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Abstract

This paper proposes a novel method for effi-
ciently generating multiple diverse predictions
for structured prediction problems. Existing
methods like SDPPs or DivMBest work by mak-
ing a series of predictions where each predic-
tion is made after considering the predictions
that came before it. Such approaches are inher-
ently sequential and computationally expensive.
In contrast, our method, Diverse Multiple Choice
Learning, learns a set of models to make multi-
ple independent, yet diverse, predictions at test-
time. We achieve this by including a diversity en-
couraging term in the loss function used for train-
ing the models. This approach encourages diver-
sity in the predictions while preserving compu-
tational efficiency at test-time. Experimental re-
sults on a number of challenging problems show
that our method learns models that not only pre-
dict more diverse results than competing meth-
ods, but are also able to generalize better and pro-
duce results with high test accuracy.

1 Introduction
Classical discriminative approaches for machine learning
are designed to produce a single prediction for the vari-
ables of interest. In the structured prediction setting, for-
mulations such as Conditional Random Fields (CRFs) [17],
Max-Margin Markov Networks (M3N) [24], and Struc-
tured Support Vector Machines (SSVMs) [25] have pro-
vided principled models that reason about all output vari-
ables and make a joint global prediction, called maximum
a posteriori (MAP) inference in the context of probabilistic
models. However, in a number of settings it might be ben-
eficial (even necessary) to make multiple predictions. This
might be due to Misspecified Models or Multi-Modality.

Model misspecification is caused by (1) the model class
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being too restrictive to capture reality, e.g., assuming that
all interactions between variables are purely associative or
attractive; or (2) lack of enough training data to learn the
correct model in the model class; or (3) the inability to per-
form exact inference (estimation of the MAP solution may
be NP-hard). The (approximate) MAP solution for such a
misspecified model could be far from ground-truth.

Even if the model class is expressive enough, enough train-
ing data is available, and computing MAP is tractable, there
may be global ambiguities or multiple possible interpreta-
tions that explain the input data. This is particularly ev-
ident in systems with a user in-the-loop, e.g., interactive
image segmentation where the user provides scribbles on
an image and the system produces a cutout of the scribbled
object [5]. There may be several possible outputs consis-
tent with the user input. The interface could show not just a
single prediction but a small set of diverse predictions and
simply let the user pick the best one. Observations such
as these have motivated the study of techniques for making
multiple predictions.

A standard way of producing multiple hypotheses in prob-
abilistic models is to find the top M most probable config-
urations, called the M-Best MAP problem [19, 27, 10, 2].
Recent works have also considered producing Diverse M-
Best solutions [4] or modes of the Gibbs distribution [7].
However, these methods suffer from two problems. First,
there exists a train-test disparity. Specifically, the model
is trained to produce a single output, i.e., either to match
the data distribution (max-likelihood) or to score ground-
truth the highest by a margin (max-margin); yet, it is used
at test-time to produce multiple outputs. Second, inference
of the diverse M-best solutions is a difficult optimization
problem.

Two recent works have been attempted to overcome these
problems [16, 11]. Kulesza and Taskar [16] proposed
Structured Determinantal Point Process (SDPP), an elegant
probabilistic model defined over sets of structured-outputs
that naturally favors diversity. Unfortunately, inference in
SDPPs is tractable only for low-treewidth models, which
limits their applicability. Guzman-Rivera et al. [11] pro-
posed a “mixture of experts” model called Multiple Choice
Learning (MCL), which learns an M -tuple of predictors,
each of which makes a single structured prediction. The

284



Efficiently Enforcing Diversity in Multi-Output Structured Prediction

mixture of predictors is trained to minimize the loss of the
most accurate prediction in the output tuple. At test-time,
each predictor makes a prediction independently, i.e., with-
out considering the predictions of other predictors. This
makes their model quite efficient, and trivially paralleliz-
able. Although MCL produces good results, the model
does not have any explicit preference for diverse predic-
tions – as long as the regularized risk is minimized, the pre-
dictors can make any predictions, including repeated iden-
tical ones.

Overview and Contributions. The central thesis of this
paper is that diversity can serve as an effective regularizer
– leading to possibly worse performance on training data
but better generalization on unseen test data. We build on
MCL [11] and improve upon it in several ways. We pro-
pose a new method for diverse multi-output structured pre-
diction, Diverse Multiple Choice Learning (DivMCL). The
method is efficient, explicitly models diversity, and pro-
vides a consistent train-test procedure. Unlike SDPPs, Div-
MCL is applicable in any structured-output space that al-
lows efficient MAP inference (e.g., binary pairwise super-
modular MRFs). Unlike (Diverse) M-Best methods, Div-
MCL learns to produce multiple diverse solutions. Our
method is similar to MCL in the sense that it learns a
set of models to make multiple independent predictions at
test-time. However, unlike MCL, the models are explic-
itly trained to produce results that are diverse. We achieve
this by including a diversity encouraging term in the loss
function used for training the models. Our approach then,
enforces diversity in the predictions while preserving com-
putational efficiency at test-time.

Our experimental results on a number of challenging prob-
lems confirm that DivMCL learns models that not only lead
to diverse predictions, but more importantly, as a direct
consequence of this achieved diversity, DivMCL produces
results with high test accuracy and is able to generalize bet-
ter than other multi-output prediction methods.

Learning to Enforce Explicit Diversity. Our thesis is sim-
ilar in spirit to recent work on structured prediction, which
shows how low-order models can be trained using high-
order loss functions [23, 21].

2 Preliminaries
We begin by establishing notation and reviewing standard
(single-output) structured prediction.

Notation. For any positive integer n, let [n] be shorthand
for the set {1, 2, . . . , n}. Given a training set of input-
output pairs

{
(xi,yi) |xi ∈X ,yi ∈Yk, i∈ [n]

}
, we are in-

terested in learning a mapping f : X → Yk where X is the
space of inputs (e.g., images or Chinese sentences) and Yk

is the space of (k-variate and structured) outputs (e.g., im-
age segmentations or English translations of Chinese sen-
tences).

Structured Support Vector Machines (SSVMs). In an
SSVM setting, the mapping is linear and is defined as

f(x; w) = argmax
y∈Yk

wTψ(x,y) , (1)

where ψ(x,y) is a joint feature map, ψ : X × Yk → Rd.

The quality of the prediction ŷi = f(xi) is measured by a
task-specific loss function

` : Yk × Yk → R+ , (2)

where `(yi, ŷi) denotes the cost of predicting ŷi when the
correct label is yi. Some examples of loss functions are
the intersection/union criterion used by the PASCAL Vi-
sual Object Category Segmentation Challenge [9], and the
BLEU score used to evaluate machine translations [20].

For ease of notation, let `i(·) be shorthand for `(yi, ·);
ψi(·) be shorthand for ψ(xi, ·); and δψi(y) be shorthand
for ψi(y)−ψi(yi).

The task-loss ` is typically non-convex and non-continuous
in w, and thus Tsochantaridis et al. [25] proposed to opti-
mize a regularized surrogate loss function

min
w

λ

2
||w||22 +

∑
i∈[n]

}i(w) , (3)

where λ is the regularization parameter and }i(·) is the
structured hinge-loss

}i(w) = max
y

{
`i(y) + wT δψi(y)

}
. (4)

Objective (3) is a convex optimization problem which may
be solved using (Stochastic) Subgradient [22], or Cutting-
Plane [12] approaches, whenever an efficient separation-
oracle for solving the maximization in (4) is available.

3 Multi-Output Structured Predic-
tion

In this work, we study multiple-output structured predic-
tion and the problem of learning a function

g : X → YkM , (5)

where the input space X is as before but where the output
space YkM is anM -tuple1 of structured-outputs (e.g., mul-
tiple segmentations of an image or multiple English trans-
lations of a Chinese sentence).

In a manner similar to single-output SSVMs, we are inter-
ested in a linear mapping

g(x; W) = argmax
Y∈YkM

WTΨ(x,Y) , (6)

1Our formulation is described with a nominal ordering of the
predictions. However, both the proposed objective function and
optimization algorithm are invariant to permutations of this or-
dering.

285



Abner Guzman-Rivera, Pushmeet Kohli, Dhruv Batra, Rob A. Rutenbar

where Y =
〈
y(1), . . . ,y(M)

〉
is an M -tuple of structured-

outputs, i.e., each y(i) ∈ Yk; and the joint feature map
Ψ : X × YkM → Rd is a function of the input and an
M -tuple of structured-outputs.

We will assume the model factors such that the score for a
tuple is the sum of scores of each item in the tuple:

g(x; W) = argmax
Y∈YkM

M∑
m=1

wT
mψ(x,y(m)) . (7)

That is, while each element of the tuple is structured, the
model’s predictions are independent of each other at test-
time. MAP inference is thus very efficient compared to (6)
and can be trivially parallelized.

3.1 Multi-Output Loss

Let Ŷi be the model prediction for input xi, i.e.,

Ŷi = g(xi; W) =
〈
ŷ

(1)
i , . . . , ŷ

(M)
i

〉
. (8)

In the single-output SSVM we assumed the availability of a
“ground-truth” output yi for each datapoint and a pairwise
task-loss (2) measuring the quality of the single-output pre-
diction ŷi w.r.t. yi. Here, we do not assume the availability
of ground-truth output tuples. Further, we address scenar-
ios where there is no natural choice of ground-truth (e.g.,
interactive segmentation), and would also like to be able to
apply our method to standard datasets which usually have
single ground-truth labels. For these reasons and following
previous work [11] we make use of the “oracle” or “hind-
sight” set-loss

Li(Ŷi) = min
m∈[|Ŷi|]

`i(ŷ
(m)
i ) , (9)

i.e., the tuple of predictions Ŷi incurs loss only for the
most accurate prediction it contains. This implicitly pro-
motes diversity because individual predictors can special-
ize to different “domains” of input-output mappings with-
out paying a penalty for being too diverse or inaccurate – as
long as the tuple contains at least one accurate prediction.
However, the loss does not explicitly reward or enforce di-
versity in the predictions. As long as the loss is minimized,
the predictors can make any predictions, including repeated
identical ones. This is potentially wasteful, and as we show
in our experiments, can be outperformed by our approach
which explicitly enforces diversity in the predictions.

3.2 Diverse Multi-Output Loss
To explicitly encourage diversity in the output-tuple, we
augment the loss function to penalize tuples of results that
lack diversity w.r.t. each other. Formally, our diversity-
augmented loss has the form

L+div
i (Ŷi) = min

m∈[|Ŷi|]
`i(ŷ

(m)
i ) + α `div(Ŷi) , (10)

where `div(·) is the diversity encouraging augment and
α ≥ 0 is a constant that controls the trade-off between task-
loss and diversity.

The loss (10) allows for arbitrary diversity encouraging
functions. However, we will be able to learn a predictor
of the form (7) to minimize the diversity-augmented risk
only for cases allowing efficient loss-augmented inference
as we will see in Section 4.

As an example of a diversity encouraging function consider
the following definition,

`div(Y) =
⊕

m<m′:
m,m′∈[|Y|]

(
1−∆div(y(m),y(m′))

)
, (11)

where
⊕

is an operator like mean or min and ∆div ∈ [0, 1]
is a function that measures dissimilarity between two
predictions (e.g., normalized Hamming distance). Thus,
`div(·) measures the (negative) dissimilarity of all pairs in
the output-tuple and aggregates the measures using

⊕
.

Note that while the above considers dissimilarity between
all pairs of predictors, we could also consider a sparse
graph on the predictors, e.g., a tree on M vertices.

4 Minimizing the Diversified Risk
Here we show how we can learn the parameters for
the mapping g in (7), given a set of training instances{

(xi,yi) |xi ∈X ,yi ∈Yk, i∈ [n]
}

. Following the Empir-
ical Risk Minimization Principle [26], we would like the
parameters to minimize the diversified-risk over the train-
ing set

min
W

1

n

∑
i∈[n]

L+div
i (g(xi; W)) . (12)

Note that regularization will only be included later as di-
rectly regularizing the risk for a linear classifier is mean-
ingless [18].

4.1 Block-Coordinate Descent for Learning
Joint Diverse Predictor

We propose to optimize (12) via a block-coordinate de-
scent approach where each block-coordinate corresponds
to the weights wm associated with one element of the
output-tuple. First, we will rewrite (12) for the case where
ŷ(m′) :m′ 6=m are fixed (and ŷ(m) is allowed to change).
Next, we will develop a surrogate objective for the rewrit-
ten risk and define the coordinate update.

Recall that Ŷi is the model prediction for example i, (8).
Two additional definitions will be useful in the subsequent
discussion. Let,

Ŷi−m =
〈
ŷ

(1)
i , . . . , ŷ

(m−1)
i , ŷ

(m+1)
i , . . . , ŷ

(M)
i

〉
(13)
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be the output-tuple with them-th element removed; and let,

Ŷi|ym =
〈
ŷ

(1)
i , . . . , ŷ

(m−1)
i ,y, ŷ

(m+1)
i , . . . , ŷ

(M)
i

〉
(14)

be the output-tuple with the m-th element replaced by y.

Then,

L+div (m)
i (ŷ(m); Ŷi−m)

=


`i(ŷ

(m)
i ) + α `div(Ŷi|ŷ

(m)

m ) if `i(ŷ
(m)
i )

<Li(Ŷi−m)

Li(Ŷi−m) + α `div(Ŷi|ŷ
(m)

m ) otherwise
(15)

is equivalent to the diversity-augmented loss (10) whenever
Ŷi−m remains constant (and thus,Li(Ŷi−m) also remains
constant). This truncated form says that when ŷ(m) is the
minimizer of `i(·) the loss behaves linearly w.r.t. ground-
truth. Otherwise, the loss is constant w.r.t. to ground-truth.

In the case of fixed ŷ(m′) :m′ 6=m we can rewrite (12) as

min
wm

∑
i∈[n]

L+div (m)
i (ŷ(m); Ŷi−m) , (16)

where ŷ(m)= argmaxy wT
mψ(x,y); and where we have

restricted minimization to wm and dropped constant 1
n .

This is the coordinate-update we focus on for the remaining
of this section.

We will first develop a surrogate for coordinate-update (16)
and then show how it can be minimized. It is important to
highlight that we do not have a single surrogate for (12)
but rather a surrogate for the minimization w.r.t. each wm

coordinate.

There are two natural surrogates for the truncated loss (15):

L+div (m)
i linear (ŷ(m); Ŷi−m)

= `i(ŷ
(m)) + α `div(Ŷi|ŷ

(m)

m ) , (17)

L+div (m)
i const (ŷ(m); Ŷi−m)

= Li(Ŷi−m) + α `div(Ŷi|ŷ
(m)

m ) . (18)

These correspond to the linear and constant regimes (the
two cases) in (15).

Next, we define hinge-type upper-bounds for both surro-
gates. For the linear case an upper-bound is

L̃+div (m)
i linear (wm; Ŷi−m)

= max
ȳ

[
wT

mδψi(ȳ) + L+div (m)
i linear (ȳ; Ŷi−m)

]
= max

ȳ

[
wT

mδψi(ȳ) + `i(ȳ) + α `div(Ŷi|ȳm)

]
; (19)

Algorithm 1 Learn Joint Diverse Predictor.

1: Input: S = {(xi,yi) : i ∈ n}, M , λ, α
2: Initialize Im : m ∈ [M ] at random.
3: for m = 1, . . . ,M do
4: wm ← Update(Im : m ∈ [M ], λ, α′=0) see (21)
5: end for
6: repeat
7: for m = 1, . . . ,M do
8: Recompute Im : m ∈ [M ] using (22)
9: wm ← Update(Im : m ∈ [M ], λ, α) see (21)

10: end for
11: until No Im changed in last M updates.
12: return W

and an upper-bound for the constant surrogate is

L̃+div (m)
i const (wm; Ŷi−m)

= max
ȳ

[
αwT

mδψi(ȳ) + L+div (m)
i const (ȳ; Ŷi−m)

]
= max

ȳ

[
αwT

mδψi(ȳ) + Li(Ŷi−m) + α `div(Ŷi|ȳm)

]
,

(20)

where Li(Ŷi−m) is constant. Note that we purposely scale
the hinge for the constant case differently. This ensures that
as α→ 0, the optimization tends to the case of no diversity-
augment (i.e., to the MCL model).

Putting both surrogates together and adding regularization
we define the Update for wm as the minimizer of

min
wm

λ

2
||wm||22 +

∑
i∈Im

L̃+div (m)
i linear (wm; Ŷi−m)

+
∑

m′ 6=m

∑
i∈Im′

L̃+div (m′)
i const (wm; Ŷi−m) , (21)

where Im, Im′ are example-index sets which correspond to
a choice of surrogate (linear or constant) for each exam-
ple. In our implementation, before every coordinate step
we split the dataset into two disjoint groups:

One set Im =
{
i : `i(ŷ

(m)) =Li(Ŷi)
}
, and (22a)

M−1 sets Im′ =
{
i : `i(ŷ

(m′)) =Li(Ŷi)
}

(22b)

wherem′ 6= m. That is, we determine which predictor best
explains each example and use the linear surrogate only for
those examples better explained by the m-th predictor.

Update (21) is a convex optimization problem which can
be solved using standard methods such as Stochastic Sub-
gradient or Cutting-Plane algorithms.

Algorithm 1 summarizes our learning algorithm and pro-
vides an initialization strategy for weights wm using a ran-
dom split of the data and no diversity augment (α′=0).

Loss-Augmented Inference. Equations (19) and (20) are

287



Abner Guzman-Rivera, Pushmeet Kohli, Dhruv Batra, Rob A. Rutenbar

similar to standard SSVM hinge-loss formulations. The
main difference is the diversity-augment in the loss. For
instance, if in the definition of `div (11), we use mean for
aggregation then (19) becomes

max
ȳ

[
wT

mψ(xi, ȳ) + `i(ȳ)− α

π

∑
m′′ 6=m

∆div(ȳ, ŷ
(m′′)
i )

]
+ terms not

dependent on ȳ, (23)

where π is the constant used for computing the mean.
If ∆div is a decomposable function (e.g., Hamming dis-
tance), then loss-augmented inference maintains the same
efficiency of MAP inference.

5 Experiments
Setup. We tested DivMCL on two problems: i)
foreground-background segmentation in image collections
and ii) protein side-chain prediction. In both problems
making a single perfect prediction is difficult due to in-
herent ambiguity in the tasks. Moreover, inference-time
computing limitations force us to learn restricted mod-
els (pairwise attractive MRFs, in the case of foreground-
background segmentation); or resort to approximate infer-
ence (TRW-S [14], in the case of protein side-chain predic-
tion). We will compare the ability of DivMCL to produce
sets of hypotheses which contain more accurate predictions
than other methods for producing multiple (diverse) hy-
potheses.

5.1 Foreground-Background Segmentation
Dataset. We used the co-segmentation dataset, iCoseg, of
Batra et al. [3]. iCoseg consists of 37 groups of related im-
ages mimicking typical consumer photograph collections.
Each group may be thought of as an “event” (e.g., images
from a baseball game, a safari etc.). The dataset provides
pixel-level ground-truth foreground-background segmenta-
tions for each image. We used 9 difficult groups from
iCoseg containing 166 images in total. These images were
split at random into 5-folds of roughly equal size. See
Fig. 1 for some example images and segmentations.

Model and Features. The segmentation task is modeled
as a binary pairwise MRF where each node corresponds to
a superpixel [1] in the image. We extracted 12-dim color
features at each superpixel (mean RGB; mean HSV; 5 bin
Hue histogram; Hue histogram entropy). The edge fea-
tures, computed for each pair of adjacent superpixels, cor-
respond to a standard Potts model and a contrast sensitive
Potts model. The weights at each edge were constrained
to be positive so that the resulting supermodular potentials
could be maximized via graph-cuts [6, 15].

Choice of Loss. The task-loss in this experiment (`) is the
fraction of incorrectly labeled nodes; ∆ in the diversity-
augment is hamming-distance; and

⊕
is the mean opera-

tor. For evaluation we use the set-loss, L (9), i.e., the error

of the best segmentation in the output-tuple.

Baselines and Evaluation. We compare our algorithm
against two alternatives for producing diverse predictions:
i) Single SSVM + Diverse M-Best MAP [4], and ii) Mul-
tiple Choice Learning (MCL) [11]. Diverse M-Best MAP
is a sequential algorithm for generating diverse high scor-
ing solutions from MRFs. The first solution corresponds to
the MAP solution and subsequent solutions are computed
from a modified energy: The original MRF compounded
with a linear penalty on the similarity of the next solution
w.r.t. previous solutions. The algorithm takes a parameter
δ which is a trade-off between the original energy and the
similarity penalty. For the MCL baseline we use our imple-
mentation of DivMCL with α=0.

All experiments in this section were repeated 5 times and
averages are reported. Each time models were trained on
1 fold and the remaining 4 folds were used for testing and
validation. In general 2 folds are used for validation and 2
for testing; but in a few occasions we used the 4 remaining
folds for validation.

MCL requires an initial “assignment” of examples to pre-
dictors. We provide a random assignment. For DivMCL
we use the initialization strategy in Algorithm 1.

For Diverse M-Best MAP, we trained a single SSVM on 1
fold, used another 2 folds to select the best diversity param-
eter δ, and test on the remaining 2 folds. We implemented
algorithm DivM-Best [4] using dynamic graph-cuts [13].

Optimization. On this task we performed coordinate up-
date (21) using our implementation of Cutting-Plane.

5.1.1 Experiments with coarsened superpixels.

We ran a series of experiments with coarsened superpix-
els (i.e., full-images but large superpixels, roughly ∼100
per image) so as to observe trends as we vary multiple
parameters. We varied the number of predictions M ;
the strength of regularization λ; and the strength of the
diversity-augment α.

Effect of α. In Fig. 2 we show trends as α increases. These
experiments were repeated 5 times training on 1 of 5 ran-
dom folds and testing on the remaining 4. When regu-
larization is low (i.e., small λ) our approach leads to in-
creased performance for both train and test. This is partly
explained due to coordinate-descent getting stuck in poor
local-optima for α=0, and α>0 often leading the optimiza-
tion to better optima.

With strong regularization trends are different and we
mainly see α modulating fit to train. This is to be expected
as we conjectured earlier. Further, for all λ and all M our
approach (on average) leads to test-time improvements.

Behaviour of Coordinate Descent. Fig. 3a shows average
trends as the optimization progresses during learning. As
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Figure 1: First row: input images. Second row: corresponding ground-truth segmentations.
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(c) M=12.

Figure 2: For M ∈ {4, 8, 12}, experiments on coarsened segmentation showing trends as regularization parameter λ; and diversity-
parameter α are varied. We show averages over 5 random folds (1 fold used for training and the remaining for testing). Circles
correspond to train-error (left axis) and stars to test-error (right axis). We note that for all λ and all M the proposed approach leads
to improved test-performance. At low regularization the approach leads to improved train and test performance. As expected, at high
regularization α modulates fit to train and often leads to improved test performance.

above, the plots are averages over 5 random folds. Here
we set M and λ to intermediate values for illustration. In
squares (left axis) we show the (normalized) diversified-
risk (12). Every iteration is a descent-step and learning is
halted whenever a step does not reduce the risk. In this
example we see that α>0 always leads to reduced fit to
train, yet may also lead to test-time improvements.

Behaviour as M increases. In Fig. 3b we investigate the
benefits achievable by the approach as M increases. As
an upper-bound on performance we pick the best perform-
ing α for each fold before averaging (i.e., we tune α on
test data). We had conjectured higher benefits would cor-
respond to higher M but the experiments show more of a
constant improvement. Next, in Fig. 3c we repeat the ex-
periment validating on held-out data. That is, for each of
the 5 experiments we train on 1 fold, validate on 2 folds
and test on the remaining 2. In this set of experiments val-
idation gives good results with our approach improving on
the MCL baseline.

Note that atM≥16 we observed that α=0 leads to few iter-
ations of coordinate descent. This means the optimization
quickly finds a local optimum and is unable to progress fur-
ther. This also explains why, for large M , α>0 leads again
to better performance on train data.

5.1.2 Comparison against Baselines.

For these set of experiments we perform segmentation on
regular superpixels (roughly ∼3, 000 of them per image),
and compare against baselines MCL and Diverse M-Best

MAP.

First, in Fig. 4a we observe trends as α increases for two
settings of the regularization parameter, λ∈ {0.01, 0.1},
and M=12. Note that the MCL baseline corresponds to
the left-most points (i.e., α=0). We observe the same trend
as before where increasing α reduces fit to train, but at the
same time leads to superior performance on test data for a
range of values of α.

Fig. 4b and 4c show the comparison against both baselines
for λ=0.1, 0.01, respectively. For Diverse M-Best MAP
and DivMCL we tune their respective parameters on held-
out data.

Both MCL and DivMCL always outperform Diverse M-
Best MAP. This is to be expected as MCL and DivMCL
are trained to predict multiple hypotheses. DivMCL is on
average better than MCL.

Here, we see further confirmation that DivMCL is able to
maintain performance for larger ranges of regularization
strengths. That is, MCL overfits for lower values of λ and
M than DivMCL does.

5.2 Protein Side-Chain Prediction

Model and Dataset. Given a protein backbone structure,
the task here is to predict the amino acid side-chain con-
figurations. This side-chain prediction problem has been
traditionally formulated as a pairwise MRF with node la-
bels corresponding to (discretized) side-chain configura-
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(a) Objective and performance vs. training
iteration (M=8, λ=0.1).
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(b) Comparison against MCL, best α
(λ=0.1).
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Figure 3: Experiments on coarsened segmentation (averages over 5 random folds). (a) Behavior of coordinate descent (M=8, λ=0.1).
The diversified-risk is plotted on the left-axis (squares); and train, test errors are plotted on the right-axis (circles, stars). Note how
α modulates fit to train nicely and that certain values of α lead to test-time improvements. (b) Comparison against MCL baseline as
M increases, α tuned on test. (c) Comparison against MCL baseline as M increases, α tuned on held-out data. We observe that the
proposed approach leads to performance improvements over a range of M .
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(b) Comparison against baselines, λ=0.1.
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(c) Comparison against baselines, λ=0.01.

Figure 4: Experiments on segmentation (averages over 5 random folds). Circles correspond to train-error (left axis); stars to test-error
(right axis) and, where applicable, triangles to validation-error (right axis). (a) Behavior of coordinate descent. Note how α modulates
fit to train nicely and that multiple values of α lead to test-time improvements. (b,c) Comparison against MCL baseline as M increases,
α tuned on held-out data.

tions (rotamers). The MRFs include pairwise interactions
between nearby side-chains, and between side-chains and
backbone. We use the dataset of [8] and inherit their
test/train split and evaluation metric.2 The dataset con-
sists of 276 proteins split into train and test sets of sizes
55 and 221 respectively. The energy function is defined as
a weighted sum of eight known energy terms. The weights
for the energy terms are the parameters to be learned. We
used TRW-S [14] for inference.

Baselines and Evaluation. We compare to the same base-
lines as in the previous application: i) Single SSVM + Di-
verse M-Best MAP [4], and ii) Multiple Choice Learning
(MCL) [11]. We use the initialization strategies outlined
in the previous section. For both DivMCL and Diverse M-
Best MAP we report results with each algorithm’s param-
eter tuned on test data. Following [8], we report average
error rates for the first two angles (χ1 and χ2) on all test
proteins.

2Dataset available from: http://cyanover.fhcrc.org/recomb-
2007/

Optimization. For this dataset we experimented with both
Cutting-Plane and Stochastic Subgradient (SSG) methods
when performing update (21). We obtained better results
with SSG and conjecture this may be partly due to the use
of approximate loss-augmented inference.

Results. In Fig. 5a and 5b we investigate the behavior
of coordinate-descent together with train and test errors.
The squares (left axis) plot the (normalized) diversified-risk
(12). Every iteration is a descent-step and learning is halted
whenever a step does not reduce the risk. For this dataset,
similar to coarsened segmentation with high regularization,
we often see that the diversity-augment leads to improved
train (circles) and test (stars) performances.

In Fig. 5c we compare against the baselines. Again, MCL
and DivMCL outperform Diverse M-Best MAP. DivMCL
is able to outperform MCL.
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baselines.

Figure 5: Experiments on protein side-chain prediction (λ=1). (a,b) Show the behavior of coordinate descent. The diversified-risk is
plotted on the left-axis (squares); and train, test errors are plotted on the right-axis (circles, stars). For this dataset, α>0 often leads to
train and test-time improvements. (c) The proposed approach (blue) outperforms the Diverse M-Best MAP (green) and MCL (black)
baselines.

6 Discussion and Conclusions
We presented a new method for learning a predictor that
outputs a tuple of diverse (structured) hypotheses. The
proposed model is a set of predictors which are explicitly
trained to prefer diverse output-tuples, yet make indepen-
dent predictions at test-time.

We proposed and investigated the idea of augmenting the
risk at train-time with a penalty for lack of diversity. The
diversity-augment couples the parameters of the predictors
but we show how an efficient iterative learning procedure
is able to minimize the proposed diversified-risk.

There are a number of directions to extend this work. While
we evaluated performance of all algorithms in terms of “or-
acle” set-loss, it would be interesting to measure the impact
of DivMCL and other baselines on user experience or final-
stage performance in cascaded algorithms.

Another direction for future work is the study of efficient
models of structure in the output-tuple. In this work we
designed the predictors to be independent, mainly for effi-
ciency reasons. However, further gains in accuracy would
be possible if we could afford to couple the predictions at
test time. We leave to future work the investigation of effi-
cient methods to couple the prediction tuples at test time.
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