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Abstract

This paper considers the problem of estimating
causal effects of a treatment on a response us-
ing supplementary variables. Under the assump-
tion that a treatment is associated with a response
through a univariate supplementary variable in
the framework of linear regression models, Cox
(1960) showed that the estimation accuracy of
the regression coefficient of the treatment on the
response in the single linear regression model
can be improved by using the recursive linear re-
gression model based on the supplementary vari-
able from the viewpoint of the asymptotic vari-
ance. However, such assumptions may not hold
in many practical situations. In this paper, we
consider the situation where a treatment is as-
sociated with a response through a set of sup-
plementary variables in both linear and discrete
models. Then, we show that the estimation accu-
racy of the causal effect can be improved by us-
ing the supplementary variables. Different from
Cox (1960), the results of this paper are derived
without the assumption of Gaussian error terms
in linear models or dichotomous variables in dis-
crete models. The results of this paper help us
to obtain the reliable evaluation of causal effects
from observed data.

1 Introduction

Supplementary variables are considered as variables that
are not of interest in themselves but help us to identify
target quantities and/or understand data generating mech-
anism in practical studies. For example, the instrumental
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variable (Bowden and Turkington, 1984) is one of supple-
mentary variables because it enables us to identify causal
effects under certain assumptions (Angrist et al, 1996) and
evaluate the bounds on causal effects under milder condi-
tions (Manski, 2007; Pearl, 2009) in the presence of un-
observed confounders. In addition, proxy variables of a
treatment, a response and/or covariates are also considered
as supplementary variables because the proxy variables en-
able us to identify the causal effect even when it is diffi-
cult to observe the variables of our main interest (Cai and
Kuroki, 2008; Kuroki, 2007; Kuroki and Pearl, 2013). Fur-
thermore, intermediate variables are often considered as
supplementary variables since they are used to identify var-
ious kinds of causal quantities (Pearl, 2001, 2009) as well
as to understand data generating mechanisms in mediation
analysis (Baron and Kenny, 1986; Imai et al, 2011; MacK-
innon, 2008).

In this paper, we focus on the estimation problem of causal
effects using a set of supplementary variables including
intermediate variables. When data generating mecha-
nism among variables can be described by nonparametric
structural equation models and the corresponding directed
acyclic graph, Pearl (2009) provided the front door crite-
rion as the graphical identification condition for causal ef-
fects based on intermediate variables. In addition, in the
framework of Gaussian linear structural equation models,
Kuroki (2000) formulated the exact variance of the causal
effect based on the front door criterion. Furthermore,
Kuroki and Cai (2004) compared some graphical identi-
fication conditions in terms of the asymptotic variance of
causal effects. On the other hand, under the assumption
that a treatment is associated with a response through a
univariate intermediate variable, Cox (1960) showed that
the estimation accuracy of the regression coefficient of the
treatment on the response in the single linear regression
model can be improved by using the recursive linear re-
gression model based on the intermediate variable from the
viewpoint of the asymptotic variance. Under the assump-
tion that a univariate intermediate variable, Hui and Zhong-
guo (2008) and Ramsahai (2012) compared the front-door
criterion, the back-door criterion (Pearl, 2009) and the ex-
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tended back door criterion (Lauritzen, 2001) in terms of
the asymptotic variances of causal effects based on Gaus-
sian linear structural equation models. In addition, Pearl
(2012) discussed the same problem as Cox (1960) based
on discrete models and stated that the same result as Cox
(1960) can be obtained when a treatment, a response and
an intermediate variable are dichotomous. However, such
assumptions may not hold in many practical situations.

In this paper, we consider the situation where a treatment
is associated with a response through a set of supplemen-
tary variables in both linear and discrete models. Then, we
show that the estimation accuracy of the causal effect can
be improved by using the supplementary variables. Dif-
ferent from Cox (1960), the results of this paper are de-
rived without the assumption of Gaussian error terms in
linear models or dichotomous variables in discrete models.
In addition, we apply our results to an empirical example
from process analysis of coating conditions for car bodies
in quality control (Kuroki, 2012; Okuno et al, 1986). The
results of this paper help us to obtain the reliable evaluation
of causal effects from observed data.

2 Causal Bayesian Network

Let pr(v1, . . . , vn) be a strictly positive (or non-degenerate)
joint distribution of a setV = {V1, · · · , Vn} of variables,
pr(vi|vj) the conditional distribution ofVi givenVj = vj
(Vi, Vj∈V ) and pr(vi) the marginal distribution ofVi. Sim-
ilar notation is used for other distributions. For graph the-
oretic terminology used in this paper, for example, refer to
Pearl (2009).

When a directed acyclic graphG = (V ,E) with a setV
of variables and a setE of arrows is given and the joint
distribution ofV is factorized recursively according to the
graphG as the following equation, the graph is called a
Bayesian network:

pr(v1, · · · , vn) =
n

Π
i=1

pr{vi|pa(vi)}, (1)

where pa(vi) is a set of parents ofVi in G. When pa(vi)
is an empty set, pr{vi|pa(vi)} is the marginal distribution
pr(vi) of vi.

If a joint distribution is factorized recursively according
to the directed acyclic graphG, the conditional inde-
pendencies implied by the factorization (1) can be read
off from G according to the d-separation criterion (Pearl,
1988), that is, ifW 1 d-separatesW 2 from W 3 in G
(W 1, W 2, W 3⊂V ), thenW 2 is conditionally indepen-
dent ofW 3 givenW 1 in the corresponding recursive fac-
torization (1); See Pearl (1988, 2009).

The recursive factorization (1) can be given causal interpre-
tation, and the arrows inG as representing potential causal
influences between the corresponding variables and, alter-

natively, the absence of arrows represents no direct causal
influence between the corresponding variables. In this in-
terpretation, the recursive factorization (1) still holds, but
the factors are further assumed to represent autonomous
data generating mechanism, that is, each family conditional
probability pr{vi|pa(vi)} represents a stochastic process
by which the values ofVi are assigned in response to the
values pa(vi) (previously chosen forVi’s parents), and the
stochastic variation of this assignment is assumed indepen-
dent of the variations in all other assignments in the model
(Bareinboim et al, 2011). Then, the Bayesian networkG is
called a causal Bayesian network.

Based on the theory of causal Bayesian networks, Pearl
(2009) defined a causal effect as a distribution of a response
when conducting an external intervention to a treatment,
where an ‘external intervention’ means that a variable is
forced to take on some fixed value, regardless of the values
of other variables.

Definition 1(Causal effect)
Let V = {X,Y }∪Q ({X,Y }∩Q = ϕ) be a set of vari-
ables represented in a causal Bayesian networkG. The
causal effect ofX onY is defined by

pr{y|do(X = x)} =
∑
q

pr(x, y, q)
pr{x|pa(x)}

, (2)

where do(X = x) means thatX is set to a valuex by
an external intervention. In addition, summation signs are
replaced by integrals whenever the summed variables are
continuous. 2

Given a causal Bayesian networkG, in order to evaluate the
causal effect ofX onY from a joint factorized distribution
of observed variables, it is required to observe not onlyX
andY but also a setW of other variables, such as con-
founders. Pearl (2009) provided ‘the back door criterion’
as one of graphical identifiability criteria for the causal ef-
fect, where ‘identifiable’ means that the causal effect can be
determined uniquely from a joint distribution of observed
variables.

Definition 2 (Back door criterion)
Suppose thatX is a non-descendant ofY in a directed
acyclic graphG. If a setW of vertices satisfies the fol-
lowing conditions relative to an ordered pair(X,Y ) of ver-
tices, thenW is said to satisfy the back door criterion rela-
tive to (X,Y ):

(i) no vertex inW is a descendant ofX;

(ii) W blocks every path betweenX andY that con-
tains an arrow pointing toX. 2

If a setW of variables satisfies the back door criterion rel-
ative to(X,Y ) in a causal Bayesian networkG, then the
causal effect ofX onY is identifiable through the observa-
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tion ofW∪{X,Y } and is given by the formula

pr{y|do(X = x)} =
∑
w

pr(y|x,w)pr(w). (3)

3 Analytical Results

3.1 Linear Model

In this section, for two distinct setsS andW of variables,
we assume thatX is conditionally independent ofY given
a setS ∪ W of supplementary variables andW satisfies
the back door criterion relative to(X,Y ). This situation
can be described as the graph shown in Fig. 1.

Fig. 1: Causal diagram (1)

When observed data is assumed to be generated according
to a linear structural equation model and the corresponding
directed acyclic graph shown in Fig. 1, in order to estimate
dE{Y |do(X = x)}/dx, we consider the following linear
regression model:

Y = βy.xw + βyx·xwX +Byw.xwW + ϵy.xw, (4)

whereβy.xw, βyx·xw andByw.xw are an intercept, the re-
gression coefficients ofX and the vector of the regression
coefficients ofW in the regression model ofY onX and
W , respectively. Similar notation is used for other regres-
sion parameters. In addition, the error termϵy.xw is as-
sumed to follow the distribution with the mean0 and the
varianceσyy.xw > 0 and{X}∪W is independent ofϵy.xw.
Then, we havedE{Y |do(X = x)}/dx = βyx·xw.

Noting thatX is conditionally independent ofY given
S ∪ W , since we haveβyx·xw = Bys.xswBsx.xw =
Bys.swBsx.xw, we can also use the following recursive re-
gression model to estimateBys.sw andBsx.xw:

Y = βy.sw +Bys.swS +Byw.swW + ϵy.sw, (5)

S = Bs.xsw +Bsx.xswX +Bss.xswS

+Bsw.xswW + ϵs.xsw, (6)

where a set{ϵy.sw} ∪ ϵs.xsw of error terms follows the
multivariate distribution with mean vector0 and positive-
definite diagonal covariance matrix.Bs.xsw andBss.xsw

are the vector of the intercepts and the matrix of the regres-
sion coefficients in the regression models ofS on X, S
andW , respectively. In addition, it is assumed that the ex-
planatory variables in the regression models (5) and (6) are
independent of error terms which appear in each equation.

Furthermore, the elements ofS are arranged to satisfy that
Bss.xsw is an upper triangular matrix. Here, in the discus-
sion of this section, when it is known from prior knowledge
that a treatment is conditionally independent of a response
given supplementary variables and it is justified that ob-
served data is generated based on the distribution satisfy-
ing such a conditional independence, the distributions of
explanatory variables and error terms are not limited to the
Gaussian distribution, as far as the ordinary least squares
method can be applied to obtaining the unbiased estimators
of the regression coefficients. On the other hand, when it is
necessary to conduct a statistical test of the conditional in-
dependence between the treatment and the response given
supplementary variables, it is required to make assump-
tions about the nature of the error terms and it is commonly
assumed that the error terms follow the Gaussian distribu-
tion.

Equation (6) can be rewritten by

S = (I −Bss.xsw)
−1Bs.xsw + (I −Bss.xsw)

−1Bsx.xswX

+(I −Bss.xsw)
−1Bsw.xswW

+(I −Bss.xsw)
−1ϵs.xsw,

= Bs.xw +Bsx.xwX +Bsw.xwW + ϵs.xw,

whereBs.xw = (I − Bss.xsw)
−1Bs.xsw, Bsx.xw = (I −

Bss.xsw)
−1Bsx.xsw, Bsw.xw = (I − Bss.xsw)

−1Bsw.xsw

andϵs.xw = (I −Bss.xsw)
−1ϵs.xsw. Thus,Bs.xw, Bsx.xw

and Bsw.xw are estimable by using the ordinary least
square method based on the regression model of the ele-
ment ofS onX andW . Here, it is noted that the elements
of ϵs.xw may not be independent of each other. On the
other hand, instead of equation (5), we can also use

Y = βy.xsw +Bys.xswS + βyx·xswX

+Byw.xswW + ϵy.xsw (7)

to estimateBys.xsw, which is consistent withBys.sw since
X is conditionally independent ofY givenS ∪W .

Let β̂yx.xw be the ordinary least square estimator of
βyx.w, with a similar notation used for other ordinary least
square estimators. Then, for̂βyx.xw, B̂ys.swB̂sx.xw and
B̂ys.xswB̂sx.xw, if their variances exist, both

var(β̂yx.xw) ≥ var(B̂ys.swB̂sx.xw) (8)

and

var(B̂ys.xswB̂sx.xw) ≥ var(B̂ys.swB̂sx.xw) (9)

hold. The proof is provided in Appendix I.

Since the result is based on both the exact variance and
several supplementary variables, the result can be consid-
ered as the improvement of Cox (1960) whose discussion
is based on the asymptotic variance and a univariate sup-
plementary variable. To our surprise, as far as no per-
fect multi-collinearity occurs, even if some elements of
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{X} ∪ S ∪W are highly associated, the estimation accu-
racy of B̂ys.swB̂sx.xw is superior to that of̂βyx.xw. How-
ever, var(β̂yx.xw) − var(B̂ys.xswB̂sx.xw) may not be non-
negative.

3.2 Discrete Model

In this section, we assume thatS∪W ∪{X,Y } follows the
multinomial distribution MN{N, pr(x, y, s,w)} with sam-
ple sizeN and cell probabilities pr(x, y, s,w) > 0 for any
x, y, s andw. WhenX is conditionally independent ofY
given a setS ∪W of supplementary variables andW sat-
isfies the back door criterion relative to(X,Y ), as shown
in Fig. 1, we consider the following three quantities for the
causal effect ofX onY :

pr{y|do(X = x)} =
∑
w

pr(y|x,w)pr(w),

pr{y|do(X = x); s} =
∑
s,w

pr(y|s,w)pr(s|x,w)pr(w),

pr{y|do(X = x);x′, s}
=

∑
s,w

pr(y|x′, s,w)pr(s|x,w)pr(w)

for x ̸= x′. Here, pr{y|do(X = x); s} is the causal ef-
fect of X on Y when the information onS is used, and
pr{y|do(X = x);x′, s} is the causal effect ofX on Y
when the information on bothS andX = x′ are used .
Then, it is obvious that pr{y|do(X = x)} = pr{y|do(X =
x); s} = pr{y|do(X = x);x′, s} holds from the assump-
tions.

Letting nxysw represents the number of subjects in cell
(X,Y,S,W ) = (x, y, s,w), with a similar notation
used for other cells, pr(y|x,w), pr(y|x, s,w), pr(y|s,w),
pr(s|x,w) and pr(w) are estimated by

p̂r(y|x,w) =
nxyw

nxw
, p̂r(y|x, s,w) =

nxysw

nxsw
,

p̂r(y|s,w) =
nysw

nsw
, p̂r(s|x,w) =

nxsw

nxw
,

p̂r(w) =
nw

N
,

respectively, whereN =
∑

x,y,s,w

nxysw. Then, both

a.var[p̂r{y|do(X = x)}] ≥ a.var[p̂r{y|do(X = x); s}]
(10)

and

a.var[p̂r{y|do(X = x);x′, s}]
≥ a.var[p̂r{y|do(X = x); s}] (11)

hold for x ̸= x′, where a.var(·) indicates the asymptotic
variance. The proof is provided in Appendix II. Here, it

is noted that there is no qualitative inequality relationship
betweenp̂r{y|do(X = x)} andp̂r{y|do(X = x);x′, s}.

From Sections 3.1 and 3.2, the supplementary variables can
improve the estimation accuracies of causal effects if we
use the conditional distribution ofY given the supplemen-
tary variables only to estimate the causal effects, under the
assumption that a treatment is conditionally independent
of a response given supplementary variables. However, it
is difficult to provide the qualitative judgment whether or
not the estimation accuracies can be improved by using the
supplementary variables if the assumption does not hold.
In addition, when we apply our results to real data analysis
with the finite sample size, it is noted that if the difference
between the two variances is very small then the inequality
relationships may be reversed because of sampling variabil-
ity.

4 Simulation Experiments

4.1 Linear Model

In this section, through numerical experiments, we exam-
ine the inequality relationships between the estimation ac-
curacies stated in Section 3.1. For simplicity, we consider
the causal Bayesian network shown in Fig. 2 and the cor-
responding linear structural equation model in whichX is
conditionally independent ofY givenS and an empty set
satisfies the back door criterion relative to(X,Y ), that is,

Y = S + ϵy.s, S = X + ϵs.x, X = ϵx.

This situation can be considered as a simple version of Fig.
1.

Fig. 2: Causal diagram (2)

Under the setting, we consider the following two cases:

Case 1 (Symmetric distribution):ϵy.s and ϵx fol-
low the standard normal distributionN(0, 1) inde-
pendently, butϵs.x follows the normal distribution
N(0, σss.x) with the mean0 and the varianceσss.x

andϵs.x is marginally independent of{ϵy.s, ϵx}.

Case 2 (Asymmetric distribution):ϵy.s andϵx follow
the exponential distribution with the location−1 and
the scale1 independently, butϵs.x follows the expo-
nential distribution with the location−λ and the scale
λ andϵs.x is marginally independent of{ϵy.s, ϵx} for
λ > 0.

We setσss.x to 0.01, 0.500 and1.000 in Case 1 andλ2

to 0.01, 0.500 and1.000 in Case 2 respectively. It is rea-
sonable to consider that the multi-collinearity has a seri-
ous effect on the estimation accuracies of the causal effect
when the parametersσss.x andλ are small, but not when
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Table 1: Simulation Results (Linear Model)

Case 1
σss.x = 0.01 σss.x = 0.5 σss.x = 1.000

β̂ys.sβ̂sx.x β̂yx.x β̂ys.xsβ̂sx.x β̂ys.sβ̂sx.x β̂yx.x β̂ys.xsβ̂sx.x β̂ys.sβ̂sx.x β̂yx.x β̂ys.xsβ̂sx.x

N = 10 0.372 0.375 4.197 0.396 0.463 0.663 0.454 0.533 0.573
N = 50 0.146 0.146 1.460 0.157 0.178 0.232 0.176 0.204 0.208

Case 2
λ2 = 0.01 λ2 = 0.5 λ2 = 1.000

β̂ys.sβ̂sx.x β̂yx.x β̂ys.xsβ̂sx.x β̂ys.sβ̂sx.x β̂yx.x β̂ys.xsβ̂sx.x β̂ys.sβ̂sx.x β̂yx.x β̂ys.xsβ̂sx.x

N = 10 4.619 4.631 4.620 0.690 0.813 0.746 0.546 0.655 0.720
N = 50 1.548 1.555 1.548 0.234 0.265 0.245 0.187 0.217 0.221

Table 2: Simulation Results (Discrete Model)

Case 1 p̂r{y1|do(X = x1); s} p̂r{y1|do(X = x1)} p̂r{y1|do(X = x1);x0, s}
N = 50 0.074 0.101 0.105
N = 100 0.053 0.071 0.073

Case 2 p̂r{y1|do(X = x1); s} p̂r{y1|do(X = x1)} p̂r{y1|do(X = x1);x0, s}
N = 50 0.086 0.101 0.263
N = 100 0.061 0.071 0.176

these parameters are large. In order to verify the proper-
ties of the variances of the estimators ofβys.sβsx.x, βyx.x

andβys·xβsx.x through the ordinary least square method in
Section 3.1, we did simulation experiments based on these
settings in sample sizesN = 10 and50.

Table 1 reports the standard errors ofβ̂ys.sβ̂sx.x, β̂yx.x

andβ̂ys.xsβ̂sx.x from 5000 replications. From Table 1, for
each case, the standard errors ofβ̂ys.sβ̂sx.x are smaller than
those ofβ̂yx.x andβ̂ys·xsβ̂sx.x, which is consistent with the
results. On the other hand, althoughβ̂yx.x provides better
estimation accuracies than̂βys·xsβ̂sx.x, the quantitative dif-
ference between them is smaller when the variance ofϵs.x
is larger. In addition, when the variance ofϵs.x is small, the
difference between the estimation accuracies ofβ̂ys.sβ̂sx.x

andβ̂yx.x is small. However, when the variance ofϵs.x is
large, the difference between the estimation accuracies of
β̂ys.sβ̂sx.x andβ̂yx.x is large.

4.2 Discrete Model

In this section, we examine the inequality relationships be-
tween the estimation accuracies stated in Section 3.2. For
dichotomous variablesX,Y and S (x ∈ {x0, x1}, y ∈
{y0, y1}, s ∈ {s0, s1}), under the setting pr(x1) = 0.5,
pr(y1|s1) = 0.6 and pr(y1|s0) = 0.3, whenX is condi-
tionally independent ofY givenS and an empty set satis-
fies the back door criterion relative to(X,Y ), as shown in
Fig. 2, we consider the following two cases:

Case 1 (Independence betweenX andS): pr(s1|x1)
= 0.70 and pr(s1|x0) = 0.70,

Case 2 (Dependence betweenX andS): pr(s1|x1) =
0.70 and pr(s1|x0) = 0.10.

In order to verify the properties of the variances of the esti-

mators of pr{y1|do(X = x1)}, pr{y1|do(X = x1); s} and
pr{y1|do(X = x1);x0, s}, we did simulation experiments
based on these settings in sample sizesN = 50 and100.

Table 2 reports the standard errors ofp̂r{y1|do(X = x1)},
p̂r{y1|do(X = x1); s} and p̂r{y1|do(X = x1);x0, s}
from 5000 replication. From Table 2, for each case,
the standard errors of̂pr{y1|do(X = x1); s} are smaller
than those ofp̂r{y1|do(X = x1)} and p̂r{y1|do(X =
x1);x0, s}, which is consistent with the results in Section
3.2. On the other hand, althougĥpr{y1|do(X = x1)}
provides better estimation accuracies thanp̂r{y1|do(X =
x1);x0, s}, the quantitative difference between them is
small whenX is independent ofS (Case 1) compared to
the case whereX is not independent ofS (Case 2). In
addition, the difference between the estimation accuracies
of p̂r{y1|do(X = x1); s} andp̂r{y1|do(X = x1)} is not
large in Case 2, compared to Case 1.

5 Application

We illustrate our results by using the data from a study of
setting up coating conditions for car bodies, reported by
Okuno et al. (1986). According to Okuno et al. (1986), car
bodies are coated in order to increase both the rust protec-
tion quality and the visual appearance, and a certain level
of the coating thickness must be ensured in the process.
Okuno et al. (1986) collected nonexperimental data in the
coating process, in order to examine the process conditions
and to increase the transfer efficiency. For details, refer to
Okuno et al. (1986) and Kuroki (2012). The sample size is
N = 38 and the variables of our interest are Dilution ratio
(X), Degree of viscosity(S)

Temperature(W1), Degree of moisture(W2)
Transfer efficiency(Y ).

The sample correlation matrix is provided in Table 3. Since
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Fig. 3: Causal diagram of process analysis

Table 3: Correlation Matrix extracted from Kuroki (2012).
X S W1 W2 Y

X 1.000 -0.678 0.145 -0.496 -0.198
S -0.678 1.000 -0.509 0.684 0.463
W1 0.145 -0.509 1.000 -0.571 -0.431
W2 -0.496 0.684 -0.571 1.000 0.282
Y -0.198 0.463 -0.431 0.282 1.000

it is assumed that{W1,W2} satisfies the back door cri-
terion relative to(X,Y ) and the observed data is gen-
erated by the Gaussian linear structural equation model
according to Kuroki (2012),dE{Y |do(X = x)}/dx is
identifiable and is given byβyx.xw1w2 . In addition, un-
der the same assumptions as Kuroki (2012), the statisti-
cal t test for the no-partial correlation betweenX andY
given{S,W1,W2} on Table 3 yields t-value= 0.440 with
33 degrees of freedom, which gives a p-value of0.669.
Thus, it would be reasonable to assume thatX is condi-
tionally independent ofY given {S,W1,W2} as shown
in Fig.3 anddE{Y |do(X = x)}/dx can be estimated by
β̂yx.xw1w2 , β̂ys.sw1w2 β̂sx.xw1w2 andβ̂ys.xsw1w2 β̂sx.xw1w2 .
Then, the standard errors estimated using the bootstrap
methods with 5000 replicates are var(β̂yx.xw1w2) = 0.180

, var(β̂ys.xsw1w2 β̂sx.xw1w2) = 0.145 and var(β̂ys.sw1w2

×β̂sx.xw1w2) = 0.111 , which is consistent with the re-
sults in Section 3.1. In addition, var(β̂yx.xw1w2

) is larger
than var(β̂ys.xsw1w2 β̂sx.xw1w2) in this case study. Thus,
the results in this case study show that it would be better to
use supplementary variables{W1,W2, S} to improve the
estimation accuracy of the causal effect.

6 Discussion

The reliable evaluation of causal effects gains increasing
interest in practical science. In many situations, not only a
treatment and a response are measured, but also some sup-
plementary variables are measured. This paper discussed
the role of supplementary variables in the estimation prob-
lem of causal effects, and showed that if a treatment is asso-
ciated with a response variable through some supplemen-
tary variables then supplementary variables enable us to
improve the estimation accuracies without amplifying the
bias related to the target quantities. Noting that the pro-
posed assumption of the conditional independence can be
tested from observed data under the given distributional as-
sumption and thus it is not always necessary to have prior
knowledge that the treatment has no direct effect on the re-
sponse, the results of the paper have a practical advantage
in the sense that the estimation accuracy can be improved

by using supplementary variables if the assumption is sta-
tistically affirmative . On the other hand, if we have such
prior knowledge, the results of this paper help us to judge
from graph structures under what situation the estimation
accuracy of the causal effect can be improved by supple-
mentary variables, and to obtain the reliable evaluation of
causal effects from observed data.

This paper assumed that a treatment is conditionally inde-
pendent of a response given a set of supplementary vari-
ables from prior knowledge. Even when we know that
such an assumption holds from prior knowledge, if the vari-
ances of the causal effects do not exist in linear models
and zero frequencies are included in discrete models be-
cause of small sample size, it may be difficult to know
whether or not our results hold. On the other hand, if we
do not know whether or not such an assumption holds from
prior knowledge, the conditional independence should be
checked based on statistical hypothetical tests and thus it
would be required to construct test statistics based on small
sample size, which is a future work. In addition, the discus-
sion of this paper is related to thez-identifiability problem
which occurs when the researcher aims to identify causal
effects under a situation where observed data might not
be enough but randomized experiments over supplemen-
tary variables are available (Bareinboim and Pearl, 2012).
We did not discuss the estimation problem based on the
z-identifiability conditions, which would be another future
work.

Appendices

Appendix I

For β̂yx·xw andB̂ys·swB̂sx·xw, we have

var(β̂yx·xw) = σyy·xwE
(
S−1
xx·w

)
and

var(B̂ys·swB̂sx·xw) = σyy·swE
(
B̂′

sx·xwS
−1
ss·wB̂sx·xw

)
+Bys·swΣss·xwB

′
ys·swE

(
S−1
xx·w

)
,

whereSss·w is the sum of squared matrix ofS givenW
and similar notation is used for other matrices. Here,
let Σss.xw be a conditional covariance matrix ofS given
{X} ∪ W . Then, noting that bothσyy.xw = σyy.sw +
Bys.swΣss.xwB

′
ys.sw andβyx·xw = Bys.swBsx.xw hold,

from B̂sx·xw = Ssx.wS
−1
xx.w and Sxx·sw = Sxx·w −

Sxs·wS
−1
ss·wSsx·w, we have

var(β̂yx·xw)− var(B̂ys·swB̂sx·xw)

= σyy·swE
(
S−1
xx·w − B̂′

sx·xwS
−1
ss·wB̂sx·xw

)
= σyy·swE

{
S−2
xx·w(Sxx·w − Sxs·wS

−1
ss·wSsx·w)

}
= σyy·swE

(
S−2
xx·wSxx·sw

)
,

which shows that var(β̂yx·xw)−var(B̂ys·swB̂sx·xw) is non-
negative.
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Similarly, for B̂ys·xswB̂sx·xw, we have

var(B̂ys·xswB̂sx·xw) = σyy·swE
(
B̂sx·xwS

−1
ss·xwB̂

′
sx·xw

)
+Bys·swΣss·xwB

′
ys·swE

(
S−1
xx·w

)
.

Thus, noting thatSss·w −Sss·xw is a positive semi-definite
matrix, we have

var(B̂ys·xswB̂sx·xw)− var(B̂ys·swB̂sx·xw)

= σyy·swE
{
B̂sx·xw(S

−1
ss·xw − S−1

ss·w)B̂
′
sx·xw

}
≥ 0.

Appendix II

For a.var[p̂r{y|do(X = x)}] and a.var[p̂r{y|do(X = x);
s}], let pr(y0|x,w) = 1− pr(y1|x,w), pr(y0|s,w) = 1−
pr(y1|s,w) and pr(y0|x′, s,w) = 1 − pr(y1|x′, s,w). In
addition, if the denominators of estimated conditional prob-
abilities are zero, then they are considered as zero in this
paper. From the variance basic formula, we have

var

{∑
w

p̂r(y1|x,w)p̂r(w)

}

−var

{∑
s,w

p̂r(y1|s,w)p̂r(s|x,w)p̂r(w)

}

=
∑
w

pr(y1|x,w)pr(y0|x,w)E

{
p̂r(w)2

nxw

}

+var

{∑
w

pr(y1|x,w)p̂r(w)

}

−var

{∑
s,w

pr(y1|s,w)p̂r(s|x,w)p̂r(w)

}

−
∑
s,w

pr(y1|s,w)pr(y0|s,w)E

{
p̂r(s|x,w)2p̂r(w)2

nsw

}

≃
∑
w

pr(y1|x,w)pr(y0|x,w)E

{
p̂r(w)2

nxw

}

+var

{∑
w

pr(y1|x,w)p̂r(w)

}

−var

{∑
s,w

pr(y1|s,w)pr(s|x,w)p̂r(w)

}

−E

[
var

{∑
s,w

pr(y1|s,w)p̂r(s|x,w)p̂r(w)

}]

−
∑
s,w

pr(y1|s,w)pr(y0|s,w)E

{
p̂r(s|x,w)2p̂r(w)2

nsw

}

=
∑
w

pr(y1|x,w)pr(y0|x,w)E

{
p̂r(w)2

nxw

}
−
∑
s,w

pr(y1|s,w)pr(y0|s,w)E

{
p̂r(s|x,w)2p̂r(w)2

nsw

}

−
∑
s,w

pr(y1|s,w)2pr(s|x,w)

×(1− pr(s|x,w))E

{
p̂r(w)2

nxw

}
+

∑
s̸=s′,w

pr(y1|s,w)pr(y1|s′,w)pr(s|x,w)

×pr(s′|x,w)E

{
p̂r(w)2

nxw

}
=

∑
w

pr(y1|x,w)pr(y0|x,w)E

{
p̂r(w)2

nxw

}
−
∑
s,w

pr(y1|s,w)pr(y0|s,w)E

{
p̂r(s|x,w)2p̂r(w)2

nsw

}

−
∑
s,w

pr(y1|s,w)2pr(s|x,w)E

{
p̂r(w)2

nxw

}

+
∑
w

pr(y1|x,w)2E

{
p̂r(w)2

nxw

}
=

∑
w

pr(y1|x,w)E

{
p̂r(w)2

nxw

}
−
∑
s,w

pr(y1|s,w)pr(y0|s,w)E

{
p̂r(s|x,w)2p̂r(w)2

nsw

}

−
∑
s,w

pr(y1|s,w)2pr(s|x,w)E

{
p̂r(w)2

nxw

}

=
∑
s,w

pr(y1|s,w)pr(y0|s,w)pr(s|x,w)E

{
p̂r(w)2

nxw

}

−
∑
s,w

pr(y1|s,w)pr(y0|s,w)E

{
p̂r(s|x,w)2p̂r(w)2

nsw

}

=
∑
w

[∑
s

pr(y1|s,w)pr(y0|s,w)

×
[
pr(s|x,w)E

{
p̂r(w)2

nxw

}
− E

{
p̂r(s|x,w)2p̂r(w)2

nsw

}]]
=

∑
s,w

pr(y1|s,w)pr(y0|s,w)

×E

{
nsw − nxsw

nxwnsw
p̂r(s|x,w)p̂r(w)2

}
≥ 0,

which shows that

a.var[p̂r{y|do(X = x)}] ≥ a.var[p̂r{y|do(X = x); s}]

holds.

Similarly, for a.var[p̂r{y|do(X = x);x′, s}] and
a.var[p̂r{y| do(X = x); s}], we have

var

{∑
s,w

p̂r(y1|x′, s,w)p̂r(s|x,w)p̂r(w)

}

−var

{∑
s,w

p̂r(y1|s,w)p̂r(s|x,w)p̂r(w)

}
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≃
∑
s,w

pr(y1|x′, s,w)pr(y0|x′, s,w)

×E

{
p̂r(s|x,w)2p̂r(w)2

nx′sw

}
−
∑
s,w

pr(y1|s,w)pr(y0|s,w)E

{
p̂r(s|x,w)2p̂r(w)2

nsw

}
=

∑
s,w

pr(y1|s,w)pr(y0|s,w)

×E

{
p̂r(s|x,w)2p̂r(w)2

nx′sw
− p̂r(s|x,w)2p̂r(w)2

nsw

}
≥ 0,

which shows that

a.var[p̂r{y|do(X = x);x′, s}] ≥ a.var[p̂r{y|do(X = x); s}]

holds.
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