On Estimating Causal Effects based on Supplemental Variables
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Supplementary variables are considered as variables th
are not of interest in themselves but help us to identify
target quantities and/or understand data generating mecH—
anism in practical studies. For example, the instrument
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Abstract

This paper considers the problem of estimating
causal effects of a treatment on a response us-
ing supplementary variables. Under the assump-
tion that a treatment is associated with a response
through a univariate supplementary variable in
the framework of linear regression models, Cox
(1960) showed that the estimation accuracy of
the regression coefficient of the treatment on the
response in the single linear regression model
can be improved by using the recursive linear re-
gression model based on the supplementary vari-
able from the viewpoint of the asymptotic vari-
ance. However, such assumptions may not hold
in many practical situations. In this paper, we
consider the situation where a treatment is as-
sociated with a response through a set of sup-
plementary variables in both linear and discrete
models. Then, we show that the estimation accu-
racy of the causal effect can be improved by us-
ing the supplementary variables. Different from
Cox (1960), the results of this paper are derived
without the assumption of Gaussian error terms
in linear models or dichotomous variables in dis-
crete models. The results of this paper help us
to obtain the reliable evaluation of causal effects
from observed data.
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variable (Bowden and Turkington, 1984) is one of supple-
mentary variables because it enables us to identify causal
effects under certain assumptions (Angrist et al, 1996) and
evaluate the bounds on causal effects under milder condi-
tions (Manski, 2007; Pearl, 2009) in the presence of un-
observed confounders. In addition, proxy variables of a
treatment, a response and/or covariates are also considered
as supplementary variables because the proxy variables en-
able us to identify the causal effect even when it is diffi-
cult to observe the variables of our main interest (Cai and
Kuroki, 2008; Kuroki, 2007; Kuroki and Pearl, 2013). Fur-
thermore, intermediate variables are often considered as
supplementary variables since they are used to identify var-
ious kinds of causal quantities (Pearl, 2001, 2009) as well
as to understand data generating mechanisms in mediation
analysis (Baron and Kenny, 1986; Imai et al, 2011; MacK-
innon, 2008).

In this paper, we focus on the estimation problem of causal
effects using a set of supplementary variables including
intermediate variables. When data generating mecha-
nism among variables can be described by nonparametric
structural equation models and the corresponding directed
acyclic graph, Pearl (2009) provided the front door crite-
rion as the graphical identification condition for causal ef-
fects based on intermediate variables. In addition, in the
framework of Gaussian linear structural equation models,
Kuroki (2000) formulated the exact variance of the causal
effect based on the front door criterion. Furthermore,
Kuroki and Cai (2004) compared some graphical identi-
fication conditions in terms of the asymptotic variance of
causal effects. On the other hand, under the assumption
that a treatment is associated with a response through a
pivariate intermediate variable, Cox (1960) showed that
e estimation accuracy of the regression coefficient of the
eatment on the response in the single linear regression

aﬁnodel can be improved by using the recursive linear re-

gression model based on the intermediate variable from the
viewpoint of the asymptotic variance. Under the assump-
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tended back door criterion (Lauritzen, 2001) in terms ofnatively, the absence of arrows represents no direct causal
the asymptotic variances of causal effects based on Gausifluence between the corresponding variables. In this in-
sian linear structural equation models. In addition, Pearterpretation, the recursive factorization (1) still holds, but
(2012) discussed the same problem as Cox (1960) basdde factors are further assumed to represent autonomous
on discrete models and stated that the same result as Cdlata generating mechanism, that is, each family conditional
(1960) can be obtained when a treatment, a response apdobability pr{v;|pa(v;)} represents a stochastic process
an intermediate variable are dichotomous. However, suchy which the values of/; are assigned in response to the
assumptions may not hold in many practical situations.  values p&w;) (previously chosen foV;’s parents), and the
tochastic variation of this assignment is assumed indepen-

In this paper, we consider the situation where a treatmenzem of the variations in all other assignments in the model

IS assoqated \.N'th aresponse thr.ough a set of S‘u'O'merm:“r]I:9>areinboim et al, 2011). Then, the Bayesian netw@ris
tary variables in both linear and discrete models. Then, wi ;

o called a causal Bayesian network.
show that the estimation accuracy of the causal effect can
be improved by using the supplementary variables. Dif-Based on the theory of causal Bayesian networks, Pearl
ferent from Cox (1960), the results of this paper are de{2009) defined a causal effect as a distribution of a response
rived without the assumption of Gaussian error terms inwhen conducting an external intervention to a treatment,
linear models or dichotomous variables in discrete modelswhere an ‘external intervention’ means that a variable is
In addition, we apply our results to an empirical exampleforced to take on some fixed value, regardless of the values
from process analysis of coating conditions for car bodief other variables.
in quality control (Kuroki, 2012; Okuno et al, 1986). The Definition 1(Causal effect)

results of this paper help us to obtain the reliable evaluation - _ .
of causal effects from observed data. Let Vi = {X,V}UQ ({X,Y}NQ = ¢) be a set of vari

ables represented in a causal Bayesian netwarkThe

) causal effect of onY is defined by
2 Causal Bayesian Network

=N P y.9)

Letpr(vy, ..., v,) be astrictly positive (or non-degenerate)
joint distribution of a seV” = {V3,---,V,} of variables,
pr(v;|v;) the conditional distribution o¥; givenV; = v; _
(Vi, V;€V) and pfv;) the marginal distribution of;. Sim- where d¢X = x) means thatX is set to a valuer by

ilar notation is used for other distributions. For graph the-21 €xternal intervention. In addition, summation signs are
oretic terminology used in this paper, for example, refer to'€Placed by integrals whenever the summed variables are
Pearl (2009) continuous. O

When a directed acyclic grapghi = (V, E) with a setV’ Given a causal Bayesian netwdrk in order to evaluate the
of variables and a seE of arrows is Q;iven and the joint causal effect o onY from a joint factorized distribution

distribution of V" is factorized recursively according to the ©f 0Pserved variables, itis required to observe not oily

graphG as the following equation, the graph is called a@1dY but also a seW of other variables, such as con-
Bayesian network: founders. Pearl (2009) provided ‘the back door criterion’

as one of graphical identifiability criteria for the causal ef-

1_"[ fect, where ‘identifiable’ means that the causal effect can be
pr(ve, -+ vn) = 1L privipa(vi)}, (1) determined uniquely from a joint distribution of observed
variables.

where pdv;) is a set of parents df; in G. When pdv;)

is an empty set, gw;|pa(v;)} is the marginal distribution ~Definition 2 (Back door criterion) . .
pr(v;) of v;. Suppose thatX is a non-descendant df in a directed

S _ _ _acyclic graphG. If a setW of vertices satisfies the fol-
If a joint distribution is factorized recursively according lowing conditions relative to an ordered p&it, Y) of ver-

to the directed acyclic grapkiz, the conditional inde- tices, ther# is said to satisfy the back door criterion rela-
pendencies implied by the factorization (1) can be readjye to (X, Y)

off from G according to the d-separation criterion (Pearl,
1988), that is, ifW d-separated¥, from W in G
(W1, Wy, W3CV), thenW, is conditionally indepen-
dent of W3 given W in the corresponding recursive fac- (i) W blocks every path betweek andY that con-
torization (1); See Pearl (1988, 2009). tains an arrow pointing t&. m|

(i) no vertex inW is a descendant of;

The recursive factorization (1) can be given causal interpreH a setW of variables satisfies the back door criterion rel-
tation, and the arrows i& as representing potential causal ative to (X,Y") in a causal Bayesian netwotk, then the
influences between the corresponding variables and, altecausal effect oX onY is identifiable through the observa-
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tion of WU{X, Y} and is given by the formula Furthermore, the elements Sfare arranged to satisfy that
Bgs 25w 1S @n upper triangular matrix. Here, in the discus-
pr{yldo(X = z)} = Z pr(y|z, w)pr(w). (3)  sion of this section, when itis known from prior knowledge
w that a treatment is conditionally independent of a response
given supplementary variables and it is justified that ob-

3 Analytical Results served data is generated based on the distribution satisfy-
ing such a conditional independence, the distributions of
3.1 Linear Model explanatory variables and error terms are not limited to the

Gaussian distribution, as far as the ordinary least squares
In this section, for two distinct set§ andW of variables, method can be applied to obtaining the unbiased estimators
we assume thaX is conditionally independent af given  of the regression coefficients. On the other hand, when it is
a setS U W of supplementary variables al satisfies necessary to conduct a statistical test of the conditional in-
the back door criterion relative tX,Y"). This situation dependence between the treatment and the response given
can be described as the graph shown in Fig. 1. supplementary variables, it is required to make assump-

tions about the nature of the error terms and it is commonly

W assumed that the error terms follow the Gaussian distribu-

l tion.

X .S .y Equation (6) can be rewritten by
Flg 1: Causal diagram (l) S = (I - Bss.;csw)ilBs.zsw + (I - Bss.xsw)ilBsw.xsz

. . +(I - Bss.zsw)_lBsw.wst
When observed data is assumed to be generated according I_B 1
to a linear structural equation model and the corresponding (I = Bos.asw) ™ €s.asu,
directed acyclic graph shown in Fig. 1, in order to estimate = Bs.aw + Bsz.zwX + Bsw.zwW + €5 5w,
dE{Y|do(X = xz)}/dx, we consider the following linear _
{ | ( )}/ 9 WhereBs.xw = (I - Bss.xsw) 1Bs.9csun Bsm.xw = (I -

regression model:
g Bss.zsw)ilBsr.zswy Bsw.zw = (I - Bss.zsw)ilBsw.zsw
=(I-— -1 . Thus,B B
Y — ) + . X + B ) W + €. , 4 andes.zw (I Bss..zsw) €s.zsw . ’ s.mwn. sx.xw
Buaw + Byvaw yrw vaw, () and By, ..., are estimable by using the ordinary least
where S, vuw, Byz-zw @nd By, .., are an intercept, the re- square method based on thg r.egression model of the ele-
gression coefficients ak and the vector of the regression mentofS on X andW. Here, itis noted that the elements
coefficients of W in the regression model 6f on X and ~ Of €.z, May not be independent of each other. On the
W, respectively. Similar notation is used for other regres-other hand, instead of equation (5), we can also use
sion parameters. In addition, the error teegn,,, is as-
L . Y = o+ B oS zswX
sumed to follow the distribution with the me@nand the Pyasw + Bys.vswS + Bywasu
variancesy, .., > 0 and{X }UW is independent of, ,,,. +Byw.asuW + €yasw (7)
Then, we havel E{Y'[do(X = x)}/dx = Byz-zw- to estimateB, ., Which is consistent wittB,, .., since
Noting that X is conditionally independent of given X is conditionally independent af givenS U W'.
S UW, since we havely,.cw = BysuswBseow = et B,,.,., be the ordinary least square estimator of
Bys.sg;Bsx.wwd Vlve can also use the;ollowmg recursive re- g . ., with a similar notation used for other ordinary least
gression model to estimatey;.s,, and Bsg. o square estimators. Then, 0, ., Bys,stsmw and

Bys.zswBse.zw, If their variances exist, both

Y = ﬂy.sw + Bys.st + Byw.st + 6y.sw7 (5) Var(By.T/-ﬂf’w) 2 Var(ByS-SwBSQf.w’w) (8)
S = Bs‘xsw + Bsz‘xsz + Bss.xsws and
+Bsw.mst + €s.xsw (6) ~ ~

Var(Byswstsw.zw) Z Var(Bys.stsx.zw) (9)
where a sef{e, s, } U €525, Of error terms follows the
multivariate distribution with mean vect@r and positive-
definite diagonal covariance matrix3; .., and By ;w0 Since the result is based on both the exact variance and
are the vector of the intercepts and the matrix of the regresseveral supplementary variables, the result can be consid-
sion coefficients in the regression models$fon X, S ered as the improvement of Cox (1960) whose discussion
andW, respectively. In addition, it is assumed that the ex-is based on the asymptotic variance and a univariate sup-
planatory variables in the regression models (5) and (6) arplementary variable. To our surprise, as far as no per-
independent of error terms which appear in each equatiorfect multi-collinearity occurs, even if some elements of

hold. The proof is provided in Appendix .
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{X} U S UW are highly associated, the estimation accu-is noted that there is no qualitative inequality relationship

racy of By, suwBsaz.cw IS SUPErior to that oﬁw‘w. How-
ever, Va(ﬁym.zw) - Var(Bys‘xstsw.a:w) may not be non-
negative.

3.2 Discrete Model

In this section, we assume th&tU W U{ X, Y} follows the
multinomial distribution MN V, pr(z, y, s, w) } with sam-
ple sizeN and cell probabilities g, y, s, w) > 0 for any
z,y,s andw. WhenX is conditionally independent &f

given a setS U W of supplementary variables aMf sat-
isfies the back door criterion relative (&, Y), as shown

betweerpr{y|do(X = x)} andpr{y|do(X = z); 2/, s}.

From Sections 3.1 and 3.2, the supplementary variables can
improve the estimation accuracies of causal effects if we
use the conditional distribution &f given the supplemen-
tary variables only to estimate the causal effects, under the
assumption that a treatment is conditionally independent
of a response given supplementary variables. However, it
is difficult to provide the qualitative judgment whether or
not the estimation accuracies can be improved by using the
supplementary variables if the assumption does not hold.
In addition, when we apply our results to real data analysis
with the finite sample size, it is noted that if the difference

in Fig. 1, we consider the following three quantities for the yotveen the two variances is very small then the inequality

causal effect ofX onY:

pr{yldo(X =)} = pr(yle, w)pr(w),

pr{yldo(X = z);s} =) pr(y|s, w)pr(s|z, w)pr(w),

s,w

pr{y|do(X = z); ', s}
= 3 priyle’, s, w)pr(s|z, w)pr(w)

s,w

for x # 2’. Here, p{y|do(X = xz);s} is the causal ef-
fect of X on Y when the information or§ is used, and
pr{y|do(X = x);2’,s} is the causal effect oK onY
when the information on botl$ and X = 2’ are used .
Then, it is obvious that giy|do(X = z)} = pr{y|do(X =
x); 8} = pr{y|do(X = z);z’, s} holds from the assump-
tions.

1.
Letting n,ys. represents the number of subjects in cell

(X,Y,S, W) = (z,y,s,w), with a similar notation
used for other cells, fg|z, w), pr(y|z, s,w), pr(y|s, w),
pr(s|xz,w) and pfw) are estimated by

Pr(yle, w) = "2 pr(ylz, s, w) = “
Pr(yls, w) = "2 pr(s|z, w) = =,
nsw nm’u}
X N
nw) = -2,
pr(w) =
respectively, wher@V = Z Naysw- Then, both
I,y,S,w

a.varpr{y|do(X = x)}] > a.var[pr{y|do(X = x); s}]
(10)
and

a.varpr{y|do(X = z); 2, s}]

> a.var[pr{y|do(X = z); s}] (11)

relationships may be reversed because of sampling variabil-
ity.

4 Simulation Experiments

4.1 Linear Model

In this section, through numerical experiments, we exam-
ine the inequality relationships between the estimation ac-
curacies stated in Section 3.1. For simplicity, we consider
the causal Bayesian network shown in Fig. 2 and the cor-
responding linear structural equation model in whichs
conditionally independent df” given .S and an empty set
satisfies the back door criterion relative(fd, Y'), that is,

Y = S+e,5=X+¢€54,X =6,

This situation can be considered as a simple version of Fig.

X S Y
Fig. 2: Causal diagram (2)

Under the setting, we consider the following two cases:

Case 1 (Symmetric distribution)s, , and e, fol-

low the standard normal distributiofy (0, 1) inde-

pendently, bute, , follows the normal distribution
N(0,05s.,.) with the mean0 and the variance; .,

ande; , is marginally independent df, s, €, }.

Case 2 (Asymmetric distributiony, s ande, follow
the exponential distribution with the locatienl and
the scalel independently, but, .. follows the expo-
nential distribution with the location X\ and the scale
A andes . is marginally independent df,, s, €, } for
A> 0.

We seto,, , to 0.01, 0.500 and 1.000 in Case 1 and\?
t0 0.01, 0.500 and1.000 in Case 2 respectively. It is rea-
sonable to consider that the multi-collinearity has a seri-

hold for x # 2/, where a.var) indicates the asymptotic ous effect on the estimation accuracies of the causal effect
variance. The proof is provided in Appendix Il. Here, it when the parameters;; , and A are small, but not when
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Table 1: Simulation Results (Linear Model)

Oss.0 = 0.01 Ogs.0 = 0.5 Oss. = 1.000
Case 1 Bys‘sﬂsz.m ﬁyzm ﬁys.xsﬂsz.x ﬁys.sﬂsx‘r 5yzcc Bys.xsﬁsm.z Bys.sﬁsx.m ﬁym.x ﬁys.zsﬂsz.x

N =10 0.372 0.375 4.197 0.396 0.463 0.663 0.454 0.533 0.573
N =50 0.146 0.146 1.460 0.157 0.178 0.232 0.176 0.204 0.208

A2 =0.01 A =05 A2 =1.000
Case 2 Bys‘sﬁsz.m ﬁyzm ﬁys.msﬁsz‘x ﬁys.sﬂsx‘r 5ymr Bys‘xsﬁsm.z Bys‘sﬂsm.m ﬁymm ﬁys.zsﬂsr.x

N =10 4.619 4.631 4.620 0.690 0.813 0.746 0.546 0.655 0.720
N =50 1.548 1.555 1.548 0.234 0.265 0.245 0.187 0.217 0.221

Table 2: Simulation Results (Discrete Model)
Casel priyi|do(X =u1);s8} pr{yi[do(X =z1)} pr{y:|do(X = z1); w0, s}
N =50 0.074 0.101 0.105
N =100 0.053 0.071 0.073

Case 2 pr{y1|do(X =z1);s} pPr{yi|do(X ==z1)} pr{y1]do(X = z1);x0, s}
N =50 0.086 0.101 0.263
N =100 0.061 0.071 0.176

these parameters are large. In order to verify the propemators of pfy;|do(X = z;)}, pr{y:|do(X = z1);s} and
ties of the variances of the estimators@®f s fsz.«, Bye.o pr{y:|do(X = z1); xo, s}, we did simulation experiments
andpBy.. 8ss. through the ordinary least square method inbased on these settings in sample sixes: 50 and100.

Section 3.1, we did simulation experiments based on the N

settings in sample siz€% — 10 andp50. STable 2 reports the standard errorgiofy; |do(X = z1)},
o R pr{y1|do(X = =x1);s} and pr{y1|do(X = z1);z, s}

Table 1 reports the standard errors & s8sz.«, Byz.z from 5000 replication. From Table 2, for each case,

and By s »s sz from 5000 replications. From Table 1, for the standard errors gir{y,|do(X = =1);s} are smaller

each case, the standard error$gf , 3., . are smallerthan  than those ofpr{y;[do(X = =)} and pr{y;|do(X =

those of? andj 3 which is consistent with the x1); o, s}, which is consistent with the results in Section

yr.x Yys-xrsHMsr.x _
results. On the other hand, althoug, . provides better Sf);/i d(;g kt)r:te?tzgimhggg;w Zlétﬂfgill%:g |0E)( ;1)_}
estimation accuracies th@gs.m Bsz.2, the quantitative dif- P ! N

; b hem i I hen th ; ¢ x1);xo0, 8}, the quantitative difference between them is
rerence etvvee_n_t em IS smafler w ent e varanes .ot gl whenXx is independent of (Case 1) compared to
is larger. In addition, when the variance«f, is small, the

aiff b h S 08 Of. the case wheré& is not independent of (Case 2). In
ifference between the estimation accuracies,ofs fss.. addition, the difference between the estimation accuracies

and Sy, . is 'small. However, when thg variancecgfm is' of pr{y:|do(X = z1); s} andpr{y:|do(X = z1)} is not
large, the difference between the estimation accuracies qgrge in Case 2, compared to Case 1.

Bys.sBsx.c ANABy, 4 IS large.

4.2 Discrete Model 5 Appllcatlon

In this section, we examine the inequality relationships be Ve .lllustrate our results 'b.y using the data. from a study of
tween the estimation accuracies stated in Section 3.2. F&etting up coating conditions for car bodies, reported by
dichotomous variable(,Y and S (z € {zg,z1},y € Okuno et al. (1986). According to Okuno et al. (1986), car
{vo,y1},s € {s0,s1}), under the setting p;) = 0.5,  Podies are coated in order to increase both the rust protec-
pr(yi|s1) = 0.6 and plyi|so) = 0.3, whenX is condi- tion quality and the visual appearance, and a certain level

tionally independent o¥” given S and an empty set satis- Of the coating thickness must be ensured in the process.
fies the back door criterion relative (&, Y), as shown in Okuno et al. (1986) collected nonexperimental data in the
Fig. 2, we consider the following two cases: coating process, in order to examine the process conditions

and to increase the transfer efficiency. For details, refer to
Case 1 (Independence betweErand S): pr(s;|z1) Okuno et al. (1986) and Kuroki (2012). The sample size is
= 0.70 and p(s1|xo) = 0.70, N = 38 and the variables of our interest are Dilution ratio
(X), Degree of viscosity.S)
TemperaturgéW ), Degree of moisturéivs)
Transfer efficiencyY).
In order to verify the properties of the variances of the esti-The sample correlation matrix is provided in Table 3. Since

Case 2 (Dependence betweErand\S): pr(si|z1) =
0.70 and p(si1|zo) = 0.10.

316



On Estimating Causal Effects based on Supplemental Variables

X

@)

Y

Fig. 3: Causal diagram of process analysis

Table 3: Correlation Matrix extracted from Kuroki (2012).

by using supplementary variables if the assumption is sta-
tistically affirmative . On the other hand, if we have such
prior knowledge, the results of this paper help us to judge
from graph structures under what situation the estimation
accuracy of the causal effect can be improved by supple-
mentary variables, and to obtain the reliable evaluation of
causal effects from observed data.

X S Wi Wo Y . ) » .
X  1.000 -0678 0145 -0496 -0.198 This paper assumed that a treatment is conditionally inde-
S -0.678 1.000 -0.509 0684 0.463 pendent of a response given a set of supplementary vari-
W, 0.145 -0509 1.000 -0.571 -0.431 ables from prior knowledge. Even when we know that
W, -0.496 0.684 -0.571 1.000 0.282 such an assumption holds from prior knowledge, if the vari-
Y  -0.198 0463 -0431 0282 1.000 ances of the causal effects do not exist in linear models

and zero frequencies are included in discrete models be-

it is assumed thafW;, W, satisfies the back door cri- Cause of small sample size, it may be difficult to know
terion relative to(X,Y) and the observed data is gen- whether or not our results hold. On the other hand, if we
b

erated by the Gaussian linear structural equation modél® Notknow whether or not such an assumption holds from

according to Kuroki (2012)dE{Y|do(X = =z)}/dz is
identifiable and is given by, 4w, w,. IN addition, un-

prior knowledge, the conditional independence should be
checked based on statistical hypothetical tests and thus it

der the same assumptions as Kuroki (2012), the statistivould be required to construct test statistics based on small

cal t test for the no-partial correlation betweghandY

sample size, which is a future work. In addition, the discus-

given{S, Wy, Ws} on Table 3 yields t-value- 0.440 with sion of this paper is related to theidentifiability problem

33 degrees of freedom, which gives a p-valueodgd6g. ~ Which occurs when the researcher aims to identify causal
Thus. it would be reasonable to assume thats condi-  €ffects under a situation where observed data might not
tionally independent ot given {S, W7, W} as shown be enough but randomized experiments over supplemen-
in Fig.3 anddE{Y |do(X = z)}/dz can be estimated by &y variables are available (Bareinboim and Pearl, 2012).

6yz.ww1w21 6ys.swlwgﬁsac.ww1wz andByswswlwgﬁsx.wwlwg-
Then, the standard errors estimated using the bootstr
methods with 5000 replicates are (@, uw,w,) = 0.180 ork.

’ \{amﬁys.mswlwzﬁsx.xwlwg) = 0145 and Va(Bys.swle AppendlCES
X Bsz.zw,w,) = 0.111 , which is consistent with the re-
sults in Section 3.1. In addition, \.(ﬁyz.mm) is larger K R )
than VartBys sw, ws Bse.cww,) I this case study. Thus, FOrByzaw ANABys.swBszaw, We have

Appendix |

the results in this case study show that it would be better to 5 _ E(S-1
. . Var(ﬂyz-a:w) - Uyy-xw ( xm.ﬂ,)
use supplementary variablé8l’;, W5, S} to improve the
estimation accuracy of the causal effect. and
Var(Bys-stszmw) = Uyy-swE (B;xsts_slw-ésxmw)

6 Discussion
+ByS'S’LUZSS'$'LUB/

Ys-sW

E(S;w),

rr-w

The reliable evaluation of causal effects gains increasingvhereS;;.,, is the sum of squared matrix & given W

We did not discuss the estimation problem based on the
-identifiability conditions, which would be another future

interest in practical science. In many situations, not only aand similar notation is used for other matrices. Here,

treatment and a response are measured, but also some sigt->,, ..., be a conditional covariance matrix &f given
plementary variables are measured. This paper discussdd(} U W. Then, noting that botlr,, .., = oyy.sw +
the role of supplementary variables in the estimation probBys_swZss_m,,Bz’ls.sw and Byz.ow = Bys.swBse.xw hold,
lem of causal effects, and showed that if a treatmentis ass@rom B,,.,.,, = SszwSite aNd Sizsw = Sezaw —
ciated with a response variable through some supplemens . 5-1 5 we have
tary variables then supplementary variables enable us to

improve the estimation accuracies without amplifying the Var(Byz.cw) — Var(Bys.sw Bsz-aw)

bias related to the target quantities. Noting that the pro- _ & (5—1 Y s-1 B )
posed assumption of the conditional independence can be e PEW TS Tss WIS
tested from observed data under the given distributional as- = 0yy.swE { Sy (Sew-w — Sws-wSsswSsww) }
sumption and thus it is not always necessary to have prior  _ OyyswE (S;z?wszmsw) 7

knowledge that the treatment has no direct effect on the re- . . R
sponse, the results of the paper have a practical advantagéich shows that VB, ;. 5., ) —Var(Bys.sw Bsz.zw) 1S NON-
in the sense that the estimation accuracy can be improvetegative.
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Similarly, for By 4.suw Bss 2w, We have

Var(Bys‘xstswww) = O'yy‘swE (BS.L LwS ! Bl )

S$s-rw ST-TW
/ —
+By8'S’UJZSS CE’lUB S

YSs-sw ( a::z:w)'

Thus, noting thab,.., — Sss.2w IS @ positive semi-definite
matrix, we have

Var(Byswswésw a:w) - Var(Bys swésw a:w)

= Uyy'SwE {BSI xw(ssslzw Ss_s w) sx- a:w} 2 0.

Appendix Il

For a.vafpr{y|do(X = z)}] and a.vapr{y|do(X = z);

s}, let pr(yo |z, w) = 1 — pr(y1|z, w), pr(yo|s, w) = 1—
pr(yi|s, w) and pfyo|z’, s,w) = 1 — pr(y; |2/, s,w). In

- Z pr(y: |Sv w)Qpr(S|x’ w)

s, w

(1 — pr(s|z, w))E { pr(w)” }

+ Z pr(yl |87 w)pr(y1|5’, w)pr(s|x, ’LU)

nI’LU

s#s! w

xpr(s’|z, w)E {W}

= Z pr(yl |l‘, w)pr(y0|x, ’U))E

- Z pr(yl |Sa w)pr(y0‘37 ’U_})E

s, W

- Z pr(yi|s, w)?pr(s|z, w)E

addition, if the denominators of estimated conditional prob- s

abilities are zero, then they are considered as zero in thls

paper. From the variance basic formula, we have

var{z pr(y: |z, w)ﬁr(w)}

—var{z pr(yi|s, w)pr(s|z, w)pr(w)

s,w

- Z pr(y: |z, w)pr(yo|z, w)E { pA:E:y) }
+var{z pr(y |z, w)ﬁr(w)}

—var{z pr(yl |Sv w)ﬁr(s|x, w)ﬁr(w)}

s,w

_ Z pr(yi|s, w)pr(yo|s, w)E { pr(s|z, w)2pr(w)? }

Nsw

o N———

s, w

'D>

~ Zpr (y1]z, w)pr(yo|z, w)E{ 75 w)’ }
+var{z pr(y1 |z, w)pr(w
var{z pf(y1|8,w)Pr(8|$»w)F5r(w)}

s,w

var{z pr(ys|s, w)pr(s|z, w)ﬁr(w)H

s,w

5r(s|z, w)2pr(w)?
= 3 prtns,w)prel . w)p { PP

—-F

Ng
5w sw

.
= X prtnlo, wprtunle,w) s { 2|

Nxw

pr(s|e, w)*pr(w) }

nS’LU

-3 prlasls,w)prtnls, w)E |

s, w
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7Zpry1|xw { pri )2}

s, w

s, w

s,w

s, w

= 3 prlnls.w)prtnls. w)E |

na:w

pr 1|z, w) { (w)Q}

Nzw

Tw

_Zpr(y1|8,w)pr(y0s7w)E{F5r(8|$,'w) pr(w) }

nsw

-3 pr(ts. wpr(slo,w) {1

nmw

- Zp“%'s’wmr(yos7w>pr<s|x,w>E{W}

nmw

= Z [Z pr(y1|s, w)pr(yols, w)

X [pr(s

pr(s|z, w)?pr(w)* }

nsw

n’I‘?U

— Zpr(yﬂs,w)pr(yo\&w)

s,w

Nsw — Nxsw
ES———pr r >0
8 { NzwNsw p( |m w>p( ) } -

which shows that

a.var[pr{y|do(X

holds.

= 2)}] > a.var[pr{y|do(X

e R 1|

= x); s}]

Similarly,  for a.wvafpr{y|do(X = x);2’,s}] and
a.vafpr{y| do(X = z); s}], we have

var{z pr(va|a’, s, w)pr(s|z, w)pr(w)

s, w

—var{

> Pr(yls, w)pr(s|z, w)pr(w)

s,w

}
}
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~ Z priy.|z’, s, w)pr(yo|z’, s, w) Hui, H. and Zhongguo, Z. (2008). Comparing identifiabil-
5w ity criteria for causal effects in Gaussian causal models (In
{ pr(s|z, w)2pr(w)? } Chinese) Acta Mathematica Scientia, 28, 808—817.
E )
N/ sw Imai, K., Keele, L., Tingley, D. and Yamamoto, T. (2011).

pr(s|z, w)?pr(w)? Unpacking the black box of causality: Learning about
= _pruils, w)pr(yols, w) E Tow causal mechanisms from experimental and observational
S studies. American Political Science Reviet05, 765-789.

- Zpr(yﬂs,w)pr(yg\s,'w) Kuroki, M. (2000). Selection of post-treatment variables
o - A - ) for estimating total effect from empirical researdournal
< E { pr(s|z, w)"pr(w)”  Pr(s|z, w)"pr(w) } >0, ofthe Japanese Statistical Socie3@, 129-142.

Ny’ sw Nsw . . . L . . .
Kuroki, M. (2007). Graphical identifiability criteria
which shows that for causal effects in studies with an unobserved treat-
ment/response variablBiometrikg 94, 37-47.

var[p = x);a', s}] > a.varp =1);
avarpriy|do(X = z); ', s}] = avarlpr{y|do(X = z); s}] Kuroki, M. (2012). Optimizing a control plan using causal
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