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Abstract

We present a novel method for approximate
inference. Using some of the constructs from
expectation propagation (EP), we derive a
lower bound of the marginal likelihood in
a similar fashion to variational Bayes (VB).
The method combines some of the benefits of
VB and EP: it can be used with light-tailed
likelihoods (where traditional VB fails), and
it provides a lower bound on the marginal
likelihood. We apply the method to Gaus-
sian process classification, a situation where
the Kullback-Leibler divergence minimized in
traditional VB can be infinite, and to robust
Gaussian process regression, where the in-
ference process is dramatically simplified in
comparison to EP.

Code to reproduce all the experiments can be
found at github.com/SheffieldML/TVB.

1 Introduction

The calculus of uncertainty requires Bayesian infer-
ence for obtaining the posterior distribution over a
set of latent variables, x, given a set of data obser-
vations y. One common formalism is a prior over
the latent variables, p(x) and a set of independent
likelihoods, p(yi|xi), giving a joint distribution of the
form

∏n
i=1 p(yi|xi)p(x). Inference over the latent vari-

ables requires computation of the posterior distribu-
tion, p(x|y). However, for many combinations of likeli-
hood and prior computing this posterior, and the asso-
ciated marginal likelihood for p(y) is intractable, and
we must proceed with approximate methods such as
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variational Bayes [Wainwright and Jordan, 2008], ex-
pectation propagation [Minka, 2001] or Monte Carlo
sampling schemes [Gilks et al., 1996].

The approach of expectation propagation (EP) has
become particularly popular for models of this type,
perhaps due to the empirical performance of these ap-
proaches in domains such as Gaussian process clas-
sification Kuss and Rasmussen [2005], where EP has
become the de facto method of choice. EP proceeds
through replacing the non-conjugate likelihoods terms
with conjugate ones using a straightforward moment-
matching procedure.

However, general implementation of EP is not with-
out its problems. The original EP algorithm offers
no guarantee of convergence, and more recent contri-
butions surrounding the double-loop algorithm [Opper
and Winther, 2004, Seeger and Nickisch, 2010] may re-
quire bespoke implementations that are specific to one
problem. See for example Jylänki et al. [2011], where
considerable effort is required for implementation of
EP for Gaussian process regression with a Student-t
likelihood.

Even when EP does provably converge, it is difficult
to describe to what it is converging. Whilst expecta-
tion consistency [Opper and Winther, 2004] gives some
guarantee of EP’s performance, the minimisation of a
KL divergence in VB is an attractive property.

In the case where the model has hyper-parameters
which are to be optimized alongside approximate infer-
ence of latent variables, EP provides an approximation
to the marginal likelihood which can be used as an ob-
jective function for the hyper-parameters. To evaluate
the marginal likelihood and its gradient, EP must be
run to convergence. In contrast, VB provides a lower
bound on the marginal likelihood, which can be used
to adjust the hyper-parameters whilst performing ap-
proximate inference. The guarantee of a lower bound
on the marginal likelihood is attractive when integrat-
ing the model with a wider inference framework, or
performing novel optimization of the approximation,
e.g. Stochastic or conjugate methods [Hoffman et al.,
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2013, Honkela et al., 2010, Hensman et al., 2012].

Variational Bayesian approaches can be broadly char-
acterized as either free-form variational minimization
methods [Waterhouse et al., 1996], where the func-
tional form of the approximating posterior emerges
naturally after specific factorization assumptions are
made, or explicit variational approximations, where
the functional form is imposed. Our approach is a
particular type of explicit approximation where we ex-
plicitly include the data observation (through its like-
lihood) in the approximation.

The main novelty in our approach is a particular form
for the variational approximation that explicitly in-
cludes the likelihood. Similar in spirit to Opper and
Winther [2004], we use two distributions which com-
municate. Rather than providing an approximation
procedure akin to the removal/inclusion of a datum
cf. EP, we simply provide the bound on the marginal
likelihood and its gradient with respect to some varia-
tional parameters, alongside gradients with respect to
hyper-parameters, and optimise the problem using our
preferred optimisation routine. The implementation of
the procedure is thus extremely simple, and unlike EP
we do not need to converge to a temporary solution
before adjusting the hyper-parameters.

2 Tilted Variational Bayes

We will consider the following form of probabilistic
model

p(y,x) = p(x)
n∏

i=1

p(yi |xi) (1)

Where y = {yi}ni=1 is a vector of observed data points
and x = {xi}ni=1 is a vector of latent variables. In
our examples of Gaussian process models, p(x) is a
multivariate normal distribution over the values of a
function at some observed points, and p(yi |xi) is some
non-Gaussian likelihood, but our work extends to a
wide range of other models also, and so we maintain a
general notation. This class of models is the same as
considered by Opper and Winther [2004], and is easily
generalized to those considered by Seeger and Nickisch
[2010].

In the case where the likelihoods p(yi |xi) and the prior
p(x) form a conjugate pair, Bayesian inference for the
posterior p(x |y) is tractable. When inference is not
tractable, approximate inference schemes can be used.

2.1 Pseudo Data

In VB, the posterior distribution is approximated by
selecting a member of some family of distributions
which minimises the Kullback Leibler divergence from

the approximation q(x) to the true posterior p(x |y).
In EP, the factors corresponding to the likelihood are
replaced by approximate factors which ensure conju-
gacy to the prior, and thus tractability. For example
if the prior is Gaussian, the factors are

ti(xi) = ZiN (xi|µi, σ
2
i ) (2)

and the parameters Zi, µi, and σ2
i are iteratively up-

dated until convergence. The approximate posterior is
then

p(x |y) ≈ 1

ZEP
p(x)

n∏
i=1

ti(xi) , (3)

where ZEP =
∫
p(x)

∏n
i=1 ti(xi) dx is the required nor-

maliser.

Here we prefer to interpret these factors as pseudo-
data. We denote these data ỹ = {ỹi}ni=1, define some
conjugate likelihood for them p(ỹi |xi), and use them
in a similar fashion to the EP factors. The pseudo-
data follow all the usual probabilistic rules, including
normalisation, which we find helpful in constructing
our algorithm. The approximation to the posterior
using these pseudo-data is then

p(x | ỹ) =
p(x)

∏n
i=1 p(ỹi |xi)
p(ỹ)

. (4)

We no longer have the normalising factors Zi, which it
turns out do not affect the posterior, but the marginal
likelihood: similar terms appear in our bound on the
marginal likelihood, and we find the ability to deal
with the pseudo-data in probabilistic language helpful.

In EP, two important one-dimensional distributions
are the cavity distribution and the tilted distribution.
In terms of the pseudo-data, the cavity distribution
can be written as

c(xi) = p(xi | ỹ\i) , (5)

where \i stands for ‘all indices except i’. The tilted
distribution is given by multiplying this cavity by the
likelihood and re-normalizing:

q(xi) =
p(yi |xi)p(xi | ỹ\i)∫
p(yi |xi)p(xi | ỹ\i) dxi

= p(xi | yi, ỹ\i) .

(6)

EP then proceeds by a moment-matching scheme
which updates the parameters of the pseudo-likelihood
(or equivalent EP factor) p(ỹi |xi) so as to minimise
the marginal KL divergences:

KL [q(xi)||p(xi | ỹ)] , (7)

where the expectation is taken under the tilted distri-
bution, as in our proposal.
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2.2 Bounding the Marginal Likelihood

We have given the tilted distribution the moniker q
since it is this distribution which we will use for aver-
aging in our tilted VB scheme, defining the factorising
distribution q(x) =

∏n
i=1 q(xi). We emphasise that

q includes the data. We proceed as for normal vari-
ational inference, but with the tilted distribution q
where we would normally find a simpler approxima-
tion to the posterior. First observe that Bayes’ rule
can be re-arranged to give

p(y) =
p(y |x)p(x)

p(x |y)

q(x)

q(x)
, (8)

take logarithms and then the expectation under q so
that

log p(y) = Eq(x)

[
log

p(y |x)p(x)

q(x)

]
+KL [q(x)||p(x |y)] .

(9)

In exactly the same fashion as VB, we can now drop
the KL term and obtain a lower bound on the marginal
likelihood which serves as an objective both in im-
proving the approximation (by adapting ỹ and any
parameters of p(ỹ |x)) and also for optimising hyper-
parameters.

The lower bound in equation (9) initially appears dif-
ficult since it contains the expectation of the log of the
likelihood function and the entropy of the tilted dis-
tribution, which may not be tractable. However, the
difficult terms cancel as follows. Defining the lower
bound on the marginal likelihood as L and expanding
the definition of the tilted distribution:

L , Eq(x)

[
log

p(y |x)p(x)

q(x)

]
= Eq(x)

[
log

∏n
i=1 p(yi |xi)p(x)∏

i p(yi |xi)p(xi | ỹ\i)/p(yi | ỹ\i)

]
=

n∑
i=1

log p(yi | ỹ\i) + Eq(x)

[
log

p(x)∏
i p(xi | ỹ\i)

]
.

(10)

The requirements for computing the bound are then
identical to those for EP. We require the zeroth mo-
ment of the tilted distribution (p(yi | ỹ\i)), and the
moments of the tilted distribution as appear in the
prior p(x) and the cavity distributions p(xi | ỹ\i).
Whilst the updating procedure of EP is superficially
attractive, inference in our scheme is much simpler:
we simply take derivatives of the bound with respect
to the pseudo-data and any additional parameters of
p(ỹi |xi). Approximate inference can then be per-
formed using any off-the-shelf optimisation routine.

This allows the entire approximation to be updated
in parallel. Unlike EP, we do not need to wait for the
algorithm to converge to a temporary solution before
adjusting the hyper-parameters.

2.3 The Tilting Effect

Our method proposes to minimise the KL divergence
from the tilted distribution q(x) to the posterior. In
standard VB, we proceed similarly, but usually with
a fixed form for the approximating distribution q. To
see the effect of tilting, consider the scalar case with a
Gaussian prior p(x) = N (µ, σ2), and a light-tailed like-
lihood (e.g. Gaussian process classification). The vari-
ational KL divergence takes the expectation under the
approximating distribution. The standard variational
approach assumes a Gaussian form for q. Because this
has heavier tails than the true posterior the variational
KL divergence can increase very quickly. This is be-
cause the expectation is taken under the heavy tail in
the area where the logarithm evaluated in the region
of a light tail. The extreme of a light tail is the case
where the likelihood has no support and the KL di-
vergence goes to zero (e.g. when an inverse Heaviside
link function is used).

2.4 Interpretation of the Bound

The lower bound (10) contains two terms, which
we shall analyse in the following. The first term∑n

i=1 log p(yi | ỹ\i) appears as a data likelihood under
an alternative model where the prior has been replaced
with the factorising cavity distribution. The second
term acts as a penalty for the cavity distribution being
different from the prior. If the prior is itself a factoris-
ing distribution, then the cavity will become equal to
the prior, and the bound on the marginal likelihood
will be exact.

We find that the required derivatives require higher
order moments of the tilted distribution than are re-
quired to simply compute the bound. We do not in-
clude a full derivation of the straightforward deriva-
tives of the bound here, but we do note in the following
some of the derivatives that lead to interesting insights
into the bound.

Consider the derivative of the zeroth-moment of the
ith tilted distribution (as appear in the first term of
the lower bound) p(yi | ỹ\i) with respect to another
pseudo-data point ỹj . The pseudo-likelihoods are de-
signed to be conjugate to the prior, so the ith cavity
distribution p(xi | ỹ\i) is tractable. Assume the cavity
distribution is in the exponential family with sufficient
statistic vector g(xi) (see e.g. Wainwright and Jordan
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[2008] for details):

p(xi | ỹ\i) = h(xi) exp{θ>i g(xi)−Ψ(θi)} . (11)

The parameters of the cavity θi are a simple function
of the other pseudo-likelihoods. Expanding the deriva-
tive using the chain rule gives

dp(yi | ỹ\i)
dỹj

=
dθi

dỹj

dp(yi | ỹ\i)
dθi

∝
∫
p(yi |xi)

d

dθi
p(xi | ỹ\i) dxi

∝
∫
q(xi)

d

dθi
log p(xi | ỹ\i) dxi

∝ Eq(xi)

[
g(xi)

]
− Ep(xi | ỹ\i)

[
g(xi)

]
.

(12)

Here we have used the property that the derivative
of Ψ(θ) is the expected value under the exponential
family distribution. This result shows that the first
term in the lower bound (10) is maximised when the
moments of the cavity distribution match the moments
of the tilted distribution.

Now, consider that the second term in our bound can
be written as a series of KL divergences:

Eq(x)

[
log

p(x)∏
i p(xi | ỹ\i)

]
=

n∑
i=1

KL[q(xi)||p(xi | ỹ\i)]

−KL[q(x)||p(x)]

(13)

When the moments match for the first term, they also
minimise the KL divergences in the second term, aside
from the final KL divergence which is the usual vari-
ational term which ensures that the approximation is
close to the prior.

3 The Second Approximate
Distribution

The distribution p(x | ỹ) is of the same form as that
used in EP. Relating our pseudo-data likelihoods
p(ỹ |x) to the EP factors once more, we see that
the two methods have the same posterior, though
in TVB we present a different method for selecting
p(ỹ |x).

To see why using p(x | ỹ) as an approximate posterior
is a valid choice, consider prediction for a new datum
y? related to the rest of the model through latent vari-
able x? and p(x? |x). If we have the true posterior
p(x |y), then we simply do

p(y?|y) =

∫
p(y? |x?)

∫
p(x? |x)p(x |y) dx dx?.

(14)

The inner integral is of course intractable, and so we
replace the posterior with the approximation p(x | ỹ).
The inner integral results in p(x? | ỹ), which is the
cavity distribution for this additional datum, and the
whole integral results in p(y?|ỹ). In other words, re-
placing the posterior with p(x|ỹ) means treating ad-
ditional data in the same fashion as the training data.

3.1 Relationship to Expectation Consistency

Our method bears some resemblance to the expecta-
tion consistency (EC) method of [Opper and Winther,
2005]. EC is also based on several global approxima-
tions, with one taking the form of the likelihood (as our
q(x)) and one taking a conjugate form (similar to our
p(x | ỹ)). Indeed, they mention a variational bound
which bears a striking resemblance to ours, though
they discard this method before deriving EC. EC pro-
ceeds by matching the moments of the distributions so
as to find a saddle point of a free-energy function. By
contrast, our distributions are intrinsically linked by
definition.

4 Approximating the Marginal
Likelihood

Our method is based on a lower bound on the marginal
likelihood, which we use for optimising the approxi-
mate factors as well as any hyper-parameters. Expec-
tation propagation provides an approximation to the
marginal likelihood which Kuss and Rasmussen [2005]
and Jylänki et al. [2011] found empirically to be very
accurate for Gaussian Process classification and robust
regression. The approximation is

LEP = log

∫
p(x)

n∏
i=1

t(xi) dx. (15)

Given our interpretation of the approximate factors
t(xi) as un-normalised pseudo-data, with t(xi) =
Zip(ỹi |xi), and noting that at convergence of EP
Zi = p(ỹi | ỹ\i), the EP approximation to the log
marginal likelihood is

LEP =

n∑
i=1

log p(yi | ỹ\i) + log p(ỹ) (16)

using appendix A to expand the variational bound, we
have

LEP = log p(y)−KL[q(x)||p(x |y)] + KL[q(x)||p(x | ỹ)]

−
n∑

i=1

KL[q(xi)||p(xi | ỹ)] + p(ỹi | ỹ\i) .

(17)
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Compare this to the lower bound produced by eVB:

LTVB = log p(y)−KL[q(x)||p(x |y)]. (18)

The moment matching procedure of EP ensures that
at a stationary point, the marginal KL divergences
KL[q(xi)||p(xi | ỹ)] are minimal, and so we expect the
EP approximation to the marginal likelihood to be
larger than our bound by KL[q(x)||p(x | ỹ)].

EP then gives a good approximation to the marginal
likelihood when the two KL divergences (from the
tilted to the posterior and from the tilted to the ap-
proximate posterior) are similar.

5 Experiments

We envisage that our method can provide a viable al-
ternative to EP. We therefore concentrate on appli-
cations where EP has been used extensively: Gaus-
sian process models with non-conjugate likelihoods.
For clarity we change notation: the latent variables
(previously x) now represent the values of a function
f(x) taken at some known input points X = {xi}ni=1;
f = {f(xi)}ni=1 = {fi}ni=1. The prior is multivariate
Gaussian over latent function values p(f) = N (0,K)
where the covariance matrix K has entries given by
the covariance function:

K[i,j] = k(xi,xj) (19)

In all our experiments, we have used the exponentiated
quadratic covariance function with the addition of a
diagonal constant:

k(xi,xj) = σ2 exp{− 1
2 (xi−xj)

>A−1(xi−xj)}+σ2
nδ(i, j).
(20)

The diagonal matrix A contains lengthscale param-
eters Ai,i = `i, which we collect together with the
process variance σ2 and the ’noise’ variance σ2

n into a
vector of hyper-parameters.

The likelihood p(yi | fi) is some application-dependent
non-Gaussian density. We replace the likelihoods
with pseudo-likelihoods which are Gaussian, p(ỹ|f) =∏N

i=1N (ỹi | fi, β−1i ) (see section 2.1).

The hyper-parameters, pseudo-likelihoods and param-
eters of the true likelihood (if any) are collected to-
gether and optimised jointly using the L-BFGS-B al-
gorithm [Zhu et al., 1997].

5.1 Gaussian Process Classification

One place where EP is ubiquitous is in building Gaus-
sian process classifiers, following the work of Kuss and
Rasmussen [2005], who showed empirically that EP
works well both in terms of predictive performance
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Figure 1: Approximating Gaussian Process classifica-
tion with only two data points. The top frames show
contours of the prior, likelihood and posterior of the
Gaussian process: the Heaviside likelihood truncates
the normal distribution. In the main frame, the poste-
rior is shown in black contours, the tilted distribution
in blue, and the Gaussian p(f | ỹ) is shown in orange.
The marginals of all three distributions are shown at
the edges of the plot.

and estimation of the marginal likelihood. Here, the
data are binary labels yi ∈ {0, 1} and the likelihood is

p(yi | fi) = φ(fi)
yi(1− φ(fi))

(1−yi) . (21)

The inverse-link function φ(fi) transforms the Gaus-
sian process function values into the range (0,1). Here
we have used the Heaviside and probit functions:

φ(fi) =

{
1, if fi ≥ 0

0, otherwise
, φ(fi) =

1

2

[
1 + erf

(
f2i√

2

)]
.

(22)

As discussed, the light-tailed nature of this likelihood
leads to a light-tailed posterior, which is difficult to
approximate using standard variational methods. Fig-
ure 1 illustrates our approximation scheme for the case
where two data are observed yi = 0, with a correlated
prior (the inputs are close under the exponentiated
quadratic). The tilted distribution does a good job
of capturing the form of the posterior by using the
likelihood, whilst the Gaussian approximation p(f | ỹ)
captures the requisite correlations. The case where the
data are not in agreement with the prior is illustrated
in Figure S.6 of the supplementary material.
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Figure 2: Whisker plots of the hold-out negative log
probability (smaller is better) for our method (blue
boxes, bottom) and for standard EP (orange, top) for
the classification benchmark datasets described by On-
oda et al. [2001].

Figure 2 examines the performance of our method in
comparison to EP in application to the benchmark
datasets used in Onoda et al. [2001]. The values
of hold-out probability presented here are similar to
those previously reported for EP [Naish-Guzman and
Holden, 2007]. We find that in most cases TVB works
as well as EP, occasionally slightly better (waveform,
heart datasets) and occasionally slightly worse (thy-
roid, splice). Examining the (negative) log probability
of hold-out data in this way examines the methods’
abilites to make well calibrated probabilistic predic-
tions. We note that in terms of simple hold-out error
(taking a threshold at 0.5) the methods’ performances
are nearly identical, see supplementary Figure S.1a.

To investigate the minor discrepancies in performance
between our method and EP, we follow Kuss and Ras-
mussen [2005] in examining the methods ability to
estimate the marginal likelihood. Figure 3 recreates
their experiment for the ionosphere dataset, varying
the parameters of the exponentiated quadratic covari-
ance function and plotting contours of the marginal
likelihood estimation. For comparison, we also show
the information (here log probability) of hold-out data.
We see that EP’s estimate of the marginal likeli-
hood is more consistent with the hold-out likelihood
in form, and the estimate of the hyper-parameters by
type-II maximum likelihood leads to a region of high
predictive density. The plots closely resemble those
reported by Kuss and Rasmussen [2005] for EP. In

terms of predictive density, the TVB method has near-
identical performance to the EP method, with perhaps
a slightly larger region of high density (see the contour
at −0.24). However, the method mis-estimates the
hyper-parameters, leading to suboptimal predictions
for optimized hyper-parameters.

This effect does not appear to be universal. We
recreated the experiment for the heart dataset, where
our method shows superior hold-out performance to
EP, the results are shown in Figure 4. Here, the
TVB bound shows better consistency with the hold-
out likelihood, and the method leads to a superior set
of hyper-parameters, in terms of predictive density, to
the EP method. Figures 3 and 4 are reproduced in
larger form in the supplementary material, with both
the Heaviside and probit likelihoods in each case.

To further examine the effect of hyper-parameter esti-
mation, we re-ran the hold-out experiments of Figure 2
using the hyper-parameters estimated by EP. The re-
sults are shown in supplementary Figure S.1b. We
find that in most cases the approach is detrimental to
performance.
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Figure 3: Top row: the marginal likelihood bound us-
ing TVB (a), and estimation of the marginal likelihood
using EP (b) for the ionosphere dataset. Maxima are
marked with a red cross. Bottom: average hold-out
probability using the TVB (a) and EP (b). The hor-
izontal axis shows log-lengthscale ` of the exponenti-
ated quadratic, and the vertical axis shows the log-
arithmic variance σ2. Here we have used the probit
inverse-link function for compatibility with the results
of Kuss and Rasmussen [2005] (see supplementary Fig-
ure S.3 for the same figure with the Heaviside inverse-
linkfunction)
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Figure 4: Top row: the marginal likelihood bound us-
ing TVB (a), and estimation of the marginal likelihood
using EP (b) for the heart dataset. The maximum
is marked as red cross for both likelihood surfaces,
respectively. Bottom: average hold-out information
content using the TVB (a) and EP (b) in nats. The
horizontal axis shows logarithmic lengthscales ` of the
exponentiated quadratic, and the vertical axis shows
the variance σ2 in log-scale. We have used the probit
link function for compatibility with the results of Kuss
and Rasmussen [2005] (see supplementary Figure S.3
for the same figure with the Heaviside link function).

5.2 Robust Gaussian Process Regression

Expectation propagation is the de-facto algorithm for
GP classification, but for robust GP regression, where
the noise on the data is assumed drawn from a heavy-
tailed distribution, EP is more problematic. Jylänki
et al. [2011] discusses in detail a scheme for robust GP
regression using a student-t likelihood, and makes ex-
tensive comparisons with variational methods [Tipping
and Lawrence, 2005]. Here we apply our methodology
to the same task, but our treatment is dramatically
shorter. We are guaranteed to find a solution, and
though there may be local optima in the objective, we
did not experience significant problems.

We begin with an illustrative example of regressing
the winning times for the men’s olympic marathon
against time. In 1904, the race was “run in brutally
hot weather, over dusty roads, with horses and au-
tomobiles clearing the way and creating dust clouds”
[Wikipedia, 2013], leading to an outlier on the win-
ning time. Figure 5 shows regression on the data using
a Gaussian likelihood: the outlying data point affects
the marginal likelihood, resulting in over-estimation of
the noise variance and consequently over-estimation of

the lengthscale. The method then fails to capture pat-
terns in the data corresponding to war-time stagnation
and post-war improvement. With robust regression us-
ing a student-t likelihood with 3 degrees of freedom,
our approximation method ignores the outlying point
and makes better estimates of the marginal likelihood,
resulting in a (subjectively) better fit (Figure 5, mid-
dle). For comparison, we show the Laplace approxi-
mation for the same model (Figure 5, bottom), which
also failed to estimate the hyper-parameters correctly.

See Figure 6 for another example from drawing a circle
with an outlier prone robot arm. Robust regression is
able to remove biases in the circle detection compared
to normal GP, comparable with the orgininal varia-
tional solution [Tipping and Lawrence, 2005].
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Figure 5: Robust regression for olympic marathon
times. Top row shows standard GP regression using a
Gaussian likelihood. Middle row is robust GP regres-
sion with a student-t likelihood using our method, and
the bottom row is Laplace approximation of the same
for comparison.

To illustrate the workings of our methodology for ro-
bust regression, we again turn to a trivial example
where there are only two data points. Figure 7 shows
the posterior and approxiate posterior for two data-
points which are correlated a-priori (proximal under
the exponentiated quadratic covariance function), but
take different values. The heavy-tailed nature of the
likelihood (top middle frame) leads to a bi-modal pos-
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(a) Robust regression for circle pen movement dataset.
Normal GP (orange) is prone to outliers, whereas our
method with robust regression finds the true underlying
structure of pen movements.
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(b) x position against y position of the pen over time as
predicted by GP (left). Note the ellyptic distortion of the
structure in the data. After using robust regression (on the
right) the circular structure of the data is recreated.

Figure 6: Robust regression example on outlier prone
xy-pen data from Tipping and Lawrence [2005].

terior. The tilted distribution is able to capture only
one mode of the posterior. In this case, the problem
is symmetric and re-initialising the variational param-
eters leads to selection of one mode at random.

It is interesting that in this case the Gaussian approx-
imation has a very small variance. A similar effect is
present even when the two-data points are consistent
with the prior (see supplementary Figure S.7), leading
to a uni-modal posterior. Returning to our discussion
of this distribution, we posit that these variances are
quite reasonable: when making a prediction at a new
point we include the heavy-tailed likelihood.

6 Discussion

Expectation propagation is a general framework for in-
ference that has proven particularly useful in the con-
text of Gaussian process classification. However, there
are two particular problems with EP. Firstly, it doesn’t
provide a strict lower bound on the likelihood, mak-
ing its inclusion within a wider inference/optimization
framework problematic. Secondly, the implementation
of EP when the likelihood is heavy tailed can be very
involved. Standard variational approaches do provide
a strict lower bound but have been shown to perform
poorly when likelihoods are light-tailed: the varia-
tional Kullback Leibler divergence in this case takes
an expectation under a density that is heavier tailed
than the true posterior. This leads to a very loose
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Figure 7: Robust Gaussian process regression with two
data points. The two values of the function f are corre-
lated under the prior (top left frame), but are observed
at different values with a heavy-tailed likelihood (top
centre frame), leading to a bimodal posterior (top right
frame). The main frame shows the posterior, tilted
and Gaussian distributions similarly to Figure 1.

bound on the marginal likelihood.

Our contribution has been to introduce tilted varia-
tional Bayes, a new variational approach that com-
bines the advantages of EP with the rigorous lower
bound associated with variational inference. The in-
novation is to explicitly introduce the likelihood inside
the variational posterior. This dependence ensures
that the variational KL is taken under a light-tailed
density when appropriate. The resulting algorithm is
far simpler in implementation on heavy tailed likeli-
hoods, offering the scope for a more unified approxi-
mating framework.

Empirically we found that for GP classification, there
is little difference between our approach and EP. There
is some difference in terms of the estimation of the
marginal likelihood, but this is to be expected when
obtaining a rigorous lower bound in place of an ap-
proximation.
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