in Figure
4. The top row presents the switching-state pairwise
probability matrix, whose entry (i, j) is the posterior
probability that time points i and j are assigned the
same switching state. There is an obvious switching
pattern that coincides with the setup of the experi-
ment. The bottom row shows the posterior proba-
bilities of edges at 0.5, 1.25 and 2 min, which corre-
spond to the three different assignments. The value
in ith row and jth column is the probability of edge
i → j. Self-edges are “blacked out”, while the assign-
ment (“correct”) edges are marked with a white dot.
The algorithm assigns high posterior probability to all
correct edges. In addition, a few spurious edges are
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Figure 6: Results on Joystick data when observation noise
variance is 10−4 (left) and when every 3rd value is observed
(right). Top row are switching similarity matrices. Bottom
row are edge posteriors at 0.5, 1.25 and 2 min.

assigned medium to high probability. We note that
these are typically edges between players that follow a
common other player, possibly via intermediate play-
ers. For example., 2 and 3 both follow 5 in the first
assignment, while 4 and 5 (via 2) both follow 3 in the
second assignment. We also note that the results are
better when fewer parents are allowed, since the num-
ber of possible incorrect choices of parents is reduced.

We set maximum number of parents to 3 in the in
the rest of the experiments. Interestingly, when only
two switching states are allowed, the switching pattern
still indicates the presence of three states, as shown in
Figure 5. Namely, states 1 and 2 are combined into a
single state in some samples, while states 2 and 3 are
combined in other samples. On the other hand, when
K = 5 states are allowed, only 3 of them are actually
used, yielding similar results as with K = 3.

Finally, we test our algorithm in the scenarios of higher
uncertainty. In the first experiment, we add Gaussian
noise of a fixed variance to all observations. Selection
of variance 10−5 does not change the results.1 The re-
sults with variance 10−4 show higher uncertainty in
some of the edges (Figure 6, left). Also, from the
switching pattern we see that states 2 and 3 are not
distinguished from each other in some of the samples.
When noise variance is further increased to 10−3, none
of the three states is recognized. In the second experi-
ment, we treat a subset of the data as missing. When
every 2nd value is observed, the results do not change.
The results when every 3rd value is observed (Figure
6, right), show higher uncertainty of some edges.

1The maximum distance an object can travel between
two time points is 0.075.

7.2 Climate data

Here, we apply the LG-SSIM model to real-world cli-
mate data. In doing so, we wish to emphasize that one
should be careful in drawing scientific conclusions from
these results. In particular, the interactions amongst
these data sets are likely not linear (as assumed by the
LG-SSIM) and consequently, inferred structures may
not necessarily be indicative of explicit causality. Nev-
ertheless, the analysis may yield interesting details.

Following Jiang et al. [12], we use data on a sub-
set of 16 climate indices from the repository main-
tained by the Earth System Research Laboratory of
the National Oceanic and Atmospheric Administration
(NOAA) [21], which are described in Table 1. These
indices are compiled monthly and span various char-
acteristics of the climate system. For the purpose of
comparison, we use the data from 1951 to 2007, as in
Jiang et al., and apply linear and quadratic detrend-
ing. Note that a small fraction of the data in this span
is missing, which our model addresses naturally.

# abbrev. description
1 AMM Atlantic Meridional Mode SST
2 AO Arctic Oscillation
3 EP/NP East Pacific/North Pacific Oscillation
4 GMT Global Mean Lan/Ocean Temperature
5 Nino3 Eastern Tropical Pacific SST
6 Nino4 Central Tropical Pacific SST
7 Nino12 Extreme Eastern Tropical Pacific SST
8 Nino34 East Central Tropical Pacific SST
9 NOI Northern Oscillation Index
10 ONI Oceanic Nino Index
11 PDO Pacific Decadal Oscillation
12 PNA Pacific North American Index
13 SOI Southern Oscillation Index
14 Solar Solar Flux (10.7cm)
15 SWM South Western USA Monsoon
16 WP Western Pacific Index

Table 1: Description of climate indices.

We run inference using the SSIM latent-AR model
with two switching states. We bound the number of
parents per node to 3 and require a minimum of 1 par-
ent with enforcing self-edges. The top row of Figure
7 shows the switching-state pairwise probability ma-
trix. Unlike Jiang et al., whose results suggest a single
switch point in 1978, this result suggests that there is
a cyclic behavior. Figure 9 shows two matrices of pos-
terior probabilities of edges that correspond to June
1963 (left) and August 1992 (right), which belong to
the opposite phases of the cycle. We observe that Nino
indices and ONI index are the most influential over-
all, confirming that they are important predictors of
climate [22]. Interestingly, the only significant depen-
dence of ONI index is on Southern Oscillation Index.
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Figure 7: Analysis of the climate data using SSIM model.
Top row is the switching-state pairwise probability matrix.
Middle row is the Solar flux time series. Bottom row are the
posterior probabilities of edges: Nino12 → GMT (blue),
Nino12 → Nino4 (red), Nino12 → Nino34 (green).
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Figure 8: Nino12 (top) and ONI (bottom) time series.

Note that there are a few differences between the two
posteriors. For example, as shown in the bottom row of
Figure 7, influence of Nino12 index onto GMT, Nino4
and Nino34 indices fluctuates dramatically. As noted
above, these may not necessarily be changes in explicit
causality. Still, they represent the best explanations
of the structural dependencies in the two phases un-
der the LG-SSIM model. In addition, the ambiguity
in the switching patter between regimes may suggest
that there exist transition periods of several months to
several years, rather than a sharp change. This may
explain the differences in the switchpoints reported in
the literature [12, 23], emphasizing the advantage of
Bayesian reasoning over point estimation.

Unlike Jiang et al. [12], in which Solar flux is the most
influential index, the results obtained here show no di-
rect dependency on Solar flux, but suggest its indirect
influence via the switching state. Namely, we observe
that the switching sequence largely corresponds to the
change of variance of Solar flux and that it is likely
that a more complex, nonlinear model describes it’s
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Figure 9: Posterior edge probabilities on June 1963 (left)
and August 1992 (right).

exact relationship to the remaining indices. Interest-
ingly, the Nino12 index does not appear to correlate
with the switching pattern (Figure 8); however, its in-
fluence on the three other indices changes according to
the behavior of Solar flux. The same holds for other
time series (e.g., ONI, also shown in Figure 8).

Finally, we note that the exact nature and magnitude
of the influence of Solar variability on the climate is
still largely unknown [24, 25] and presents an active
area of research. It is particularly hard to distinguish
the Solar influence from that of greenhouse gases and
aerosols in the industrial era, to which the data used
here belongs. Therefore, it is not surprising that we
do not discover direct short-term linear dependency of
climate indices on Solar flux, suggesting that using a
nonlinear model and data over a longer period of time
or at a different time scale may be more adequate for
that particular task.

8 Conclusion

We presented a state-space switching interaction
model (SSIM), which represents interactions as di-
rected edges of a dynamic Bayesian network, allows
switching between interactions, and allows arbitrary
observation processes and missing data. Furthermore,
we employed Bayesian reasoning over structures to
deal with uncertainty in the data and due to the large
number of possible structures. Efficient inference is
enabled by limiting the number of parents per signal,
and is done via a Gibbs sampling procedure. This
model is expressive and can uncover different aspects
of interactions among time-series and their patterns,
as we have demonstrated by experiments.
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