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Abstract

This theoretical paper is concerned with a
rigorous non-asymptotic analysis of relation-
al learning applied to a single network. Under
suitable and intuitive conditions on features
and clique dependencies over the network, we
present the first probably approximately cor-
rect (PAC) bound for maximum likelihood
estimation (MLE). To our best knowledge,
this is the first sample complexity result of
this problem. We propose a novel combina-
tional approach to analyze complex depen-
dencies of relational data, which is crucial
to our non-asymptotic analysis. The con-
sistency of MLE under our conditions is al-
so proved as the consequence of our sample
complexity bound. Finally, our combination-
al method for analyzing dependent data can
be easily generalized to treat other general-
ized maximum likelihood estimators for rela-
tional learning.

1 Introduction

In recent years, there has been an explosion of interest
in statistical relational learning (SRL), with successful
applications including social networks, link analysis,
citation analysis and web mining(Neville and Jensen,
2007)(Sutton and Mccalium, 2006)(Xiang and Neville
2011). In many real world applications, relational da-
ta are drawn from a single network (e.g., Facebook).
In this scenario, the graph size grows with increasing
number of samples, and tasks of learning and predict-
ing are performed in a single network. In the commu-
nity of statistical relational learning, the dependen-
cies among instances can be often modeled by Markov
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networks such as relational Markov networks (Taskar
et al., 2002) and Markov logic networks (Richardson
and Domingos, 2006). Other undirected probabilis-
tic graphical models used in SRL include relational
dependency networks (Neville and Jensen, 2007), ex-
ponential random graph (p*) models (Robins et al.,
2007), and CRFs (Sutton and Mccalium, 2006).

Although there have been a number of major techni-
cal developments, few theoretical issues of relational
learning in a single network have been addressed. To
our knowledge, (Xiang and Neville 2011) is the only
paper addressing the asymptotic analysis of this prob-
lem. However, the weak dependence assumption pro-
posed in (Xiang and Neville 2011) for studying the
asymptotic behavior of the estimators is hard to check.
Moreover, the sample complexity of relational learning
in single-network domains has not been explored. In
additional, asymptotic properties have been also inves-
tigated on linear-chain conditional random fields (Sinn
and Chen, 2013)(Sinn and Poupart, 2011).

To our knowledge, there are some recent on-
asymptotic results of learning probabilistic graphical
models which often assume independent and identi-
cally distributed (i.i.d.) samples. For instance, the
PAC bound has been obtained for learning parame-
ters of high-treewidth discrete models (Abbeel et al.,
2006). For learning parameters of general Markov
Random Fields (MRFs) (c.f. Koller and Friedman,
2009) and Conditional Random Fields (CRFs) (Laffer-
ty et al., 2001), the sample complexity of MLE, maxi-
mum composite likelihood estimation (MCLE) (Lind-
say, 1988) were analyzed in (Bradley and Guestrin,
2012). More recently, the model selection consisten-
cy of M-estimators with geometrically decomposable
penalties was investigated in (Lee et al., 2013). Nev-
ertheless, the nature of relational learning for single
network domains involves a single graph with increas-
ing size and complex dependencies across data over the
graph. Therefore, methods for obtaining sample com-
plexity results from i.i.d. instances cannot be directly
applied in our problem.

In this paper, we perform non-asymptotic analysis in
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the framework of Markov networks for relational data
due to their widely applications in relational learning
and desirable analytic properties. We propose suitable
assumptions on features and an intuitive dependence
assumption, i.e., finite distance dependence. Under
these conditions, we present the first strong sample
guarantees for relational learning via MLE within the
probably approximately correct (PAC) learning frame-
work (Valiant 1984). To the best of our knowledge,
this is the first PAC bound in relational learning with
one network. Compared with recent sample complex-
ity bounds of learning MRFs and CRFs (Bradley and
Guestrin, 2012) that assume independence and identi-
cally distributed (i.i.d.) samples, our non-asymptotic
analysis throws light on the intrinsic difficulty of learn-
ing with dependent data. Furthermore, we propose a
combinational method to characterize complex depen-
dencies of data instances. Our findings from combi-
national analysis of dependent cliques illustrate that
it is the combinational structure related with depen-
dent cliques has a high impact on samples required
for MLE. We end with one consequence of our non-
asymptotic analysis, i.e., maximum likelihood estima-
tors will be consistent under our conditions.

2 Problem Formulation

2.1 Basic Setup

We consider relational learning on Markov networks.
Let G = (V, E) be a factor graph over sets of random
variables X x ), where X" is the set of input observed
attributes and ) is the set of output labels to be pre-
dicted. Given assignments to X x Y by (z,y), then
the probability density has the form

H H ‘1’(%7%; 0T)7

1
plylr) = ——
Z(l‘) TeT ceCr

where T is the set of clique templates, Cr is the set of
cliques corresponding to the template T and Z(x) de-
notes the partition function. Each potential function
U is defined on a clique ¢ which consists of a small sub-
graph of G. z. and y,. are assignments of x and y over
the clique ¢, while the clique parameters 61 are tied
for the same template. In this paper, we consider only
one template to keep the notation simple, thus drop-
ping the subscript 7. We also assume each potential
function has the log-linear form

\Il(xca Ye; 9) = exp {< 9, (b(xca yc> >}

for some real-valued parameter vector 6, and for a fea-
ture vector or sufficient statistics ¢ of each clique c.
Let Cg be the set of cliques in the graph G, n = |Cg|
and m = [{v € V|v € ¢}|, then the Markov network
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model can be written as

exp {

2
where Z,(0;z) is the partition function

Z0(0:7) = /y exp{ }dy.

Let 8* € R" be unknown true parameter, MLE seeks 6*
by maximizing the normalized log-likelihood function:

Zn(e,l') < 0’ Z ¢(xc,yc) >

ceCq

po(ylz) =

<0, ) dwe,ye) >

ceCq

1 1
g(n)(e’x) = ﬁ Z < 9,¢($c,yc) > _ﬁk)g Zn(e,l‘)
ceCq

We denote £(™)(#) as a shorthand for £(")(#;x) and
0,, = argmax,/(")(#) as the estimated parameter. S-
tandard results on exponential families (M. J. Wain-
wright and M. I. Jordan, 2008) give
1
VIO ) =~ > dlaeye) —Bolélal, (1)

ceCq

V2 (9) = —varg[¢|z]. (2)

Table 1: Notations used in this paper

G = (V, E): Markov network

v,v" € V: node (vertex)

¢, € Cg: template potential cliques

n: number of cliques (|Cg|)

m: number of nodes in one clique

d: maximal degree of nodes

A: distances between nodes and cliques

Ze, Yoo instantiation of x(y) over the clique ¢
0*: the true parameter to be estimated

én: the maximum likelihood estimate

r: the dimension of parameters

@(xe,ye): features over the clique ¢

Pmaz: the maximal magnitude of feature elements
£t (6): the normalized log-likelihood function
Eg: expectation taken with respect to pg

2.2 Definitions and Assumptions

Before our formal analysis, we outline the conditions
used in this paper. The MLE asymptotic and non-
asymptotic behaviors heavily rely on the dependence
of features over vertices and cliques. And it is rea-
sonable that the dependence of features is highly re-
lated with distances of nodes. Hence, we first define
distances of vertices and cliques, then propose an as-
sumption of feature dependence, which we call the fi-
nite distance dependence.
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Definition 2.1 (Distances of Nodes and Cliques). Let
P(v,v") be the minimal length of the path connecting
two nodes v and v' in the graph, then we define the
distance of two cliques as ¥(c,c’) = mazx{y(v,v’)|v €
c, v ed}.

Assumption 2.1 (Bounded Features). The magni-
tude of any feature vector element is upper bounded:
Gmaz = MaX; 5. 4. |¢(Zc, Ye)|. In addition, we further
assume node degrees remain bounded as n grows, i.e.,
deg(v) < d < oo for any v and n.

Assumption 2.2 (Finite Distance Dependence).
There exists a constant A* > 0 such that the cor-
relation coefficient pj(c,c’) = 0 for any feature vec-
tor element ¢; between cliques ¢ and ¢, provided that
P(e,d) > A"

Assumption 2.3 (Minimal Curvature). Assume the

minimum eigenvalue of feature covariance matriz
Apin (varg«[d|x]) = Crin > 0.

Our assumption of finite distance dependence captures
the intuition that cliques are independent if they are
far enough. The assumption of finite distance de-
pendence is similar to the irrepresentable condition
for model selection consistency of lasso (Wainwright
2009)(Zhao and Yu, 2006) and the incoherence condi-
tion (Ravikumar et al., 2010), which require nonneigh-
bors of a node are not overly dependent on neighbors of
the node. Notice that graphs satisfying the Assump-
tion 2.2 do not require that correlations of features
over nodes decay as distance increase. No matter how
strong the dependence of data have, they can still sat-
isfy the condition of finite space dependence as long as
dependence data lies in a bounded space.

In the paper (Xiang and Neville 2011), the asymptotic
analysis of relational data with one network is per-
formed under the weak dependence condition, where
the total covariance of various cliques in the network
is finite. It is easy to see that features satisfying fi-
nite distance dependence assumption will also make
weak dependence assumption in (Xiang and Neville
2011) hold. However, our finite distance dependence
assumption is easier checked in some real-world appli-
cations, where the constant A* can be estimated from
theory and practice. Moreover, one can obtain the
sample complexity of his learning problem using our
result if the finite distance dependence holds, which
is often very useful for applications. In addition, it is
hard to get the sample complexity using weak depen-
dence assumption in (Xiang and Neville 2011).

Assumption 2.3 ensures that feature components do
not become overly dependent. From the geometrical
perspective, the curvature of normalized log-likelihood
is supposed to be bounded away from zero from As-
sumption 2.3 and Eq. (2). Therefore, the function
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¢(™)(9) is curved along certain directions around the
true parameter 6* in the parameter space if Assump-
tion 2.3 holds. This guarantees the uniqueness of M-
LE, and it will be not possible to obtain a consistent
MLE if Assumption 2.3 would not hold. The role of
2.3 is rather similar to the notion of compatibility (P.
Biéhlmann and Geer, 2011) and restricted strong con-
vexity (Lee et al., 2013)(Negahban et al., 2012).

2.3 The Road Map

The intuition behind performing the non-asymptotic
analysis of relational data is simple. The Hessian of
the normalized log-likelihood function can be also con-
trolled by Assumption 2.3. Suppose we have an esti-
mate of the convergence rate of gradients of 0,,, we
can obtain the sample complexity of MLE by Taylor’s
expansion around the true parameter §*. The asymp-
totic property such as weak consistency of estimated
parameters is the offspring of the non-asymptotic anal-
ysis.

Hence, the main barrier of carrying out the above plan
is estimating the gradients’ convergence rates for de-
pendent data. Our idea of overcoming this difficulty is
to divide the network and tackle with them separate-
ly. Explicitly, the finite distance dependence of cliques
makes it possible to partition the whole network into
two groups for a given clique: the group of indepen-
dent cliques and the group of other close-by cliques.
Thus our problem is finally reduced to estimate the
number of close-by cliques for a given clique, which
can be solved by careful combinational analysis of in-
teractions nodes and cliques over the network.

3 Combinational Analysis of
Dependent Cliques

In this section, we analyze dependent cliques by com-
binational approaches. The crucial quality of our de-
velopment of dependence analysis of cliques is the
upper bound of the number of cliques within a cer-
tain distance A of one given clique ¢. More explic-
itly, our destination is to estimate the upper bound
of C(c,\) = {¢ € Cqg|l < ¥(c,d) < A}. The esti-
mate reveals the basic relationship of parameters in
the data-dependent graphical model. Therefore, the
result we obtained is not only useful for our analysis
of the PAC bound of MLE but also for studying other
problems concerning dependent data analysis.

Before proceeding further, let us define some notations
to obtain the estimate of |C(c, A)|. Consider one vertex
v € g let Vie,v,A) = {v) € V[g(v,v") < A0 ¢ ¢}
and V(e,\) = NyecV (c,v,A). From the definition of
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¥(e, '), it is easy to see that
Vie,ZA)={v e Vv ed,véc,d #c,ple,d) <AL

In other words, V(c, \) is the set of vertices in those
cliques, which distances to the given clique ¢ are not
larger than A, excluding vertices in the clique c itself.

We approach the problem of estimating the upper
bound of C(c,\) = {¢ € Cg|l < ¢¥(c, ) < A} into
three steps. First, we establish the upper bound of
|[V(e,\)|. Then we obtain an initial upper bound of
|C(c, A)| from some simple observations. In the third
step, a final tighter upper bound is obtained by care-
ful combinatorial analysis based on the initial result
gotten in the second step. Although it is very easy to
prove results in the first two steps, we still list them
as the following two lemmas separately. The reason
is that they are frequently used in proving the tighter
bound in Theorem 3.1, which is the main result in this
section.

Lemma 3.1.
[V (e,\)| < 3d>.

Proof

For each i € {1,... A}, consider vertices v’ € V (e, v, \)
with ¢(v,v") = i, then it is evident that the number of
these vertices is upper bounded by d(d — 1)*~1. Con-
sequently, we infer that

A
Ve, N < [V(e,0, M) <) dd—1)"" < 3d™

i=1

Lemma 3.2.
d
Cle,\)| <3 d>.
cen<3(," )

Proof

For any vertex v’ € V (¢, v, A), it is easy to see that the
maximal number of cliques covering v’ is (m‘il). This
fact directly leads to an obvious method to obtain one
upper bound of |C(c, \)|, i.e., counting (md—l) cliques
for each vertex in V(c,v,\). Hence, we arrive at the
conclusion that

1C(c, N)] < |V (e, A)|<m‘i 1> < 3(mci 1>dA.

O

However, this upper bound is too loose because many
cliques in C(c, \) are counted for several times and so
we call this counting method "NAIVE COUNTING”.
The approach of "NAIVE COUNTING” can be called
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the vertex-oriented counting strategy. In the vertex-
oriented method, we first estimate the upper bound of
numbers of vertices in V' (¢, v, A), then estimate the up-
per bound of numbers of cliques covering each vertex.
Although the ”NAIVE COUNTING” method is sim-
ple and even seems "naive”, it is the foundation of our
improved counting method which we call the clique-
oriented method. From the clique-oriented perspec-
tive, we investigate various cases for one clique cov-
ering vertices in V (¢, v, A). By estimating how many
times one clique in C(e,\) are counted in "NAIVE
COUNTING”, we can obtain a tighter upper bound
of C(e, A).

The next theorem (3.1) is a consequence of carrying
out this ’"BETTER COUNTING” plan. The key idea
of our proof is to divide V' (¢, v, A) into special disjoin-
t subsets first, then investigate situations that cliques
in V(¢, A) cover on these subsets carefully. Notice that
the upper bound of |C(c, A)| in Theorem (3.1) is inde-
pendent of the clique ¢, which is crucial for analyzing
convergence rates of MLE in the next section.

Theorem 3.1 (Dependent Cliques Bound). For any
cligue ¢ € Cg and positive integer A > m, d is the
mazimal degree of nodes in V. and m 1is the number
of vertices in a clique, let C(c,\) = {¢’ € Cg|l <
¥(e,d) < A}, we have

d

() l)e

|C(C7 >‘)| < 5

Proof

For one vertex v € ¢, we divide vertices in V(c,v, A)
into three disjoint subsets: V7, Vi and Vi as follows:

Vi ={v" €V(e,v, N (v, ') =1},
Vir={v € V(c,v,\)|2 < ¥(v,0") <X — 1},
Virr = {v" € V(e,v, [y (v,v') = A}
Then for a clique ¢ € C(c, A) and m > 2, there are at

most six cases that ¢ covers nodes in the network, as
listed as follows:

C1 = {c € C(c,\)|c only covers nodes in Vr},

Cy = {c € C(c,\)|c only covers nodes in V;},

C3 ={c € C(c,\)|c¢ only covers nodes in Vjs},

Cy = {c € C(c,\)|c’ covers v and nodes in V;},

Cs = {c’ € C(c,\)|c covers both nodes in V7 and V;;},
Cs = {c’ € C(c, \)|c covers both nodes in Vi and Vijs}.

The sequence in naming C1, ..., Cg follows sets of V;
to Virr. Due to A > m, we can rule out the seventh
possibility that ¢ covers nodes in all of three subsets
of Vi, Vir and Viyy. Notice that each clique in C(c, \)
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belongs to one and only one set from C; to Cg, which
leads to the fact that |C(c, A)| = Z?Zl |Cil.

We now turn to analyze how many times for a clique
C(c, A) is counted in "NAIVE COUNTING”. To make
the reasoning more clearly, it is helpful to adopt the
following order of analyzing cliques.

To begin with, for each vertex v € Vy, due to each
clique is a fully connected subgraph of the whole net-
work (M. J. Wainwright and M. I. Jordan, 2008). No-
tice that there is no edge connecting v and any node
in Vy; from the definition of V;;. Similarly, there is no
edge connecting any node in V;; and node which is not
in {v}UV(c,v,\). Hence we see that each clique in Cy
is counted exactly for m times in "NAIVE COUNT-
ING”.

Next, we consider the cases of C5 and Cg. Let Vs
be the subset of V; such that each node in Vj is
covered by certain clique in Cs. And Vijp is de-
fined in a similar manner, i.e., the subset of Vs
such that each node in Vijpr is covered by certain
clique in C5. Then it can be seen that each clique
in Cs U Cj is counted exactly for m times in "NAIVE
COUNTING”. Thus, it is not difficult to conclude that
|Cal +1C5| + |Csl < (Ve + Vil + Virr DI (,24)-

We proceed to study cases of C7 and Cy. It is observed
that the number of nodes covered by Cy and C4 equals
|Vi| —|Vr/|. For the clique Cy, we use the obvious esti-
mate of |C1| < ([V7|—|Vi])|(,,%,)- It is not difficult to
verify that |Cy| < L= (|Vi| - |V[/|)‘(mci1). Therefore,
we infer that |C1| + |Cyq| < (V7| — ‘V]/D(mil).

Finally, the number of nodes covered by Cs is |V | —
|[Virr]- On account of the fact that the clique in
Cs5 may be counted for 1 to m times in various net-
works, we use the obvious estimate: |C3| < (|Virr| —

Vi)l (,24)-

We are ready to proceed with the final step of our
proof. For m > 2, i.e., putting estimates for C;(i =
1,...6) in one piece gives

[Cle, A

(IC2 +1C5] + |Cs|) + (IC1] + [Cal) + [Cs

1
<[ & Qi+ Wil + Warn) + Vil = Vi)
* (Vard — Vi |
II7 IIr m—l
L il il i) + (1= 2 il - vl
— m I II II7 m I I’

; (1= ) vt =waned | (%)

< [:n|v(c,v,x)| + (1 —~ ;) (Vi + le)] (md_ 1)'
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We apply the fact that |V (c,v, \)| < 3d* follows from
the proof of Lemma 3.1 and recall that

Vil + Vil <d +d(d—- 1)1 <

3d’\
B .

Therefore, we arrive at the the following estimate for
d

m > 2
A
1) (m_1>d.

In the case of m =1 (singleton cliques), it is apparent
that |C(c, \)| < [V (e,v,A)| < 3d* for any node v.

3

2

1

(5 +

|C(c, \)] <

3)

Hence, we complete the proof for any m > 1. O

We observe from Theorem 3.1 that A* plays a crucial
role in determining the upper bound of C(c, A), demon-
strating the high impact of the dependence of clique
features. We believe that the number of dependen-
t cliques within particular distances is of fundamen-
tal importance in analyzing performances of not only
MLE but also other learning methods with a single
network.

4 PAC Analysis of MLE

This section presents PAC analysis of the MLE esti-
mator and gives the corresponding sample complexity.
Our first result is the convergence rates of gradients
of the normalized log-likelihood function, which is the
base for PAC analysis.

4.1 Convergence Rates of Gradients

Lemma 4.1. Suppose Assumptions 2.1, 2.2 and 2.3
hold. Given n training samples, then for any t > 0,
we have

P [||w<n>(0*>uz > t]

r2 EW 3/1 d A
<l [Q(mﬂ)( _1)d +1]
Proof

For any t > 0 and element j of V£(™) (6*), Chebyshev’s
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inequality leads to
P [[w<n>(e*)] P> t}
P|E S o
- ﬁ J xmyc)
ceCq
< 2t2 lz ¢j J307:‘/0
ceCq
1
ngt2|: > Dioj (e, ye)]
ceCq

+ Z cov[o; (e, Ye), ¢j($lm yé)]} .
c#c!

— Eglojlz] >t

(4)

FiI‘bt we notice that D[¢;(zc,ye)] < E[pF(2e,ye)] <
2 .- Dividing the sum of covariances in Eq. (4) into
two parts

Z CO’U[¢j (zm yc)v ¢j (xlcv yé)] =

c#c!

>

1<d(e, e ) <A™

>

d(c,c)>A*

We can upper bound the first term by applying Theo-
rem 3.1:

>

1<d(e,c’)<A*

= 3 1C(e Nlps e, )/ DIy e, 5 DI (vl

ceCq

cov[pj (T, Ye), dj(ah, yl)]

d

nt)

cov[d;(Te, Ye), b5 (2L, yl)]

A* 2
nd max*

()
Evidently,

>

d(c,c’)>A*

S pile.d)y/Dly (e y)) Dol vl)] = 0.

d(c,c)>A*

Substituting the Ineq. (5) into Eq.
D[¢j(zc,ye)] < ¢2,q0, We arrive at

(4) and using

P [[WW 6%)]; > t}

2 3/1 d .
Tmaz |22 41 A+ 1.
nt2 [2 <m+ ><m—1> + }

Applying a union bound over all r elements of
VM) (0*) leads to

P [||w<">(9*)||oo > t]

B o

1

m

T¢m@x
nt?
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Continuing

P {||w<”>(0*)Hz > t]

<P 7667 > ]

HOSIERZS|

Hence we complete the proof.

2

r2¢?

max
nt2

O

A notable characteristics of convergence rates of gra-
dients is that the order of convergence rates is O(n~1)
with n dependent samples. The polynomially conver-
gence rates differ much than those in many learning
exponential families with i.i.d. n samples, which often
have the exponential convergence rates of n. More de-
tails of this phenomenon are discussed in Section 4.3.

4.2 Sample Complexity Bounds

We are now in a position to present our main theoret-
ical results: the sample complexity as the PAC bound
of relational learning with one network using MLE.

Theorem 4.1 (MLE Sample Complexity). Suppose
Assumptions 2.1, 2.2 and 2.3 hold. For anye > 0 and
0 < d < 1/2, the MLE learns the parameter within Lo
error € with probability at least 1 — §, provided that

47"2 2 3 1 d *
mazx |2 [ & 1 d)\ 1l .
" 525031277, |: <m * > <m - 1) - :|
Proof

Taking Taylor’s expansion of the normalized log-
likelihood £(™(f,,) around 6* gives

g(n)(én)
=0 (6%) + [V (67)]" (6, — 67)
40— 02 (07)(6, — 07)
+é; (0, — 6%));(8,, — 6")T L;; v20n (6, )] (0, — 0%)

where 6, = 0* + (0, — 6*) for certain 5 € (0,1).

Let t = 6, — 0*, then straightforward calculations of
the third-order term in Eq. (7) give rise to

72 (6, — 6%)];(8, — 69T {;ﬂv%n(én)] (0, — 6%)

6 {E[(¢Tt)3] +2[E(¢")]° — 3E[THE[(¢T1)*]}
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where ¢ = ¢(z,y) and E is taken with respect to p; .
Applying some basic inequality gives

iv2€n

é;[(én—H*)]j(én—Q*)T [aoj (én)} (Br—0") < 0.

(8)

Using the fact that £ (6,,) > £ (%), we obtain the
following inequality from Eq. (7) and Ineq. (8)

[vet (9*)]T(én—9*)+%(én—a*)Tv%(n) (6%)(0n—0") >
Then, we have

VL (67) 12016 — 672
>[VL™ (@) (6, — 67)

WV
|

(0, — 6%)TV2™ (0%)(8,, — 0%)

> ol

NN~ N

n — 9*)Tvar9* [¢|x](én —6%)

—~

WV

Amin(vaI‘Q* [(b‘x])nén - 0* H%

WV

Cminllén - 9*”3
Hence
P [Hén — 9|y > s}

Cmin
<P 767 > |

G ()]

Therefore, the MLE learns the parameter within Lo
error € with probability at least 1 — §, provided that

2 .2
4r max
~
ne2C?

min

3

2

1
— +1
m

4r2¢2 3/1 d "
2 _Fmax | 41 d> 1] .
" 525Cr2nm {2 (m - ) (m— 1) * }

Hence we complete the proof.

4.3 Discussions on Sample Complexity
Bounds

The first conclusion to be drawn from the sample com-
plexity bound is that as A* becomes larger (e,g. the
data dependence becomes stronger ), the sample com-
plexity of MLE will remarkably increase. Second, we
find that larger C),;,, will make the parameter be learnt
easier, which agrees with our geometric intuitions that
the maximum of more curved surfaces can be estimat-
ed with smaller searching steps. In addition, it is easy
to see that more samples are required for larger m,
i.e., more nodes of each training clique are taken. As
a consequence of this point, we expect that estimators
using smaller cliques can be more statistically efficien-
t than those using larger cliques. Finally, dependent

0.
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data in our problem makes our bound with another
term concerning with clique dependence, which grows
rapidly as A* increases.

Compared with recent sample complexity results of
learning MRF and CRF's, we find that our sample com-
plexity result has the similar form with Corollary 4.2
in (Bradley and Guestrin, 2012), although parameter
estimations in our and their analysis are tested within
Lo and L; errors, respectively. For instance, €, ¢raz
and C},iy, in our result have the same form with that in
(Bradley and Guestrin, 2012). However, roles of  in
sample complexities in our paper and those in (Bradley
and Guestrin, 2012) are totally different. More explic-
itly, the term of 1/§ in ours bound requires much more
samples than learning MRFs and CRFs with i.i.d. da-
ta, where the form of ¢ in (Bradley and Guestrin, 2012)
is just log(1/6). This intrinsic disparity of 0 terms il-
lustrates why learning with dependent data is much
more difficult than learning with i.i.d. data.

The difficulty of learning with dependent data can be
seen much more clearly from distinct convergence rates
of the gradients of likelihood functions. The order of
convergence rates of the gradient infinity norm with n
samples in our analysis is O(n™!) from the inequality
(6). However, the order of convergence rates of the
gradient infinity norm in (Bradley and Guestrin, 2012)
is O(e™™), which can be found in Lemma 9.1 in the
appendix of that paper. Notice that  in Lemma 9.1
in (Bradley and Guestrin, 2012) corresponding to ¢ in
the inequality (6) of our paper. In summarize, the fact
of the subexponential order of gradient convergence
rates reveals the inherent difficulty of learning with
dependent data.

4.4 Consistency of MLE

Owing to Theorem 4.1, it is evident that 0,, will con-
verge to 0% in probability as the number of samples
tends to infinity (n — oco0). Hence we prove the (weak)
consistency of the MLE estimators. In view of the con-
sistency of estimators is of major importance both in
theory and practice, we state the result in the following
theorem. The proof is trivial and thus omitted.

Theorem 4.2 (MLE Cousistency). Suppose Assump-
tions 2.1, 2.2 and 2.3 hold, then the sequence of es-
timators 0, from maximal likelihood estimation con-
verges in probability to the true parameter 0*.

5 Concluding Remarks

We proved the first PAC bound for learning parameter-
s of relational learning with one network under suitable
conditions. The sample complexity we obtained re-
veals various roles of problem-specific constants. The
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crucial issue of analyzing MLE performances is esti-
mating convergence rates of gradients of the normal-
ized likelihood function. Furthermore, the estimation
of convergence rates of gradients depends upon depen-
dencies of relational data. In this paper, we deal with
this difficulty by careful combinational analysis of de-
pendent cliques. We believe that the proposed combi-
national method and results in this paper will also be
useful for solving other problems of relational learning.

Last but not the least, while we have considered on-
ly the MLE in this paper, our analysis framework can
be extended to other learning methods such as maxi-
mum pseudolikelihood estimation (MPLE) and maxi-
mum composite likelihood estimation (MCLE).
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