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Abstract

This theoretical paper is concerned with the
structure learning limit for Gaussian Markov
random fields from i.i.d. samples. The com-
mon strategy is applying the Fano method
to a family of restricted ensembles. The effi-
ciency of this method, however, depends cru-
cially on selected restricted ensembles. To
break through this limitation, we analyze the
whole graph ensemble from a group theoret-
ical viewpoint. The key ingredient of our ap-
proach is the invariance of orthogonal group
actions on the symmetric Kullback-Leibler
divergence. We then establish the connection
of the learning limit and eigenvalues of con-
centration matrices, which further leads to a
sharper structure learning limit. To our best
knowledge, this is the first paper to consider
the structure learning problem via inheren-
t symmetries of the whole ensemble. Final-
ly, our approach can be applicable to other
graphical structure learning problems.

1 Introduction

Markov random fields (MRFs) offer a powerful tool
for representing high-dimensional distributions and
have found widespread applications in a variety of ar-
eas including computer vision (Geman and Geman,
1984), bio-informatics (Ahmedy et al., 2008)(Durbin
et al., 1998) and social networks analysis (Fernando,
2007)(Wasserman and Faust, 1994). The problem of
graphical model selection or structure learning refers
to recover the unknown graph using observations from
the underlying distribution. An active line of work im-
poses various restrictions on the underlying graph to
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obtain consistent procedures in the high-dimensional
regime. A variety of methods have been proposed to
estimate graph structures for general Markov random
fields (Bresler et al., 2008), Ising models (Anadkumar
et al., 2010) (Jalali et al., 2011)(Ravikumar et al.,
2010) and Erdős-Rényi random graphs (Anadkumar
et al., 2011).

For sparse Gaussian Markov random fields, a recen-
t class of popular approaches have studied estimators
based on the ℓ1-regularized Gaussian MLE (Graphi-
cal Lasso) methods (d’Aspremont et al., 2008)(Fried-
man et al., 2008)(Hsieh et al., 2011)(Ravikumar
et al., 2008)(Yuan and Lin, 2007), which statisti-
cal guarantees are analyzed in (Ravikumar et al.,
2008)(Rothman et al., 2008) under certain con-
ditions on the covariance matrix. Another ap-
proach performs the linear neighborhood selection
with ℓ1-regularization(Neighborhood Lasso) (Mein-
shausen and Bühlmann, 2006) using some regularity
assumptions for the covariance matrices and neighbor-
hood stability assumption, which sparsistency guaran-
tees are investigated in (Meinshausen and Bühlmann,
2006)(Wainwright, 2009). More recently, greedy meth-
ods (Jalali et al., 2011)(Johnson et al., 2012) are ap-
plied to learn the graph structure the restricted eigen-
value and smoothness conditions. Furthermore, re-
cent work has addressed information-theoretic limits
of model selection inspired by techniques from infor-
mation theory (Cover and Thomas, 1991) and non-
parametric estimation (Yang and Barron, 1999)(Yu et
al., 1996), establishing some necessary and sufficient
conditions for model selection of Markov random fields
(Anadkumar et al., 2011)(Bresler et al., 2008)(Wang
et al., 2010) and Ising models (Anadkumar et al.,
2010)(Santhanam and Wainwright, 2008).

In this paper, we consider the problem of the
information-theoretic limit of model selection for
Gaussian Markov random fields from i.i.d. samples,
regardless of any algorithm and computational com-
plexity. This problem is also equivalent to the estima-
tion of the concentration matrix (inverse covariance
matrix) of a zero-mean Gaussian random vector. We
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analyze this problem in the high-dimensional setting,
where the graph size p and the number of edges k are
allowed to scale with the sample size n. The common
strategy resorts to Fano’s inequality, which relies on es-
timating the mutual information between the under-
lying graphical models in restricted ensembles. And
the mutual information is usually evaluated by upper
bounds on it such as symmetrized Kullback-Leibler di-
vergences (Wang et al., 2010) between graphs in the re-
stricted ensemble. The main limitation of this method
is that it is hard to evaluate symmetric (symmetrized)
Kullback-Leibler divergences of generic graphs. There-
fore, only some restricted ensembles such as d-clique
graphs are analyzed in previous literature, limiting the
strength of results obtained.

To overcome the above difficulty due to the selection
of restricted ensembles, we directly handle the whole
graph ensemble from a group theoretical perspective.
More explicitly, we first investigate the geometry of
concentration matrices. We find that concentration
matrices of any two graphical models are connect-
ed by a space reflection or rotation in Euclidean s-
pace. Then we demonstrate the invariance of orthog-
onal group actions on concentration matrices and the
symmetric Kullback-Leibler divergence. The symmet-
ric Kullback-Leibler divergence for generic graphs us-
ing our method has a remarkably simple form, i.e.,
a symmetric function of eigenvalues of concentration
matrices. This fact establishes the connection of struc-
ture recovery limits and eigenvalues of concentration
matrices. Essentially, the extreme simplicity of final
results stem from the inherent symmetries of orthog-
onal group. And we believe that inherent symmetries
play a crucial role in graphical models learning, which
is worthy of further investigation. Last but not the
least, while we have considered only GMRF structure
learning in this paper, our analysis framework can be
extended to other structure learning problems of undi-
rected graphical models.

2 GMRF Structure Learning

We begin with some background on Gaussian Markov
random fields and graphical model selection problem.
Given an undirected graph G = (V,E), with a collec-
tion V = {1, . . . , p} of vertices joined by a collection
E ⊆ V × V of undirected edges. A Gaussian ran-
dom field is obtained by associate a scalar Gaussian
random variable Xi with each vertex i, and then spec-
ifying a joint Gaussian distribution over the random
vector X = (X1, . . . , Xp). In this paper, X has zero
mean and covariance matrix Σ which is assumed to be
positive-definite. Accordingly, its probability density

function for x ∈ Rp has the form

φ(x; Θ) =
1√

(2π)p det(Θ)−1
exp

{
−1

2
x′Θx

}
,

where Θ = Σ−1 is the inverse covariance or concentra-
tion matrix and we use the notation x′ ≡ x transposed.
For a Gaussian Markov random field, in addition to a
Gaussian random field, the non-zero structure of Θ is
specified by the associated graph structure. More pre-
cisely, Θij = 0 if (i, j) ̸∈ E by the Hammersley-Clifford
theorem (Lauritzen, 1996).

The task of graphical model selection is to estimate the
underlying graph G based on the n i.i.d. observation-
s Xn

1 := {X1, . . . , Xn}, which is highly dependent of
values of the inverse covariance matrix entries. In this
paper, we consider the collection of Gp,k(λ) of Gaus-
sian Markov random fields with p vertices, k edges and
a positive lower bound λ ∈ (0, 1) on the minimum val-
ue of non-zero off-diagonal matrix elements in Θ. A
decoder ϕ : Rn×p → Gp,k(λ) is a mapping from Xn

1 to
an estimated graph. For any decoder ϕ, the maximal
error probability over the family Gp,k(λ) is defined as

qmax(ϕ) = max
G∈Gp,k(λ)

P{ϕ(Xn
1 ) ̸= G}.

We use the following standard asymptotics notations.
an = O(bn) means that an 6 C1bn for some constant
C1 > 0 and an = Ω(bn) means that an > C2bn for
some constants C2 > 0. And an = Θ(bn) is shorthand
for an = O(bn) and an = Θ(bn).

3 Main Results and Consequences

In this section, we present main results of the structure
learning limit. The analysis and proof are deferred to
the next section.

Theorem 3.1. Given n i.i.d. observations Xn
1 :=

{X1, . . . , Xn}, then a necessary condition for asymp-
totically reliable recovery over Gp,k(λ) is

n >
p
(
log

[(
p
2

)
− k + 1

]
− 1

)
4kλ

.

Firstly, we notice that λ has a direct effect on the
difficulty of graphical model selection from the the-
orem 3.1, i.e., more samples are required for small
values of λ. Furthermore, we explore recovery lim-
its under two scalings of edge sparsity: the regime of
linear edge sparsity (k = Θ

((
p
2

))
) and sublinear edge

sparsity (k = o
((

p
2

))
), as shown in Table 1. In each

regime, we consider two important kinds of scalings of
λ = Θ

(
1
k

)
and λ = Θ(1). It’s important to realize

that the result in the theorem 3.1 roots in eigenvalues
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analysis of concentration matrices in an ensemble to a
certain extent, and it could be improved by making a
more thorough investigation of eigenvalue properties.

Table 1: The Necessary Conditions on the Number of
Samples Required for Exact Graph Recovery

PARAMETER REGIMES LOWER BOUNDS

k = Θ
((

p
2

))
λ = Θ

(
1
k

)
Θ
(
p log

(
p
2

))
k = Θ

((
p
2

))
λ = Θ(1) Θ

(
p
k log

(
p
2

))
k = o

((
p
2

))
λ = Θ

(
1
k

)
Θ
(
p log

[(
p
2

)
− k

])
k = o

((
p
2

))
λ = Θ(1) Θ

(
p
k log

[(
p
2

)
− k

])
It is worthwhile comparing our result to existing nec-
essary and sufficient conditions on model selection for
Gaussian Markov random fields. We note that Wang
et al. (Wang et al., 2010) have shown that a necessary
condition provided by for consistent graph selection
for Gp,d(λ) with λ ∈ [0, 12 ] is n > max{c1d2 log(p −
d), c2d

1−ϵ log(pd )} for some constants c1, c2 > 0 and
any ϵ > 0 in the regime of λ = Θ( 1d ), where Gp,d(λ)
is a family of graphs on p nodes with edge sets that
have degree at most d. Since any model in Gp,k(λ)
has degree at most k, it follows from (Wang et al.,
2010) that the necessary sample size for exact reli-
able graphical model selection for Gp,k(λ) will be more
than max{c1k2 log(p− k), c2k

1−ϵ log( pk )}. Thereby, in
the same regime of λ = Θ( 1d ), our result becomes

Θ
(

pd
k log

[(
p
2

)
− k

])
which provides a sharper limit

than the result in (Wang et al., 2010) in certain situ-
ations such as sparse graphical models.

For sufficient conditions on model selection for Gaus-
sian Markov random fields, the ℓ1-regularized Gaus-
sian MLE (Graphical Lasso) methods (d’ Aspremont
et al., 2008)(Friedman et al., 2008)(Ravikumar et al.,
2008)(Yuan and Yin, 2007) require Ω(d2 log p) sam-
ples with high probability under the irrepresentable
condition. And the nodewise ℓ1-regularization linear
regression (Neighborhood Lasso) (Meinshausen and
Bühlmann, 2006) requires Ω(d log p) samples (Mein-
shausen and Bühlmann, 2006)(Wainwright, 2009)
to guarantee sparsistency using some regularity as-
sumptions for the covariance matrices and neighbor-
hood stability assumption. More recently,”stagewise”
greedy methods (Jalali et al., 2011)(Johnson et al.,
2012) require Ω(d log p) samples for sparsistent graph
recovery under a restricted eigenvalue and restricted s-
moothness condition on the true concentration matrix.
It can be seen that some existing sufficient conditions

require less samples than our necessary result, which
is due to various conditions imposed upon estimators.
In general, a consistent graph selection may require
much more samples without any assumption on the
true concentration matrix.

4 Analysis: From Symmetry to Limit

This section is devoted to our formal analysis of struc-
ture learning limits. Suppose that the decoder is
told the locations of all but the smallest non-zero off-
diagonal value of Θ, as well as the values of Θ on it-
s off-diagonal support. The remaining sub-problem
is to determine, given the n observations Xn

1 :=
{X1, . . . , Xn}, the location of the smallest nonzero val-
ue of Θ. It is clear that the error probability of the de-
coder in this restricted problem provides a lower bound
on the error probability in the original problem.

4.1 Starting with Fano

We perform our analysis with applying Fano’s method
to the whole ensemble E , which consists of

(
p
2

)
− k+1

graphs that contain the given k − 1 edges in Gp,k(λ).
Suppose a graph index Ξ is chosen uniformly over
{1, . . . , |E|}. Given n i.i.d. samples Xn

1 , by Fano’s in-
equality (Cover and Thomas, 1991), the maximal error
probability is lower bounded as

qmax(ϕ) > 1− I(Ξ;Xn
1 ) + 1

log |E|
, (1)

where I(Ξ;Xn
1 ) denotes the mutual information of Ξ

and Xn
1 . We take log to base 2 throughout this paper.

Consequently, the problem is reduced to analyze the
mutual information I(Ξ;Xn

1 ). Let GS and GT be a
pair of distinct graphs in E with corresponding con-
centration matrices S and T , then it is easy to obtain
the following upper bound of the mutual information
by convexity of the Kullback-Leibler divergence

I(Ξ;Xn
1 ) 6

n

|E|2
∑

(GS ,GT )∈E×E

S(Px|S∥Px|T ), (2)

where S(Px|S∥Px|T ) is the symmetric Kullback-Leibler
divergence between the distributions Px|S and Px|T ,
defined in the natural way via

S(Px|S∥Px|T ) = D(Px|S∥Px|T ) +D(Px|T ∥Px|S).

4.2 The Geometry of Concentration Matrices

This section presents a crucial geometry property
of concentration matrices that they can be trans-
formed into each other by a space reflection or rota-
tion. Throughout the paper, we take the notation of
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Ω(αβ) = I|V |×|V |−Eαα−Eββ+Eαβ+Eβα, where Eαβ

is |V |×|V | matrix with the (α, β) entry equal to 1 and
0 entries elsewhere. For GΘ ∈ E , let Θii = 1 + µ > 1
if the node i has a positive degree, otherwise Θii = 1.
One of the crucial properties used in the subsequent
section will be the following orthogonal relationship of
concentration matrices

Lemma 4.1. For any two concentration matrices S
and T , there exists an orthogonal matrix Ω satisfying
T = ΩSΩ.

Proof

It is not difficult to verify that there are two cases for
different GS , GT ∈ E :

(Case I) E(GS)\E(GT ) = {(γ, α)} and

E(GT )\E(GS) = {(γ, β)},

(Case II) E(GS)\E(GT ) = {(α, β)} and

E(GT )\E(GS) = {(γ, δ)},

where α, β, γ, δ ∈ V and E(GS) and E(GT ) are edges
sets of GS and GT . Then in the case (I), there is an
orthogonal matrix Ω(αβ) such that

T = Ω(αβ)SΩ(αβ), (3)

where Ω(αβ) is an improper orthogonal matrix since
detΩ(αβ) = −1. Equivalently saying, S can be trans-
formed into T by the interchange of the α-th row and
β-th row of S first and then the interchange of the α-
th column and β-th column of S. In the case (II), it is
easy to check that the matrices S and T must satisfy
the relations

T = Ω(αδ)Ω(βγ)SΩ(βγ)Ω(αδ) (4)

for two improper orthogonal matrices Ω(αδ) and Ω(βγ).
Hence, the lemma follows from Eq. (3) and Eq. (4).

We take as an example as an illustration of Lem-
ma 4.1. Suppose V = {1, 2, 3, 4} and E(GS) =
{(1, 2), (1, 3)}, E(GT ) = {(1, 3), (2, 3)}, µ, θ, τ > 0,
then T = Ω(12)SΩ(12) follows from the following e-
quality

1 + µ τ
1 θ

τ θ 1 + µ
1

 =


0 1

1
1 0

1




1 + µ θ τ
θ 1
τ 1 + µ

1




0 1
1

1 0
1

 .

From the geometric perspective, two concentration
matrices are related by a space reflection or rotation
in Euclidean space. More specifically, Ω induces a re-
flection of Rp across a axis in the case I. In the case
II, Ω induces twice reflections of Rp across two axes,
or equivalently, a rotation of Rp. Refer to (Cartan,
1928)(Weyl, 1939) for more background information.

4.3 Eigensystems of Concentration Matrices

Since S is a real symmetric matrix, there is an orthog-
onal matrix Γ such that

S = Γ′ΛΓ =

 ξ1
...
ξp


′  λ1

. . .

λp


 ξ1

...
ξp

 ,

where {λk, ξk}pk=1 are eigenvalues and corresponding
row eigenvectors of S with unit modulus.

Recall that there is an orthogonal matrix Ω satisfying
T = ΩSΩ. Let

ΓΩ =

 ξ1
...
ξp

Ω =

 ξ1Ω
...

ξpΩ

 =

 ξ∗1
...
ξ∗p

 ,

then we claim that {λk, ξ∗k}
p
k=1 are eigenvalues and

corresponding eigenvectors of T . This can be seen from
noticing that ξkΩ = ξ∗k implies ξ∗kΩ = ξkΩ

2 = ξk,
which lead to the following simple calculation

ξ∗kT = ξ∗kΩSΩ = ξkSΩ = λkξkΩ = λkξ
∗
k.

From the geometric perspective, {ξk}pk=1 and {ξ∗k}
p
k=1

are two orthonormal frames of unit vectors which al-
ways differ by a space reflection or rotation. And we
can call {λk, ξk}pk=1 and {λk, ξ∗k}

p
k=1 as corresponding

eigensystems of S and T .

4.4 The Orthogonal Invariance of the
Symmetric Kullback-Leibler Divergence

In this section, we investigate the invariance of orthog-
onal group actions on the symmetric Kullback-Leibler
divergence. More explicitly, the crucial property of the
symmetric Kullback-Leibler divergence S(Px|S∥Px|T )
is the invariance under orthogonal transforms of S and
T . We start with simplifying the form of the symmet-
ric Kullback-Leibler divergence as stated in the follow-
ing lemma.

Lemma 4.2. For any two concentration matrices S
and T , we have the symmetric Kullback-Leibler diver-
gence S(Px|S∥Px|T ) between the distributions Px|S and
Px|T as follows

1√
(2π)p det(S)−1

∫
Rp

(x′Tx−x′Sx) exp
(
−1

2
x′Sx

)
dx.
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Proof

It is straightforward to show that

S(Px|S∥Px|T )

=

∫
Rp

φ(x;S) ln
φ(x;S)

φ(x;T )
dx+

∫
Rp

φ(x;T ) ln
φ(x;T )

φ(x;S)
dx

=
1

2
√
(2π)p det(S)−1

[ ∫
Rp

(x′Tx− x′Sx) exp

(
−1

2
x′Sx

)
dx

+

∫
Rp

(x′Sx− x′Tx) exp

(
−1

2
x′Tx

)
dx

]
(5)

where we apply the fact of det(S) = det(T ) since S
and T have the same eigenvalues. With the aid of
Lemma 4.1, there is an orthogonal matrix Ω satisfying
T = ΩSΩ. Then, write x = Ωy yields∫

Rp

(x′Sx− x′Tx) exp

(
−1

2
x′Tx

)
dx

=| det(Ω)|
∫
Rp

[(Ωy)′S(Ωy)− (Ωy)′T (Ωy)]

exp

(
−1

2
(Ωy)′T (Ωy)

)
dy

=

∫
Rp

(y′Ty − y′Sy) exp

(
−1

2
y′Sy

)
dy

=

∫
Rp

(x′Tx− x′Sx) exp

(
−1

2
x′Sx

)
dx. (6)

We complete the proof of Lemma 4.2 by combing Eq.
(5) and Eq. (6).

We proceed to prove the orthogonal invariance of the
symmetric Kullback-Leibler divergence, which is cru-
cial for our analysis.

Lemma 4.3. For any two concentration matrices
S and T , the symmetric Kullback-Leibler divergence
S(Px|S∥Px|T ) is invariant under transformations of
S → Ω′SΩ and T → Ω′TΩ for an orthogonal matrix
Ω.

Proof

S(Px|Ω′SΩ∥Px|Ω′TΩ)

=
1√

(2π)p det(Ω′SΩ)−1

∫
Rp

(x′Ω′TΩx− x′Ω′SΩx))

exp

(
−1

2
x′Ω′SΩx

)
dx

=
1√

(2π)p det(S)−1

∫
Rp

[(Ωx)′T (Ωx)− (Ωx)′S(Ωx)]

exp

(
−1

2
(Ωx)′S(Ωx)

)
dx.

Changing the variable of integration by letting y = Ωx,

we get

S(Px|Ω′SΩ∥Px|Ω′TΩ)

=
1

| det(Ω)|
√
(2π)p det(S)−1∫

Rp

(y′Ty − y′Sy) exp

(
−1

2
y′Sy

)
dy

=
1√

(2π)p det(S)−1

∫
Rp

(x′Tx− x′Sx) exp

(
−1

2
x′Sx

)
dx

=S(Px|S∥Px|T ).

4.5 The KL Divergence as a Symmetric
Function of Eigenvalues

We are in a position to analyze the symmetric
Kullback-Leibler divergence S(Px|S∥Px|T ) by applying
lemmas developed in section 4.4. From Lemma 4.2,
we see that x′Tx− x′Sx is the key factor in analyzing
S(Px|S∥Px|T ). Therefore, our first purpose is to show
that the expression of x′Tx−x′Sx can be expressed us-
ing eigenvalues and eigenvectors of S and T , as stated
in the following lemma.

Lemma 4.4. For any two concentration matrices S
and T , we have

x′Tx− x′Sx =

p∑
k=1

λk(ξ
∗
k + ξk)x(ξ

∗
k − ξk)x,

where {λk, ξk}pk=1 are eigenvalues and eigenvectors of
S, while {λk, ξ∗k}

p
k=1 are eigenvalues and eigenvectors

of T .

Proof

Γx =

 ξ1
...
ξp

x =

 ξ1x
...
ξpx


gives

x′Sx = x′Γ′ΛΓx = (Γx)′Λ(Γx) =

p∑
k=1

λk(ξkx)
2.

Since

ΓΩx =

 ξ∗1
...
ξ∗p

x =

 ξ∗1x
...
ξ∗px

 ,

we obtain

x′Tx = x′ΩSΩx = x′ΩΓ′ΛΓΩx
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and thus x′Tx = (ΓΩx)′Λ(ΓΩx) =
∑p

k=1 λk(ξ
∗
kx)

2.
Hence x′Tx− x′Sx has the following expression

p∑
k=1

λk[(ξ
∗
kx)

2 − (ξkx)
2] =

p∑
k=1

λk(ξ
∗
k + ξk)x(ξ

∗
k − ξk)x.

With the help of the previous Lemma 4.4, we can
establish the relationship between the symmetric
Kullback-Leibler divergence and eigenvalues and con-
centration matrices.

Theorem 4.1. For any two concentration matri-
ces S and T = ΩSΩ for certain orthogonal ma-
trix Ω, then the symmetric Kullback-Leibler divergence
S(Px|S∥Px|T ) has the form

S(Px|S∥Px|T ) =


λα

λβ
+

λβ

λα
− 2 Case I

λα

λδ
+ λδ

λα
+

λβ

λγ
+

λγ

λβ
− 4 Case II,

where Ω = Ω(αβ) in the case I and Ω = Ω(αδ)Ω(βγ) in
the case II. λα, λβ are eigenvalues of S in the case I
and λα, λβ , λδ, λγ are eigenvalues of S in the case II.

The proof of this theorem is applying lemmas devel-
oped in section 4.4 and Lemma 4.4. The proof involves
straightforward but length calculations and will be giv-
en in the appendix. It is worth noting that final re-
sult of the symmetric Kullback-Leibler divergence is
extremely simple, which is a symmetric function of
eigenvalues of concentration matrices. We believe that
it is the inherent symmetry of orthogonal systems that
leads to this remarkable final result.

4.6 Bounding the Symmetric Function of
Eigenvalues

It can be seen from 4.1 that eigenvalues of concen-
tration matrices play a crucial role in measuring dif-
ferences between models. To analyze the connection
between the average symmetric Kullback-Leibler di-
vergence and eigenvalues of concentration matrices, we
introduce an useful symmetric function of (λα, λβ) as
ψαβ = λαλ

−1
β + λβλ

−1
α − 2. The next theorem deal-

s with the upper bound of the average value of ψαβ ,
which will lead to the final information-theoretic limit.

Theorem 4.2. For any two concentration matrices S
and T corresponding two models in Gp,k(λ), let ψαβ =
λαλ

−1
β + λβλ

−1
α − 2, then the average value of ψαβ is

upper bounded by

1

p2

p∑
α,β=1

ψαβ <
2kλ

p
,

where λα and λβ are defined in the same meaning in
Theorem 4.1.

Proof

It is easy to verify that the worse case error probability
occurs if Sij = λ for (i, j) ∈ E(GS). Evidently one
has S is unit matrix in the initial state of k = 0. As k
increases by one, two off-diagonal elements Sij and Sji

are set to a positive number λ, and it is easy to verify
that

∑p
µ=1 Sµµ increases at most 2λ, yielding the fact

that
∑p

µ=1 λµ =
∑p

µ=1 Sµµ 6 p+ 2kλ.

If
∑p

µ=1 λµ < p + 2kλ, assume λ1 is the largest value
of {λ1, · · · , λp}, then setting λ′1 = λ1 + (p + 2kλ −∑p

µ=1 λµ) leads to a larger value of
∑p

α,β=1 ψαβ . So∑p
α,β=1 ψαβ attains the maximum when

∑p
µ=1 λµ =

p+2kλ. Furthermore,
∑p

µ=1 λ
−1
µ 6 p−1+(2kλ+1)−1

since if λα > 1 and λβ > 1, we can set λ′α = 1 and
λ′β = λα + λβ − 1 which remains

∑p
µ=1 λµ unchanged

and makes
∑p

µ=1 λ
−1
µ larger. So

∑p
µ=1 λ

−1
µ attains the

maximum when p− 1 values of λµ are equal to 1.

Finally, notice that ψαβ 6 λβ + λ−1
β − 2 if λα > λβ .

Re-ordering indices as λ1 > λ2 > · · · > λp, we obtain
the following estimate

p∑
α,β=1

ψαβ

6
p−1∑
µ=1

[
(µ− 1)

(
λµ +

1

λµ
− 2

)
+

p∑
ν=µ+1

(
λν +

1

λν
− 2

)]

+ (p− 1)

(
λp +

1

λp
− 2

)
=2

[
p∑

µ=2

(µ− 1)λµ +

p∑
µ=2

µ− 1

λµ
− p(p− 1)

]

62

[
p− 1

2
(p+ 2kλ) +

p− 1

2

(
p− 1 +

1

2kλ+ 1

)
− p(p− 1)

]
=(p− 1)

(
2kλ+

1

2kλ+ 1
− 1

)
.

Hence, the average value of ψαβ is upper bounded by

1

p2

p∑
α,β=1

ψαβ

6p− 1

p2

(
2kλ+

1

2kλ+ 1
− 1

)
<
1

p

(
2kλ+

1

2kλ+ 1
− 1

)
<
2kλ

p
.
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4.7 Final Information-Theoretic Limit

We are ready to proceed with the final step, which will
prove the main theorem in this paper, i.e., Theorem
3.1.

It is evident the average value of ψαβ in the remain-
ing possible models keeps non-increasing as non-zero
off-diagonal elements of the concentration matrix are
determined in descending order.

Applying Theorem 4.1 and Theorem 4.2 immediately
gives

1

|E|2
∑

(S,T )∈E×E

S(Px|S∥Px|T ) 6 2 · 1

p2

p∑
α,β=1

ψαβ <
4kλ

p
.

(7)

Applying inequalities (1), (2) and (7) with |E| =
(
p
2

)
−

k + 1

qmax(ϕ) > 1− 1

log
[(

p
2

)
− k + 1

] (4kλn

p
+ 1

)
.

Consequently, a necessary condition for asymptotically
reliable recovery over Gp,k(λ) is

n >
p
(
log

[(
p
2

)
− k + 1

]
− 1

)
4kλ

.

Thus, the main theorem in this paper is proved.

5 Concluding Remarks

In this paper, we analyze the information-theoretic
limit on consistent model selection for Gaussian
Markov random fields. We treat this problem from a
group theoretical viewpoint, i.e., the invariance under
orthogonal group actions on concentration matrices
and the symmetric Kullback-Leibler divergence. Our
analysis reveals the connection between the graphical
model selection limit and eigenvalues of concentration
matrices.

It is worth noting that the symmetric Kullback-Leibler
divergence has a rather simple and symmetric expres-
sion in terms of of eigenvalues of concentration ma-
trices. We believe that it is inherent symmetries of
concentration matrices and the symmetric Kullback-
Leibler divergence that lead to final remarkable ex-
pression. And the inherent symmetries in graphical
models merit further investigation. Last but not the
least, while we have considered only GMRF structure
learning in this paper, our analysis framework can
be extended to other structure learning of undirect-
ed graphical models.
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Appendix

5.1 Proof of Theorem 4.1

Since S is a real symmetric matrix, there is an orthogo-
nal matrix Γ such that S = Γ′ΛΓ, where Γ = {λk}pk=1

and {ξk}pk=1 are eigenvalues and corresponding row
eigenvectors of S with unit modulus. Then an or-
thogonal transformation of S leads to an orthogo-
nal transformation of Γ. Therefore, the orthogonal
matrix Γ can be transformed into diag(±1, · · · ,±1)
by performing certain orthogonal transform of S →
Ω′SΩ. Correspondingly, T is transformed by T →
Ω′TΩ. From Lemma 4.3, we see that S(Px|S∥Px|T ) =
S(Px|Ω′SΩ∥Px|Ω′TΩ). Henceforth, we may assume that

elements of ξk is all zero but the kth element is ±1.
In the case I, ξk is transformed to ξ∗k by means of an
improper orthogonal transformation Ω(αβ).

Write x = (x1, . . . , xp)
′ and ξk = (ξk1, . . . , ξkp). By re-

ordering indices as needed be, we may assume without
loss of generality that 1 < α < β < p, then ξ∗k =
ξkΩ

(αβ) gives rise to

ξ∗k + ξk = (2ξk1, · · · , ξkα + ξkβ , · · · , ξkα + ξkβ , · · · , 2ξkp),
ξ∗k − ξk = (0, · · · , ξkβ − ξkα, · · · , ξkα − ξkβ , · · · , 0),

where the intermediate terms are the αth and βth po-
sitions of ξ∗k + ξk and ξ∗k − ξk, respectively. Thereby,

(ξ∗k + ξk)x(ξ
∗
k − ξk)x

=2ξkx(ξkβ − ξkα)(xα − xβ) + [(ξkβ − ξkα)(xα − xβ)]
2.

Applying Lemma 4.4, we obtain

∫
Rp

(x′Tx− x′Sx) exp

(
−1

2
x′Sx

)
dx

=2

p∑
k=1

λk(ξkβ − ξkα)

∫
Rp

ξkx(xα − xβ) exp

(
−1

2
x′Sx

)
dx

+

p∑
k=1

λk(ξkβ − ξkα)
2

∫
Rp

(xα − xβ)
2 exp

(
−1

2
x′Sx

)
dx.
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Continuing,∫
Rp

(x′Tx− x′Sx) exp

(
−1

2
x′Sx

)
dx

=2

p∑
k=1

λk(ξkβ − ξkα)

[
ξkα

∫
Rp

x2α exp

(
−1

2
x′Sx

)
dx

− ξkβ

∫
Rp

x2β exp

(
−1

2
x′Sx

)
dx

+

p∑
ν=1
ν ̸=α

ξkν

∫
Rp

xνxα exp

(
−1

2
x′Sx

)
dx

−
p∑

ν=1
ν ̸=β

ξkν

∫
Rp

xνxβ exp

(
−1

2
x′Sx

)
dx

]

+

p∑
k=1

λk(ξkβ − ξkα)
2

[∫
Rp

x2α exp

(
−1

2
x′Sx

)
dx

+

∫
Rp

x2β exp

(
−1

2
x′Sx

)
dx

− 2

∫
Rp

xαxβ exp

(
−1

2
x′Sx

)
dx

]
.

Let S = Φ′Φ and t = Φx, then Φ = Λ
1
2Γ in virtue of

S = Γ′ΛΓ. And tα = ±
√
λαxα is from

x = (Λ
1
2Γ)−1t = Γ−1Λ− 1

2 t = Γ′Λ− 1
2 t

= (ξ′1, · · · , ξ′p)diag(
1√
λ1
, · · · , 1√

λp
)t

= (± 1√
λ1
, · · · ,± 1√

λp
)t.

Thus, we obtain∫
Rp

x2α exp

(
−1

2
x′Sx

)
dx

=
1

|det(Φ)|

∫
Rp

t2α
λα

exp

(
−1

2
t′t

)
dt

=
1√

det(S)

 p∏
µ=1
µ̸=α

∫ +∞

−∞
exp

(
−1

2
t2µ

)
dtµ


∫ +∞

−∞

t2α
λα

exp

(
−1

2
t2α

)
dtα

=
1√

det(S)
(
√
2π)p−1

√
2π

λα
=

(
√
2π)p√

det(S)

1

λα
.

Owing to the symmetry of the integral, we have∫
Rp

xµxνe
− 1

2 t
′tdt = 0 for µ ̸= ν.

With the aid of Lemma 4.2 and ξkν = ±δkν (Kroneck-

er’s delta), we see that

S(Px|S∥Px|T )

=
1√

(2π)p det(S)−1

∫
Rp

(x′Tx− x′Sx) exp

(
−1

2
x′Sx

)
dx

=
1√

(2π)p det(S)−1

(
√
2π)p√

det(S)

p∑
k=1

[
2λk(ξkβ − ξkα)(

ξkα
λα

− ξkβ
λβ

)
+ λk(ξkβ − ξkα)

2

(
1

λα
+

1

λβ

)]
=2λα(∓1)

(
±1

λα
− 0

λβ

)
+ λα(∓1)2

(
1

λα
+

1

λβ

)
+ 2λβ(±1)

(
0

λα
− ±1

λβ

)
+ λβ(±1)2

(
1

λα
+

1

λβ

)
=
λα
λβ

+
λβ
λα

− 2. (8)

For the case II, again, we may assume that 1 < α <
β < γ < δ < p by re-ordering indices as needed be,
then ξ∗k = ξkΩ

(βγ)Ω(αδ) gives

ξ∗k + ξk =(2ξk1, · · · , ξkα + ξkδ, · · · , ξkβ + ξkγ , · · · ,
ξkγ + ξkβ , · · · , ξkδ + ξkα, · · · , 2ξkp),

ξ∗k − ξk =(0, · · · , ξkδ − ξkα, · · · , ξkγ − ξkβ , · · · ,
ξkβ − ξkγ , . . . , ξkα − ξkδ, . . . , 0).

The intermediate terms are the αth, βth, γth and δth

positions, then we get

(ξ∗k + ξk)x =2ξkx+ (ξkδ − ξkα)(xα − xδ)

+ (ξkγ − ξkβ)(xβ − xγ),

and

(ξ∗k − ξk)x =(ξkδ − ξkα)(xα − xδ)

+ (ξkγ − ξkβ)(xβ − xγ).

Consequently,

S(Px|S∥Px|T )

=
1√

(2π)p det(S)−1

∫
Rp

(x′Tx− x′Sx) exp

(
−1

2
x′Sx

)
dx

=
1√

(2π)p det(S)−1

∫
Rp

[
p∑

k=1

λk(ξ
∗
k + ξk)x(ξ

∗
k − ξk)x

]

exp

(
−1

2
x′Sx

)
dx

=
1√

(2π)p det(S)−1

p∑
k=1

[
λk(I1 + I2 + I3 + I4 + I5)

]
,
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where

I1 =

∫
Rp

2ξkx(ξkδ − ξkα)(xα − xδ) exp

(
−1

2
x′Sx

)
dx

=
2(
√
2π)p√

det(S)
(ξkδ − ξkα)

(
ξkα
λα

− ξkδ
λδ

)
,

I2 =

∫
Rp

2ξkx(ξkγ − ξkβ)(xβ − xγ) exp

(
−1

2
x′Sx

)
dx

=
2(
√
2π)p√

det(S)
(ξkγ − ξkβ)

(
ξkβ
λβ

− ξkγ
λγ

)
,

I3 =

∫
Rp

(ξkδ − ξkα)
2(xα − xδ)

2 exp

(
−1

2
x′Sx

)
dx

=
(
√
2π)p√

det(S)
(ξkδ − ξkα)

2

(
1

λα
+

1

λδ

)
,

I4 =

∫
Rp

(ξkγ − ξkβ)
2(xβ − xγ)

2 exp

(
−1

2
x′Sx

)
dx

=
(
√
2π)p√

det(S)
(ξkγ − ξkβ)

2

(
1

λβ
+

1

λγ

)
,

I5 =

∫
Rp

(ξkδ − ξkα)(ξkγ − ξkβ)(xα − xδ)(xβ − xγ)

exp

(
−1

2
x′Sx

)
dx = 0.

Hence, we arrive at the following expression:

S(Px|S∥Px|T )

=
1√

(2π)p det(S)−1

(
√
2π)p√

det(S)

p∑
k=1

{
λk

[
2(ξkδ − ξkα)(

ξkα
λα

− ξkδ
λδ

)
+ 2(ξkγ − ξkβ)

(
ξkβ
λβ

− ξkγ
λγ

)
+

(ξkδ − ξkα)
2

(
1

λα
+

1

λδ

)
+ (ξkγ − ξkβ)

2

(
1

λβ
+

1

λγ

)]}

=
λα
λδ

+
λδ
λα

+
λβ
λγ

+
λγ
λβ

− 4. (9)

The last expression is due to that fact that ξkν = ±δkν
and applying the similar calculation in the last equality
of obtaining Eq. (8).

We have thus proved the theorem.
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