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Abstract

We want to sketch the support of a probabil-
ity measure on Euclidean space from samples
that have been drawn from the measure. This
problem is closely related to certain manifold
learning problems, where one assumes that
the sample points are drawn from a manifold
that is embedded in Euclidean space. Here
we propose to sketch the support of the prob-
ability measure (that does not need to be a
manifold) by some gradient flow complex, or
more precisely by its Hasse diagram. The
gradient flow is defined with respect to the
distance function to the sample points. We
prove that a gradient flow complex (that can
be computed) is homotopy equivalent to the
support of the measure for sufficiently dense
samplings, and demonstrate the feasibility of
our approach on real world data sets.

1 Introduction

Our goal is to compute a sketch, i.e., an approxima-
tion, of the support supp(µ) of a probability measure
µ on Rd from a finite set of sample points that are
drawn from µ. More specifically, we want to compute
a complex (not necessarily geometrically realized) that
has the same homotopy type as supp(µ).

Formally, a probability measure and its support are
defined as follows.

Probability measure. A non-negative measure µ
on Rd is an additive function that maps every Borel
subset B ⊆ Rd to R≥0. Additivity means that

µ

(⋃
i∈N

Bi

)
=
∑
i∈N

µ(Bi),
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where (Bi) is a countable family of disjoint Borel sub-
sets. The measure µ is finite if µ(Rd) <∞ and it is a
probability measure if µ(Rd) = 1.

The support of a probability measure µ is the set

supp(µ) = {x ∈ Rd |µ(B(x, r)) > 0 for all r > 0},

where B(x, r) is the closed ball with radius r that is
centered at x. Note that supp(µ) is always closed.

Given samples x1, . . . , xn drawn from µ, a natural ap-
proach to sketch supp(µ) is to approximate it with a
union of balls centered at the sample points, i.e., by

Xα =
n⋃
i=1

B(xi, α),

where B(xi, α) is the ball of radius α > 0 centered
at xi. The obvious problem with this approach is to
determine a good value for α. One contribution of our
paper is a simple method for choosing such a good
value for α.

The homotopy type of the union of balls Xα can be
computed from the nerve of the ball covering, i.e., the
simplicial complex that is determined by the intersec-
tion pattern of the balls, see for example [11] for an
introduction to computational topology. The latter
complex is known as the Cech complex of the union.
A smaller simplicial complex from which the homo-
topy type of the union of balls can also be computed
is the α-complex which is the nerve of the ball cover-
ing where the balls are restricted to the Voronoi cells of
their centers. Yet another complex from which the ho-
motopy type can be computed is the α-flow complex.
This complex is even smaller than the α-complex, i.e.,
does contain a smaller number of cells, but it is no
longer simplicial. The flow complex can be derived
from the distance function to the sample points. It
contains a cell for every critical point of the distance
function. We show that the critical points of the dis-
tance function are either close to supp(µ) or close to a
dual structure of supp(µ) that is called the medial axis
of supp(µ). If the support of µ does not exhibit several
geometric scales, then the critical points that belong to
supp(µ) and the critical points that belong to the me-
dial axis can be separated by simple thresholding, i.e.,
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all critical points at which the distance function takes
values less than the threshold value belong to supp(µ)
and the remaining critical points belong to the medial
axis. Restricting the flow complex to the critical points
with distance function values less than α constitutes
the α-flow complex. If α is a threshold value at which
the two types of critical points can be separated, then
the α-flow complex is homotopy equivalent to supp(µ)
for sufficiently dense samplings.

We have computed α-flow complexes for real data sets
and all values for α in the interval [0,∞). On these
data sets we have not observed geometric multi-scale
behavior. Hence, in these situations the simple thresh-
olding was enough to compute a complex that is homo-
topy equivalent to supp(µ) for sufficiently dense sam-
plings. We report details on the data sets and our
findings at the end of this paper.

Related work. Our work is related to certain mani-
fold learning problems that we briefly summarize here.
In machine learning manifold learning is often used
synonymously with non-linear dimensionality reduc-
tion, but there is also quite some work (mostly in com-
putational geometry) that aims at learning a manifold
from samples (that need to satisfy certain conditions),
where learning a manifold refers to computing an ap-
proximation from a finite sampling that is guaranteed
to be topologically equivalent and geometrically close
to the manifold. Exemplary for this line of work is
the technique by Boissonnat and Ghosh [3]. The body
of work in computational geometry does not consider
the probabilistic setting where the sample points are
drawn at random from the manifold. The probabilistic
setting was first considered by Niyogi et al. [19] who
show how to compute the homology of a randomly
sampled manifold with high confidence. Later Niyogi
et al. [20] have extended this approach for recover-
ing the geometric core of Gaussian noise concentrated
around a low dimensional manifold, i.e., to the case
where the samples are not necessarily drawn from the
manifold itself. This can be seen as a topological ap-
proach to unsupervised learning.

Manifold learning plays an important role in semi-
supervised classification, where a manifold assump-
tion, see [1], can be used to exploit the availability
of unlabeled data in classification tasks. The assump-
tion requires that the support of the marginal prob-
ability distribution underlying the data is a manifold
(or close to a manifold). The manifold assumption for
semi-supervised learning has been exploited by Belkin
et al. [1] in form of a support vector machine with
an additional Laplacian regularization term (Laplacian
SVM), see also [17]. For Laplacian SVMs the manifold
is approximated just by some neighborhood graph on

the data points that can be computed efficiently also in
high dimensions, but does not come with approxima-
tion guarantees. Laplacian SVMs have been shown to
achieve state of the art performance in semi-supervised
classification.

Our approach here is more abstract. We are also in the
probabilistic setting, but do not assume that the sup-
port of the probability measure from which the sam-
ples are drawn is a manifold. Still, also in this setting
we can provide topological reconstruction guarantees.

2 Distance Function

Here we briefly review the theory of distance functions
to a compact set that has been developed within the
fields of differential and computational geometry over
the last years [14, 10, 22, 12, 9, 16, 8, 13, 4]. In the
following let K always denote a compact subset of Rd.

Distance function. The distance function dK to
the compact set K assigns to any point x ∈ Rd its
distance to K, i.e.,

dK : Rd → [0,∞), x 7→ min
y∈K
‖x− y‖.

The function dk characterizes K completely since K =
d−1
K (0).

Gradient. For any point x ∈ Rd let

NK(x) = {p ∈ K : ‖x− p‖ = dK(x)}

be the set of nearest neighbors in K and let c(x) be
the center of the smallest enclosing ball of NK(x). The
gradient of the distance function at x is given as

∂K(x) =
x− c(x)
dK(x)

, if x 6= c(x),

and 0 otherwise. The norm of the gradient is always
upper bounded by 1, i.e., ‖∂K(x)‖ ≤ 1.

Medial axis. The medial axis of K is the following
set

ma(K) =
{
x ∈ Rd \K

∣∣ ‖∂K(x)‖ < 1
}
,

i.e., the set of all center points of maximal empty open
balls in the complement Rd \K of K.

Reach. The reach of K is defined as

inf
x∈K, y∈ma(K)

‖x− y‖.

If the reach of K is positive, then we say that K has
finite reach.
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Figure 1: Example flow line in two dimensions for a set X of five sample points. Shown on the left is the starting
point x of the flow line together with the starting flow direction that is determined by the smallest enclosing
ball of NX(x), which here is just a sample point. Then, shown from left to right are the points where the set
NX(x), and thus the direction of flow, changes. The flow line ends (shown on the right) in a local maximum of
the distance function, i.e., x is contained in the convex hull of NX(x).

The approximation guarantees for our sketch, i.e., pre-
serving the homotopy type, are based on a reconstruc-
tion theorem for compact subsets of Euclidean space
that has been proved in [5]. This theorem topologi-
cally relates the off-sets of two compact sets that need
to satisfy certain conditions.

α-offset. For any set K ⊂ Rd and α > 0 let Kα be
the Minkowski sum of K and B(0, α), i.e.,

Kα =
{
x ∈ Rd |x ∈ B(x′, α), x′ ∈ K

}
.

Now we are equipped with the necessary definitions to
state the reconstruction theorem.

Theorem 1. [Chazal et al.] Let ρ > 0 be the reach
of K and let K ′ ⊂ Rd be a compact set such that the
Hausdorff distance between K and K ′ is less than ρ

17 ,
i.e., dH(K,K ′) < ρ

17 , then the complement Rd \K ′α of
K ′α is homotopy equivalent to the complement Rd \K
of K, and K ′α is homotopy equivalent to Kη for all
sufficiently small η > 0, provided that

4 · dH(K,K ′) ≤ α ≤ ρ− 3 · dH(K,K ′).

As we have already indicated in the introduction, of-
ten K ′ is a finite sampling of K. Let X be such a
finite sampling, then Xα = K ′α is a union of balls with
radius α that is homotopy equivalent toKη for all suffi-
ciently small η > 0, if the Hausdorff distance between
Xα and K is small, and α is in the range given by
Theorem 1. Note that the practical problem of choos-
ing a good value for α, i.e., a value that falls into the
range specified by Theorem 1 still remains open. In
the following we address this problem by considering
the critical points of the distance function to the set
X ⊂ K.

3 Flow Complex

The flow complex of a finite point set X ⊂ Rd is a cell
complex that contains a cell for every critical point of
the distance function to X. We show that a properly
chosen sub-complex of the flow complex of X, namely
some α-flow complex, provides a homotopy equivalent
reconstruction of the support of a probability measure
µ given that X is a sufficiently dense sampling drawn
from µ.

Critical points. Let K be a compact subset of Rd.
The points x ∈ Rd with ∂K(x) = 0, i.e., the points
for which x = c(x), are called the critical points of the
distance function dK (cf. the definition of the gradient
of dK in the previous section). Critical points x of
dK are always contained in the convex hull of their
neighbors in K, i.e., in conv(NK(x)). Note that all the
critical points of the distance function dK are either
points ofK, or are contained in the medial axis ma(K).

If K is a finite point set X, then a meaningful in-
dex i(x) can be assigned to any critical point x of dX ,
namely the dimension of the affine hull of NX(x). Crit-
ical points of index 0 are the points in X, i.e., the min-
ima of the distance function. Critical points of index
d are maxima of dX , and all other critical points are
saddle points of dX . All critical points with positive
index are contained in ma(X).

Flow complex. Let X ⊂ Rd be a finite point set.
The flow induced by the gradient vector field ∂X is a
mapping

φX : [0,∞)× Rd → Rd

defined by the equations φX(0, x) = x and

lim
t↓t0

φX(t, x)− φX(t0, x)
t− t0

= ∂X(φX(t0, x)).

The set φX(x) = {φX(t, x) | t ≥ 0} is called the flow
line of the point x, see Figure 1. The stable manifold
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S(x) of a critical point x is the set of all points in Rd
that flow into x, i.e.,

S(x) = {y ∈ Rd : lim
t→∞

φX(t, y) = x}.

The dimension of S(x) is given by the index i(x). The
flow complex is given by the stable manifolds of all
critical points together with the following incidence
information that is defined using the unstable mani-
folds of critical points. Given a neighborhood U of a
critical point x and setting

V (U) =

{y ∈ Rd | ∃z ∈ U, t ≥ 0 such that φX(t, z) = y},

the unstable manifold of x is the set

U(x) =
⋂

neighborhood U of x

V (U).

The stable manifold of a critical point y is incident to
the stable manifold of a critical point x if

S(x) ∩ U(y) 6= ∅,

i.e., if there is a point in the unstable manifold of y
that flows into x. The incidence structure on the stable
manifolds of the critical points is a binary relation that
is

1. reflexive, because S(x)∩U(x) = {x} for any crit-
ical point x.

2. antisymmetric, because S(x) ∩ U(y) 6= ∅ and
S(y) ∩ U(x) 6= ∅ implies x = y.

3. transitive, because S(x)∩U(y) 6= ∅ implies U(x) ⊆
U(y), and hence if x is incident to z, i.e., S(z) ∩
U(x) 6= ∅, then also y is incident to z.

Hence, the combinatorial structure of the flow complex
induces a partial order on the set of stable manifolds,
or the critical points of dX , respectively, that can be
encoded in a Hasse diagram, see Figure 2.

α-flow complex. For α ≥ 0, the α-flow complex of
of a finite point set X ⊂ Rd is the Hasse diagram of
the flow complex restricted to the critical points x of
dX for which dX(x) ≤ α.

In [7] it has been shown that the union of balls Xα

and the α-flow complex of the finite point set X are
homotopy equivalent. Hence, also the α-flow complex
of X is homotopy equivalent to Kη for small η > 0,
if the Hausdorff distance between Xα and K is small,
and α is in the range given by Theorem 1.

Figure 2: On the left: A finite point set of four points
(in black) in two dimensions together with the critical
points of its distance function (index-0 (black), index-
2 (light blue), and index-2 (pink)). The arrows repre-
sent flow lines that witness the incidence relationships
between the critical points. On the right: The Hasse
diagram of the flow complex.

4 Topological Guarantees

In this section we specify conditions under which an α-
flow complex of the sample points in X = {x1, . . . , xn}
drawn from µ is homotopy equivalent to supp(µ). We
do so by using the following lemma, see [6](Lemma
5.1).

Lemma 2. Given a sequence of sample points
x1, . . . , xn drawn independently from a probability
measure µ on Rd. Then, for every ε > 0 and any
x ∈ supp(µ),

lim
n→∞

P
[
‖x1(x)− x‖ > ε

]
= 0,

where x1(x) is the nearest neighbor of x in
{x1, . . . , xn}.

An immediate consequence of this lemma is the fol-
lowing corollary.

Corollary 3. Given a sequence of sample points
x1, . . . , xn drawn independently from a probability
measure µ with compact support on Rd. Then, for
every ε > 0,

lim
n→∞

P
[
dH
(
supp(µ), X

)
> ε
]

= 0,

where dH
(
supp(µ), X

)
is the Hausdorff distance be-

tween supp(µ) and X = {x1, . . . , xn}.

Proof. Since supp(µ) is compact there is a finite set
of points y1, . . . , ym ∈ supp(µ) such that the union
of balls

⋃m
i=1B(yi, ε/2) covers supp(µ). Assume there

exists y ∈ supp(µ) such that minx∈X ‖x− y‖ > ε. By
construction there exists yi such that ‖y − yi‖ ≤ ε/2,
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and thus minx∈X ‖x− yi‖ > ε/2. It follows that

P

[
sup

y∈supp(µ)

min
x∈X
‖x− y‖ > ε

]

≤ P

[
max

y∈{y1,...,ym}
min
x∈X
‖x− y‖ > ε/2

]
≤

m∑
i=1

P

[
min
x∈X
‖x− yi‖ > ε/2

]

=
m∑
i=1

P

[
min
x∈X
‖x1(yi)− yi‖ > ε/2

]
,

where the second inequality follows from a simple
union bound. From Lemma 2 we have

lim
n→∞

P [‖x1(yi)− yi‖ > ε/2] = 0,

for all yi, and thus

lim
n→∞

P

[
sup

y∈supp(µ)

min
x∈X
‖x− y‖ > ε

]
= 0,

which implies the claim on the Hausdorff distance since
we also have xi ∈ supp(µ) for all sample points and
thus

max
x∈{x1,...,xn}

inf
y∈supp(µ)

‖x− y‖ = 0.

Now we are prepared to state and prove our topological
approximation guarantees.

Theorem 4. Given a sequence of sample points
x1, . . . , xn drawn independently from a probability
measure µ with compact support on Rd whose reach ρ
is positive. Then, for every 0 < α < ρ and sufficiently
small η > 0,

lim
n→∞

P
[

the α-flow complex of {x1, . . . , xn}

is not homotopy equivalent to suppη(µ) ] = 0.

Proof. Since the α-flow complex of X = {x1, . . . , xn}
is homotopy equivalent to the union of balls
B(xi, α), i = 1, . . . , n it suffices to show that

lim
n→∞

P

[
n⋃
i=1

B(xi, α) is not homotopy equivalent

to suppη(µ)
]

= 0.

For that we check that α satisfies the conditions of the
reconstruction theorem (Theorem 1). By Corollary 3,

lim
n→∞

P
[
dH
(
supp(µ), X

)
> ε
]

= 0

for every ε > 0. Hence,

lim
n→∞

P
[
4 · dH

(
supp(µ), X

)
> α

]
= 0,

and

lim
n→∞

P
[
ρ− 3 · dH

(
supp(µ), X

)
< α] = 0,

which implies the claim about the homotopy equiv-
alence of

⋃n
i=1B(xi, α) and suppη(µ) and hence the

claim of the theorem.

5 Choosing a good value for α

In this section we prove a theorem that allows one to
chose a good value for α in practice. The theorem
states that the critical points of the distance function
to the set X = {x1, . . . , xn} of sample points can be
partitioned into two subsets. The first set contains
the critical points that are close to supp(µ), and the
second set contains the critical points that are close
to the medial axis ma(µ) of supp(µ), i.e., there are no
critical points in the complement of supp(µ) ∪ ma(µ)
or more precisely in

complε(µ)

= closure
(
conv(supp(µ)) \

(
suppε(µ) ∪maε(µ)

))
for any small enough ε > 0. Hence, for large samplings
only the critical points with small distance values are
relevant for sketching supp(µ).

Theorem 5. Given a sequence of sample points
x1, . . . , xn drawn independently from a probability
measure µ with compact support on Rd. If the reach ρ
of the support is positive, then, for every 0 < ε < ρ/2,

lim
n→∞

P
[
complε(µ) contains a critical point of dn

]
= 0,

where dn : Rd → R is the distance function to the set
X = {x1, . . . , xn}.

Proof. Let (xn) be a sequence of points in supp(µ)
such that cn ∈ complε(µ) is a critical point of dn, i.e.,
the distance function to the first n points of the se-
quence. Since the closure of complε(µ) is compact we
can assume by turning to an appropriate subsequence
that the sequence (cn) converges to c ∈ complε(µ). By
the same argument we can even assume that all the cn
have the same index i ∈ {1, . . . , d}. Let y0n, . . . , yin be
the points in N(cn) ⊂ X such that cn is the center of
the smallest enclosing ball of {y0n, . . . , yin}, i.e., this
ball is given as B(cn, ‖cn − y0‖) and does not contain
any point from X in its interior. By the compactness
of supp(µ) we can assume that the sequence (yjn) con-
verges to yj ∈ supp(µ). Since cn is the center of the
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Figure 3: First three rows of the scatter plot matrix of the 14-dimensional embedding of the MovieLens data set.

smallest enclosing ball of the points y0n, . . . , yin it can
be written as a convex combination of these points,
i.e.,

cn =
i∑

j=0

λjnyjn

with
i∑

j=0

λjn = 1 and λjn ≥ 0, j = 0, . . . , i.

That is, the vector λn = (λ0n, . . . , λin) is from the
i-dimensional standard simplex which is compact.
Hence by turning to yet another subsequence we can
assume that λn converges in the standard simplex.
Let λ = (λ0, . . . , λi) be the limit of (λn), then we
have c =

∑i
j=0 λjyj and thus c is the center of the

smallest enclosing ball B(c, ‖c − y0‖) of the points
y0, . . . , yi. If B(c, ‖c− y0‖) does not contain any point
from supp(µ) in its interior, then c must be a point
of the medial axis ma(µ) which is impossible since
the points cn ∈ complε(µ) are at distance at least
ε from the medial axis, and hence (cn) can not con-
verge to c. Thus, B(c, ‖c− y0‖) must contain a point
z ∈ supp(µ) in its interior, i.e., there exists δ > 0 such
that B(z, δ) ⊂ B(c, ‖c− y0‖). Since cn converges to c
and the radii ‖cn−y0n‖ converge to the radius ‖cn−y0‖
we also have B(z, δ) ⊂ B(cn, ‖cn − y0n‖) for n large
enough, and thus limn→∞ ‖x1(z) − z‖ ≥ δ. That is,
for n large enough the event[

complε(µ) contains a critical point of dn
]

implies the event
[
‖x1(z)− z‖ ≥ δ

]
. Hence,

lim
n→∞

P
[
complε(µ) contains a critical point of dn

]
> 0.

implies that

lim
n→∞

P
[
‖x1(z)− z‖ ≥ δ

]
> 0 for z ∈ supp(µ),

which contradicts Lemma 2. Thus we have

lim
n→∞

P
[
complε(µ) contains a critical point of dn

]
= 0.

In practice we expect that the number of critical points
whose distance value is at most α ≥ 0 is increasing fast
with growing α for small values of α. Once α is large
enough such that all the critical points that belong
to supp(µ) have been found, the number of critical
points remains constant for growing α, and is only in-
creasing again once the critical points that belong to
ma(µ) are being discovered. There are two things one
should bear in mind though. First, this behavior is
only expected if supp(µ) does not exhibit geometric
features on different scales, because otherwise critical
points that belong to the medial axis can be discov-
ered before critical points that belong to the support,
and second, by construction the medial axis ma(µ) is
sampled much more sparsely by critical points than
supp(µ). Hence, if supp(µ) does not exhibit geometric
features on different scales, then we expect the number
of critical points to grow at first with growing α and
to remain almost constant once all the critical points
that belong to supp(µ) have been discovered. A good
value for α should be the point at which the number
of critical points stays almost constant.

6 Implementation

We have designed and implemented an algorithm for
computing the Hasse diagram of the whole flow com-
plex. The experimental results that we report in the
following section have been obtained using this imple-
mentation.

There is a straightforward way to distribute our algo-
rithm if we are only interested in computing the α-flow
complex for small values of α > 0, e.g., when sketch-
ing the support supp(µ) of a probability measure µ
on Rd from a given finite sampling {x1, . . . , xn} drawn
independently from µ. The idea for distributing the
algorithm is based on the following simple observation
which is implied by the triangle inequality.

Observation 6. For any α > 0, if c is a criti-
cal point of the distance function dn : Rd → R to
the set {x1, . . . , xn} whose distance value dn(c) is at
most α and whose nearest neighbor set N(c) contains
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Figure 4: The number of critical points of the α-flow complex as a function of α for the first three to six
dimensions (from top-left to bottom-right) for the MovieLens data set. Note that in dimension d we can only
have critical points of index up to d.

xi, then N(c) is contained in the ball B(xi, 2α), i.e.,
N(c) ⊂ B(xi, 2α).

The distributed algorithm can now be implemented
through the following map- and reduce steps.

Map. For every xi ∈ X = {x1, . . . , xn} let Xi =
B(xi, 2α)∩{x1, . . . , xn}. For i = 1, . . . , n, compute the
α-flow complex for Xi. This can be done by computing
the whole flow complex, i.e., the ∞-flow complex, for
Xi and removing all critical points with distance value
larger than α.

Reduce. Let G = (V,E) be the graph whose ver-
tex set is V = [n] = {1, . . . , n} and whose edge set
is E =

{
(i, j) ∈ [n] × [n] |Xi ∩ Xj 6= ∅

}
. Combine

the α-flow complexes for the sets Xi by traversing the
connected components of the graph G in a breadth-
first manner. Note that the α-flow complex is itself
a graph, namely a Hasse diagram. The combination
of two α-flow complexes is achieved by identifying all
common vertices in the respective Hasse diagrams.

Theorem 7. The distributed algorithm that comprises

the map- and reduce step computes the α-flow complex
of {x1, . . . , xn}.

Proof. We need to argue that the algorithm finds all
critical points of the distance function dn and connects
them in the right way. By Observation 6 the α-flow
complex of Xi does contain any critical point c of the
distance function dn with xi ∈ N(c) whose distance
function value is at most α. Hence, any critical point
of dn with distance value at most α is contained in the
union of the α-flow complexes of the sets Xi, where
they are also connected in the right way.

7 Experiments and Discussion

We have tested our approach on the publicly avail-
able data sets Movielens, Body Dimensions and
Ecoli that we describe in the following. These data
sets either reside or can be embedded, respectively, in
medium dimensional Euclidean space.
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Figure 5: The number of critical points of the α-flow complex as a function of α for the Body Dimensions data
set restricted to the first five dimensions (on the left) and the Ecoli data set (on the right).

MovieLens. The MovieLens 100k data set [21] was
collected by the GroupLens Research Project at the
University of Minnesota. It consists of 100,000 ratings
from 943 users on 1,682 movies. The data set can be
viewed as an incomplete matrix that is indexed by the
users and the movies, respectively, where the matrix
entries are the ratings. Therefore, the MovieLens data
set is not a point cloud data set itself, but it is straight-
forward to derive point clouds for the movies and for
the users, respectively, from the completed ratings ma-
trix using principal component analysis. We used a
technique by Bell et al. [2] (called ComputeNextFac-
tor) for completing the ratings matrix that at the same
time computes a low dimensional spectral embedding
for the movies, i.e., every point in the low dimensional
point cloud corresponds to a movie. Using this tech-
nique we created a 14-dimensional embedding of the
1682 movies. Figure 3 shows three rows out of a scatter
plot matrix visualization of the data set, with scatter
plots of the first three dimensions against all 14 di-
mensions. As can be seen, the trailing dimensions are
correlated with the leading three dimensions and thus
contribute less geometric information than the leading
dimensions. We therefore computed α-flow complexes
only for the data sets in three to six dimensions. Fig-
ure 4 shows the number of critical points as a func-
tion of the value α. The functions look like expected,
namely we observe a fast increase in the number of crit-
ical points up to a threshold value for α. Beyond the
threshold value the number of critical points stays al-
most constant. Note that the threshold value increases
with the dimension from ≈ 2 in three dimensions to
≈ 3 in six dimensions. This increase is expected since
the distances between the points that represent the
movies also increase with the dimension. Another in-
teresting observation is the following: the plots in Fig-
ure 4 for Dimensions 5 and 6 indicate that the intrinsic

dimension of the data set is four since almost no criti-
cal points of index six and only very few critical points
of index five can be found.

Body Dimensions. The Body Dimensions data
set [15] contains 507 points with 21 attributes (exclud-
ing four nominal attributes) that represent measure-
ments of the human body. The first nine attributes
are skeletal measurements, whereas the latter 12 are
girth measurements. The first five skeletal measure-
ments regard the body’s torso. Here we restricted our-
selves to these first five dimensions. Figure 5 (on the
left) shows the number of critical points as a function
of the value α for this data set. The function again
looks like expected. We observe a fast increase in the
number of critical points up to a threshold value for α
which is ≈ 2.

Ecoli. The Ecoli data set [18] contains 336 points in
eight dimensions. From these dimensions we removed
two binary attributes and the sequence number and
considered only the remaining five metric (Euclidean)
dimensions. Figure 5 (on the right) shows the number
of critical points as a function of the value α for this
data set. Again, this function looks like expected. The
threshold value for α here is ≈ 1.75.
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