
A Finite-Sample Generalization Bound for Semiparametric Regression: Partially Linear Models

A Appendix

The appendix is devoted to the proof of Theorem 3.1 and Theorem 3.2. Although Theorem 3.2 uses Theorem 3.1,
we still present the proof of Theorem 3.2 first, as it is a more standard proof. After this proof, we will present
that of Theorem 3.1. However, first we present some results that we will need later multiple times.

Lemma A.1 (Elementary Properties of Subgaussian Random Variables). Let U be a subgaussian random variable
with parameters (β,Γ). Then,

(i) E [|U |] ≤ 1
β

√
Γ− 1;

(ii) for any constant c ≥ 0, U + c is subgaussian.

Proof. (i) follows from

Γ ≥ E
[
exp

(
|βU |2

)]
≥ exp

(
E
[
|βU |2

])
≥ exp

(
E [|βU |]2

)
≥ 1 + E [|βU |]2 .

(ii) follows from

E
[
exp

(
1
2β

2(U + c)2
)]
≤ E

[
exp

(
β2U2 + β2c2

)]
≤ eβ

2c2E
[
exp

(
|βU |2

)]
≤ eβ

2c2Γ .

We will also need the following result:

Lemma A.2. Let U > 0, C = H+ G(U). Then, a.s.∫ 1

0

√
H(u, C, ‖·‖n) du ≤ 2CH + 2CG(U) ,

where CG(U) = ρ1/2
∫ 1

0
log1/2

(
4U+u
u

)
du (= O(

√
ρ(log(U))+).

Proof of Lemma A.2. Since C = H+ G(U), a standard argument shows that

H(u;σ) ≤ H(u/2;H; ‖·‖n) +H(u/2,G(U), ‖·‖n) . (6)

Now, note that ‖·‖n ≤ ‖·‖∞,n. Thus,∫ 1

0

H1/2(u/2,H, ‖·‖n) du = 2

∫ 1/2

0

H1/2(u,H, ‖·‖n) du ≤ 2

∫ 1

0

H1/2(u,H, ‖·‖n) du

≤ 2

∫ 1

0

H1/2(u,H, ‖·‖∞,n) du ≤ 2CH ,

where the last inequality is by Assumption 3.3. Moreover, since ‖g‖n ≤ ‖g‖∞, G(U) is a subset of the ball
BG,‖·‖n(0, U). Thus,∫ 1

0

H1/2(u/2,G(U), ‖·‖n) du ≤ 2

∫ 1

0

H1/2(u,G(U), ‖·‖n) du ≤ 2

∫ 1

0

H1/2(u,BG,‖·‖n(0, U), ‖·‖n) du

≤ 2ρ1/2

∫ 1

0

log1/2

(
4U + u

u

)
du = 2CG(U) ,

where the second inequality is by Corollary 2.6 of [van de Geer, 2000], which states that H(ε,BG,‖·‖n(0, σ)) ≤
ρ log( 4σ+ε

ε ). Using (6) and
√
a+ b ≤

√
a+
√
b which holds for a, b ≥ 0, we conclude that∫ 1

0

√
H(u;σ) du ≤ 2CH + 2CG(U),

finishing the proof of the claim.
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B The Proof of Theorem 3.2

In this section we prove Theorem 3.2 assuming that Theorem 3.1 holds.

Let U be as in Theorem 3.1 and let E denote the event when

sup
h∈H
‖gh,n‖∞ ≤ U .

For any z ≥ 0,

P (L(fn)− L(f∗) > z) = P (L(fn)− L(f∗) > z,Ec) + P (L(fn)− L(f∗) > z,E)

≤ P (Ec) + P (L(fn)− L(f∗) > z,E) .
(7)

Thus, to study the tail probabilities of L(fn)− L(f∗), it suffices to study L(fn)− L(f∗) on the event E.

Define G(U) = {g ∈ G : ‖g‖∞ ≤ U} and C = H+ G(U). On E, we claim that fn ∈ C. We have fn = hn + gn and
since hn ∈ H by definition, it remains to show that gn ∈ G(U). By appropriately selecting gh,n, we can arrange
for gn = ghn,n. Hence, ‖gn‖∞ ≤ suph∈H ‖gh,n‖∞ ≤ U , showing that fn ∈ C indeed holds.

Now, by increasing U if necessary, we can always arrange for f∗ = h∗ + g∗ ∈ C (for this we may need to increase
U so that ‖g∗‖∞ ≤ U). Hence, in what follows, we will assume this.4 By (3), on E it holds almost surely that

L(fn)− L(f∗) ≤ Ln(f∗)− L(f∗)− (Ln(fn)− L(fn))

= (∆̃n(fn)− ∆̃n(f∗)) + (∆n(fn)−∆n(f∗))

≤ sup
f∈C

∆̃n(f)− ∆̃n(f∗)︸ ︷︷ ︸
∆̃∗n(C)

+ sup
f∈C
|∆n(f)−∆n(f∗)|︸ ︷︷ ︸

∆
∗
n(C)

, (8)

where we introduced ∆n(f) = Ln(f)−Ln(f) and ∆̃n(f) = L(f)−Ln(f) with Ln(f) = 1
n

∑n
k=1 E [`(Yk, f(Xk))|Xk].

Note that the first term does not depend on the (unbounded) responses Y1, . . . , Yn. Furthermore, by our

assumptions, ∆̃n(f) is bounded for f bounded. Hence, we can analyze these terms using tools developed for
bounded random variables and empirical processes. Now, while the last term involves Y1, . . . , Yn, ∆n compares
average losses over the sample X1, . . . , Xn, this last term concerns in-sample generalization. Hence, as we will
show it below, it can be analyzed using tools developed for the so-called “fixed design” setting. In fact, the
following result gives tail bounds for this part:

Lemma B.1. Let Assumptions 3.1 to 3.4 hold and WLOG assume that U ≥ max(1, ‖g∗‖∞). Then, there exist
constants c, α > 0 such that for any 0 < δ < 1 satisfying log 1

δ ≥ c with probability at least 1− δ,

∆
∗
n(C) ≤2(r + U)

√
log 2

δ

αn
. (9)

The proof is based on Theorem 3.3 of van de Geer [1990], which we quote below for completeness. Let (Λ, d)
be a pseudo-metric space and for u > 0 let BΛ,d(λ, u) be the d-ball in Λ that has radius u and is centered at
λ. We will allow d to be replaced with a pseudo-norm meaning the ball where the pseudo-metric is defined by
the chosen pseudo-norm. The theorem of van de Geer bounds the tails of the suprema of centered, Lipschitz
empirical processes of Λ over balls of Λ:

Theorem B.2 (Theorem 3.3 of van de Geer [1990]). Let (Λ, d) be a pseudo-metric space with d2 = (1/n)
∑n
k=1 d

2
k

where d1, . . . , dn pseudo-metrics on Λ. Let U1, . . . , Un be real-valued, independent, centered process on Λ such
that for Zn = 1√

n

∑
Uk, Zn(λ0) = 0 for some λ0 ∈ Λ. For u > 0, denote by H(u;σ) = H(u,BΛ,d(λ0, σ), d), the

u-entropy of the ball BΛ,d(λ0, σ). Assume further that |Uk(λ)− Uk(λ′)| ≤Mkdk(λ, λ′) with Mk ≥ 0 random such
that E[exp(|βMk|2)] ≤ Γ <∞ for some positive constants β and Γ. Then, there exist α, η, C1, C2 > 0 depending
only on β and Γ such that

P

(
sup

λ∈BΛ,d(λ0,σ)

|Zn(λ)| ≥ t

)
≤ 2 exp

(
−αt

2

σ2

)
4Note that this is assumed only to simplify the presentation.
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holds for any t > 0 and σ > 0 that satisfies t/σ > C1 and t > C2

∫ t0
0

√
H(u;σ) du where t0 ≥ inf{u : H(u;σ) ≤

ηt2/σ2}.

Let us now turn to the proof of Lemma B.1.

Proof of Lemma B.1. Let (W,W,P) be the probability space that holds (X1, Y1), . . . , (Xn, Yn). Note that with
no loss of generality, we can assume that (W,W) is a Borel-space (this is because all our random variables leave in
complete, separable metric spaces). For x1, . . . , xn ∈ X , let x1:n = (x1, . . . , xn). Similarly, let X1:n = (X1, . . . , Xn).
Define (Px1:n

)x1:n∈Xn to be the disintegration of the probability measure P with respect to X1:n, also known as
the regular conditional probability measure obtained from P by conditioning on X1:n.5 The expectation operator
corresponding to Px1:n will be denoted by Ex1:n . Note that, by the definition of Px1:n , for any random variable Z
on (W,W,P), EX1:n

[Z] = E[Z|X1:n] holds everywhere and in particular, for a measurable function s : Y → R,
EX1:n

[s(Yk)] = E[s(Yk)|X1:n] = E[s(Yk)|Xk], where the last equality holds since by assumption (Xt, Yt) is i.i.d.

Let
Uk,x1:n

(f) = ∆k,x1:n
(f)−∆k,x1:n

(f∗)

where
∆k,x1:n

(f) = `(Yk, f(xk))− Ex1:n
[`(Yk, f(xk))] , f ∈ Λ .

Note that Uk,x1:n ’s are independent, centered processes over Wx1:n . Let Zn,x1:n = 1√
n

∑n
k=1 Uk,x1:n

. By construc-

tion, Zn,x1:n(f∗) = 0. We now show that it is enough to study the deviations of the suprema of Zn,x1:n(f) over
the probability spaces Wx1:n

.

We have

∆n(f) = Ln(f)− Ln(f) =
1

n

n∑
k=1

∆k,X1:n
(f)

and so √
n(∆n(f)−∆n(f∗)) = Zn,X1:n(f) .

By the construction of Px1:n , for z ≥ 0,

P(∆
∗
n(C) ≥ z) =

∫
Px1:n

(∆
∗
n(C) ≥ z)PX1:n

(dx1:n) , (10)

and

Px1:n
(∆
∗
n(C) ≥ z/

√
n) = Px1:n

(
√
n sup
f∈C
|∆n(f)−∆n(f∗)| ≥ z) = Px1:n

(sup
f∈C

Zn,x1:n
(f) ≥ z) . (11)

Let Λ = C, dk,x1:n
(f, f ′) = |f(xk)−f ′(xk)| and d2

x1:n
(f, f ′) = 1

n

∑n
k=1 d

2
k,x1:n

(f, f ′). By construction, dx1:n
(f, f ′) =

‖f − f ′‖n. Since for any f = h+ g ∈ C,

‖f − f∗‖n = ‖h− h∗‖n + ‖g − g∗‖n ≤ ‖h− h
∗‖∞ + ‖g − g∗‖∞ ≤ 2(r + U) =: σ ,

thus, C ⊂ BΛ,dx1:n
(f∗, σ) ⊂ Λ = C and

Px1:n
(∆
∗
n(C) > z/

√
n) = Px1:n

(
sup

f∈BΛ,dx1:n
(f∗,σ)

Zn,x1:n
(f) > z

)
. (12)

Thus, it remains to bound this latter probability. Fix x1:n ∈ Xn such that

Ex1:n [exp((βK`(Y, c)
2)] ≤ Γc, for all c > 0 . (13)

5 The defining properties of (Px1:n) are that for each x1:n ∈ Xn, Px1:n is a probability measure on (W,W) concentrated
on {X1:n = x1:n}, x1:n 7→ Px1:n is measurable and for any f : (W,W) → [0,∞) measurable function

∫
f(w)P(dw) =∫

(
∫
f(w)Px1:n(dw))PX1:n(dx1:n). The existence of (Px1:n), which is also called a regular conditional probability distribution

is ensured thanks to the assumption that (W,W) is Borel. Moreover, (Px1:n) is unique up to an almost sure equivalence in

the sense that if (P̂x1:n) is another disintegration of P w.r.t. X1:n then PX({x1:n : Pux 6= P̂x1:n}) = 0. For background on
disintegration and conditioning, the reader is referred to Chang and Pollard [1997].
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Let us now apply Theorem B.2 to Wx1:n = (W,W,Px1:n) with Λ, (dk,x1:n) and (Uk,x1:n) (k = 1, . . . , n), as defined
above. To verify the uniform subgaussian property of the Lipschitz coefficient of Uk,x1:n , note that for f, f ′ ∈ C,
by Assumption 3.1(iii),

|Uk,x1:n(f)− Uk,x1:n(f ′)| = |∆k,x1:n(f)−∆k,x1:n(f ′)|
≤ |`(Yk, f(xk))− `(Yk, f ′(xk))|+ |Ex1:n [`(Yk, f(xk))− `(Yk, f ′(xk))]|
≤ Kl(Yk, r + U)|f(xk)− f ′(xk)|+ Ex1:n [Kl(Yk, r + U)]|f(xk)− f ′(xk)| .

By Lemma A.1(i), Ex1:n [Kl(Yk, r + U)] ≤ 1
β

√
Γr+U − 1 and so by part (ii) of the same lemma, Kl(Yk, r + U) +

Ex1:n
[Kl(Yk, r + U)] is subgaussian, with parameters β′ and Γ′ only depending on r + U .

Therefore, from Theorem B.2 we conclude that there exists C1, C2, η > 0 such that for any t > 0 satisfying

ηt2/σ2 ≥ H(1;σ), t > C1σ and t > C2

∫ 1

0

√
H(u;σ) du, it holds that

Px1:n

(
sup
f∈C
|Zn,x1:n

(f)| ≥ t

)
= Px1:n

(
sup

f∈BΛ,dx1:n
(f∗,σ)

|Zn,x1:n
(f)| ≥ t

)
≤ 2 exp

(
−αt

2

σ2

)
. (14)

It still remains to check that H(1, σ) and
∫ 1

0

√
H(u;σ) du are finite (otherwise the result is vacuous). By

definition, H(u;σ) = H(u,BΛ,dx1:n
(f∗, σ), dx1:n

) = H(u, C, dx1:n
) = H(u, C, ‖·‖n). Hence, by Lemma A.2,∫ 1

0
H1/2(u;σ) du ≤ 2CH+2CG(U). Noting that H(u;σ) is monotonically decreasing in u, we calculate H1/2(1;σ) ≤∫ 1

0
H1/2(u;σ) du ≤ 2CH + 2CG(U) and so H(1;σ) ≤ (2CH + 2CG(U))2 < ∞. We conclude that (14) holds for

any t ≥ tmin := max{C1σ,C2(2CH + 2CG(U)), (2CH + 2CG(U))ση−1/2}.

Since by Assumption 3.1(iii), (13) holds [PX ]-almost surely, combining (10), (12) and (14), we get

P
(

∆
∗
n(C) ≥ t/

√
n
)
≤ 2 exp

(
−αt

2

σ2

)
. (15)

Inverting this inequality, we see that for any 0 < δ < 1 such that log(2/δ) ≥ t2minα/σ
2, with probability at least

1− δ,

∆
∗
n(C) ≤ σ

√
log 2

δ

αn
,

finishing the proof.

It remains to bound ∆̃∗n(C) = supf∈C ∆̃n(f)− ∆̃n(f∗). For this, define

`(x, p) = E [`(Y, p) |X = x)] .

With a slight abuse of notation, we also introduce `(x, f) = `(x, f(x)). Let

B(`, U) =
∥∥∥supp∈[−r−U,r+U ] `(X, p)

∥∥∥
L∞

,

where ‖·‖L∞ denotes the essential supremum of its argument. We also let L be the Lipschitz constant of ` when
p ∈ [−r − U, r + U ]:

Lip(`, U) =
∥∥∥supp,p′∈[−r−U,r+U ],p 6=p′

`(X,p)−`(X,p′)
|p−p′|

∥∥∥
L∞

.

The next lemma shows that both quantities are finite:

Lemma B.3. Let r′ = max(r+U, ‖ĥ‖∞). Then, B(`, U) ≤ Q+ 2r′

β

√
Γr′ − 1 < +∞ and Lip(`, U) <

√
Γr+U−1

β <
+∞.

Proof. For the second statement, for any t, s ∈ [−b, b] we have

`(X, t)− `(X, s) ≤ E
[
|`(Y, t)− `(Y, s)|

∣∣X] ≤ E
[
K`(Y, b)|t− s|

∣∣X] ≤ √Γb−1
β |t− s| ,
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where we used Assumption 3.1(iii) and Lemma A.1(i). Thus, Lip(`, U) ≤
√

Γr+U−1

β < +∞.

For the first statement take some |p| ≤ r + U and write

`(X, p) ≤ `(X, ĥ(X)) + |`(X, p)− `(X, ĥ(X))| ≤ Q+ Lip(`, r′)|p− ĥ(X)| ≤ Q+ Lip(`, r′)(|r + U |+ ‖ĥ‖∞|)

≤ Q+ Γr′−1
β (2r′) ,

where in the second inequality we used Assumption 3.1(ii), while in the last one we used the bound on the
Lipschitz coefficient.

As it is well known, the Rademacher complexity of C, defined next, captures exactly the behavior of E
[
∆̃∗n(C)

]
(e.g., Tewari and Bartlett [2013]).

Definition 3 (Rademacher Complexity of Subsets of Rn). Let A ⊂ Rn, (σ1, . . . , σn) ∈ {−1,+1}n be independent
Rademacher random variables (i.e., P (σk = 1) = 1/2). The Rademacher complexity of A, R(A) is

R(A) =
1

n
E

[
sup
a∈A

n∑
i=1

σiai

]
.

Definition 4 (Rademacher Complexity of Function Sets). Let F ⊂ {f : f : X → R} and P be a measure on X .
Then, the nth Rademacher number of F induced by P is

Rn(F) = E [R(F(X1:n))] ,

where F(X1:n) = {(f(X1), . . . , f(Xn)) : f ∈ F} is the projection of F to an i.i.d. sample X1:n = (X1, . . . , Xn)
from P . When n and P are uniquely identified from the context, we also call Rn(F) the Rademacher-complexity
of F .

The Rademacher complexity enjoys a number of useful properties, amongst which we need the following contraction
property:

Theorem B.4. For A ⊂ Rn and φ = (φ1, . . . , φn) : Rn → Rn, define φ ◦ A = {(φ1(a1), . . . , φn(an)) : a ∈ A}.
Assume that all the component functions φi are L-Lipschitz over A. Then, R(φ ◦A) ≤ LR(A).

Note that this theorem is usually stated for the case when φ1 = . . . = φn. The simpler form is sufficient for
“margin based losses” (used in classification) that have the form `(y, p) = g(yp) with some g. As we will see, here
we need this more general form as our losses are less constrained. However, the proof of this more general result
still follows the standard reasoning.

Proof. We follow the proof of Theorem 11.9 in [Rakhlin and Sridharan, 2014] and write

nR(φ ◦A) = E

[
sup
a∈A

n∑
i=1

σiφi(ai)

]

=
1

2

{
E

[
sup
a∈A

n−1∑
i=1

σiφi(ai) + φn(an)|σn = 1

]
+ E

[
sup
b∈A

n−1∑
i=1

σiφi(bi)− φn(bn)|σn = −1

]}

=
1

2

{
E

[
sup
a,b∈A

n−1∑
i=1

σi(φi(ai) + φi(bi)) + (φn(an)− φn(bn))

]}

≤ 1

2

{
E

[
sup
a,b∈A

n−1∑
i=1

σi(φi(ai) + φi(bi)) + L|an − bn|

]}
.

Now assume that some (a∗, b∗) achieves the supremum (the proof when the supremum is not achieved is easy
once we know how to prove the statement for the case when the supremums involved are all achieved). If a∗n ≥ b∗n,
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the absolute value can be removed. Otherwise, (b∗, a∗) will achieve the same supremum, and again the absolute
value can be removed. Thus, the last expression is bounded by

1

2

{
E

[
sup
a,b∈A

n−1∑
i=1

σi(φi(ai) + φi(bi)) + L(an − bn)

]}

=
1

2

{
E

[
sup
a∈A

n−1∑
i=1

σiφi(ai) + Lan|σn = 1

]
+ E

[
sup
b∈A

n−1∑
i=1

σiφi(bi)− Lbn|σn = −1

]}

= E

[
sup
a∈A

n−1∑
i=1

σiφi(ai) + Lσnan

]
.

Continuing this way,

E

[
sup
a∈A

n−1∑
i=1

σiφi(ai) + Lσnan

]
≤ E

[
sup
a∈A

n−2∑
i=1

σiφi(ai) + L(σn−1an−1 + σnan)

]
≤ LE

[
sup
a∈A

n∑
i=1

σiai

]
,

thus finishing the proof.

Let L =
{
sf : X → R : sf (x) = `(x, f)− `(x, f∗), f ∈ C, x ∈ X

}
. Note that ∆̃n(f)− ∆̃n(f∗) = (L(f)−Ln(f))−

(L(f∗)−Ln(f∗)) = E
[
`(X, f)− `(X, f∗)

]
− 1
n

∑n
k=1(`(Xk, f)−`(Xk, f

∗)) = E [sf (X)]− 1
n

∑n
k=1 sf (Xk). Following

the standard argument, since the range of functions in L is bounded by B(`, U), by McDiamid’s inequality, for
any 0 < δ < 1, with probability at least 1− δ,

∆̃∗n(C) = sup
s∈L

E [s(X)]− 1
n

∑n
k=1 s(Xk) ≤ E

[
sups∈L E [s(X)]− 1

n

∑n
k=1 s(Xk)

]
+B(`, U)

√
2 log 1

δ

n .

Following the calculation before Theorem 7 in Section 3.2 of Tewari and Bartlett [2013],

E
[
sup
s∈L

E [s(X)]− 1
n

∑n
k=1 s(Xk)

]
≤ 2Rn(L).

Let us now bound Rn(L) = E [R(L(X1:n))]. We can write

L(X1:n) = {sf (X1:n) : f ∈ C} = φ ◦ C(X1:n),

where φ = (φ1, . . . , φn) : Rn → Rn is defined by φk(t) = `(Xk, t) − `(Xk, f
∗(Xk)) (note that φ is random).

By definition, each component of φ is almost surely Lipschitz over any bounded interval [−b, b] with the same
Lipschitz constant (depending on b). Indeed, for any t, s ∈ [−b, b],

‖|φk(t)− φk(s)|‖L∞ = ‖|`(Xk, t)− `(Xk, s)|‖L∞
= inf

{
a ∈ R : P

(
|`(Xk, t)− `(Xk, s)| > a

)}
= inf

{
a ∈ R : P

(
|`(X, t)− `(X, s)| > a

)}
= ‖|`(X, t)− `(X, s)|‖L∞
≤ Lip(`, b)|t− s| ,

where the second and fourth equalities used the definition of ‖·‖L∞ and the third used that Xk and X are
identically distributed. Now, since C contains functions bounded by r + U , by Theorem B.4,

R(φ ◦ C(X1:n)) ≤ Lip(`, U)R(C(X1:n)) a.s.

and hence

Rn(L) = ER(L(X1:n)) = ER(φ ◦ C(X1:n)) ≤ Lip(`, U)ER(C(X1:n)) = Lip(`, U)Rn(C).
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Our next goal is to bound Rn(C). By Dudley’s entropy integral bound [Dudley, 1967] (e.g., Theorem 10 of Tewari
and Bartlett [2013], for a statement with a proof see Theorem 11.4 of Rakhlin and Sridharan [2014]),

Rn(C) ≤ 12√
n
E
∫ 1

0

H1/2(u, C, ‖·‖n) du ≤ 12√
n

(2CH + 2CG(U)),

where the second inequality holds thanks to Lemma A.2 and we also used that Dudley’s bound holds regardless the
scale of the range of functions in C, which is not hard to check by inspecting the proof of the bound. Combining
all the inequalities we get that with probability at least 1− δ,

∆̃∗n(C) ≤ 48(CH + CG(U)) Lip(`, U)√
n

+B(`, U)

√
log 1

δ

2n
. (16)

Combining Equations (7) and (8), we have for any z ≥ 0,

P (L(fn)− L(f∗) > z) ≤ P (Ec) + P
(

∆̃∗n(C) + ∆
∗
n(C) > z

)
. (17)

Now, by Lemma B.1 and (16), for any 0 < δ < 1 such that log(1/δ) ≥ c, with probability at least 1− 2δ,

∆̃∗n(C) + ∆
∗
n(C) ≤ 48(CH + CG(U)) Lip(`, U)√

n
+ 2(r + U)

√
log 2

δ

αn
+B(`, U)

√
log 1

δ

2n
=: π(δ) .

Together with (17) and Theorem 3.1, we thus get that with probability 1− 3δ, provided that log(1/δ) ≥ c and

n ≥ c1 + c2
log( 2ρ

δ )
λmin

,
L(fn)− L(f∗) ≤ π(δ) ,

thus finishing the proof.

C The Proof of Theorem 3.1

In this section we present the proof of Theorem 3.1, which calls for a bound of

sup
h∈H
‖gh,n‖∞

that holds with high probability. Fix h ∈ H. Then, gh,n(x) = 〈θ, φ(x)〉 ≤ ‖θh,n‖2 ‖φ(x)‖2, where θh,n is the
parameter vector of gh,n. Since ‖φ(x)‖2 ≤ 1, it suffices to bound ‖θh,n‖2. On Gλmin

, which is defined as the event

{λ̂min ≥ λmin/2}, we have

g2
h,n(x) ≤ ‖θh,n‖22 ≤

θ>h,nĜ θh,n

λ̂min

=
2 ‖gh,n‖n
λmin

. (18)

Hence, the problem is reduced to proving a uniform (h-independent) upper bound on the empirical norm of gh,n
and showing that Gλmin happens with “large probability”.

For the latter, we use a result of Gittens and Tropp [2011]. This is summarized in the lemma which also includes
some observations that will prove to be useful later:

Lemma C.1. The following hold:

(i) With probability one, for any θ ∈ Rd, θ>Ĝθ ≤ θ>Gθ
λmin

.

(ii) Assuming that n ∈ N and δ ∈ (0, 1) are such that

n ≥ 2

λmin log
(
e
2

) log
(ρ
δ

)
, (19)

where ρ and λmin are respectively the rank and the smallest positive eigenvalue of G, with probability at least
1− δ, it holds that λ̂min ≥ λmin

2 > 0.



Ruitong Huang, Csaba Szepesvári

(iii) For any n, δ satisfying (19), with probability 1− δ it holds that for any θ ∈ Rd and [PX ] almost every x ∈ X ,

|〈θ, φ(x)〉| ≤
√

2θ>Ĝθ
λmin

.

The (easy) proof of the lemma is deferred to Appendix C.2.

To get an upper bound on the empirical norm of gh,n, we will use

‖gh,n‖n ≤
∥∥gh,n − gh,n∥∥n +

∥∥gh,n∥∥n (20)

and develop uniform bound on the two terms on the r.h.s..

Lemma C.2. It holds almost surely that
sup
h∈H

∥∥gh,n∥∥n ≤ R̄,
where R̄ = RC0

+ r, C0 = 2r̂
β

√
Γr̂ − 1 +Q, r̂ = max(r, ‖ĥ‖∞) and ĥ is the function from Assumption 3.1(ii).

The constant RC0 that appears in the statement is defined in our “level-set assumption” (cf. Assumption 3.1(iv)).

Proof. Fix some h ∈ H. We have
∥∥gh,n∥∥n =

∥∥h+ gh,n + (−h)
∥∥
n
≤
∥∥h+ gh,n

∥∥
n

+ ‖−h‖n ≤
∥∥h+ gh,n

∥∥
n

+ r

thanks to ‖h‖∞ ≤ r. Hence, it remains to bound
∥∥h+ gh,n

∥∥
n
.

By Assumption 3.1(iv), for this it suffices if we show a bound on Ln(h + gh,n) since by this assumption if

Ln(h + gh,n) ≤ c then
∥∥h+ gh,n

∥∥
n
≤ Rc. By the optimizing property of gh,n, we have Ln(h + gh,n) =

Ln,h(gh,n) ≤ Ln,h(0) = Ln(h). Now, by definition

Ln(h) = E

[
1

n

∑
i

`(Yi, h(Xi))
∣∣∣X1:n

]
,

hence, it suffices to bound E [`(Yi, h(Xi))|Xi]. For this, we have

E [`(Yi, h(Xi))|Xi] ≤ E
[
|`(Yi, h(Xi))− `(Yi, ĥ(Xi))| |Xi

]
+ E

[
`(Yi, ĥ(Xi)) |Xi

]
,

where we used that by assumption the loss is nonnegative. By Assumption 3.1(ii),

E
[
`(Yi, ĥ(Xi)) |Xi

]
≤ Q.

Therefore it is sufficient to bound

E
[
|`(Yi, h(Xi))− `(Yi, ĥ(Xi))| |Xi

]
.

Note that by Assumption 3.1(iii), almost surely E
[
exp

(
|βK`(Y, r)|2

)
|X
]
≤ Γr. So, by Lemma A.1 (i),

E [K`(Y, r)|X] ≤ 1
β

√
Γr − 1 a.s.. Thus, with r̂ = max(r, ‖ĥ‖∞),

E
[
|`(Yi, h(Xi))− `(Yi, ĥ(Xi))| |Xi

]
≤ E [2r̂K`(Yi, r̂)|Xi] ≤ 2r̂

β

√
Γr̂ − 1.

Putting together the inequalities, we obtain that Ln(h+ gh,n) ≤ 2r̂
β

√
Γr̂ − 1 +Q =: C0 and thus

∥∥h+ gh,n
∥∥
n
≤

RC0 .

Let us now consider bounding
∥∥gh,n − gh,n∥∥n. In fact, we will only bound this on the event Gλmin

when

λ̂min ≥ λmin/2. Since we use this event to upper bound 1/λ̂min by 2/λmin, there is no loss in bounding∥∥gh,n − gh,n∥∥n on this event only. Note that by Lemma C.1 (ii), Gλmin holds with probability at least 1− δ.

Lemma C.3. There exist problem-dependent positive constants C0 and L0 ≥ 1 such that for any n ≥ 16L4
0, it

holds that

P
(

sup
h∈H

∥∥gh,n − gh,n∥∥n ≥ 1 , Gλmin

)
≤ exp

(
−C0n

4

)
. (21)
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The proof of this lemma follows the proofs in the paper of van de Geer [1990], who studied the deviations∥∥gh,n − gh,n∥∥n for h = 0 (see also van de Geer 2000). It turns out the techniques of the mentioned paper are just

strong enough to bound the uniform deviation suph∈H
∥∥gh,n − gh,n∥∥n. As the proof is lengthy and technical, it is

developed in a separate section.

Now, combining (18), (20) and Lemma C.2 we get that on Gλmin ,

Gn,∞
.
= sup
h∈H
‖gh,n‖∞ ≤

2

λmin
sup
h∈H
‖gh,n‖n ≤

2

λmin

(
R+ sup

h∈H

∥∥gh,n − gh,n∥∥n) . (22)

Since for any A > 0,

P (Gn,∞ > A) ≤ P
(
Gcλmin

)
+ P (Gn,∞ > A,Gλmin)

and by (22),

P (Gn,∞ > A,Gλmin
) ≤ P

(
2

λmin

(
R+ sup

h∈H

∥∥gh,n − gh,n∥∥n) > A,Gλmin

)
,

choosing A = 2
λmin

(
R+ 1

)
, we see that

P
(
Gn,∞ >

2

λmin

(
R+ 1

))
≤ P

(
Gcλmin

)
+ P

(
sup
h∈H

∥∥gh,n − gh,n∥∥n ≥ 1, Gλmin

)
.

By Eq. (19) and Lemma C.3, provided that n ≥ 2

λmin log( e2 )
log
(

2ρ
δ

)
, n ≥ 16L4

0 and n ≥ 4 log( 2
δ )

C0
we get that

P
(
Gn,∞ >

2

λmin

(
R+ 1

))
≤ δ ,

which is the desired statement. In particular, we can choose U = 2
λmin

(
R+ 1

)
.

C.1 The Proof of Lemma C.3

The proof follows the ideas from the paper of van de Geer [1990]. Lemma C.3 calls for a uniform (in h ∈ H)
bound for

∥∥gh,n − gh,n∥∥n. Fix h ∈ H. We consider a self-normalized “version” of the differences gh,n − gh,n,
which are easier to deal with. This is done as follows: For g ∈ G, define

ωg,h =
g − gh,n

1 +K
∥∥g − gh,n∥∥n and Ωh,n = {ωg,h : g ∈ G} ,

where K > 0 is to be chosen later. Then, for any ω ∈ Ωh,n, ‖ω‖n <
1
K and

∥∥g − gh,n∥∥n =

∥∥g − gh,n∥∥n
1 +K

∥∥g − gh,n∥∥n
(

1 +K
∥∥g − gh,n∥∥n) = ‖ωg,h‖n

(
1 +K

∥∥g − gh,n∥∥n)
=

‖ωg,h‖n
1−K ‖ωg,h‖n

.

(23)

Thus, we see that is enough to control the empirical norm of

ω̂h,n = ωgh,n,h =
gh,n − gh,n

1 +K
∥∥gh,n − gh,n∥∥n .

The first step is to bound this norm in terms of the increments of the empirical process

∆h,n(g) := Lh,n(g)− Lh,n(g) .
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Lemma C.4 (“Basic Inequality”). Let Assumption 3.2 hold. There exists a constant η, such that on the event
Gλmin , for any h ∈ H,

η ‖ω̂h,n‖2n ≤∆h,n(gh,n)−∆h,n(gh,n + ω̂h,n) .

The proof, which is stated in Appendix C.3, follows standard arguments. Based on this, we can reduce the
study of the supremum of the empirical norm of ω̂h,n to that of the supremum of the increments Vh,n(ω) =√
n
(
∆h,n(gh,n)−∆h,n(gh,n + ω)

)
normalized by ω. In particular, it follows from Lemma C.4 that for L, σ > 0,

P
(

sup
h∈H
‖ω̂h,n‖n ≥ Lσ ,Gλmin

)
= P

(
∃h ∈ H : ‖ω̂h,n‖n ≥ Lσ,

Vh,n(ω̂h,n)

‖ω̂h,n‖2n
≥ η
√
n ,Gλmin

)
≤ P

(
sup

(g,h)∈G×H:‖ωg,h‖n≥Lσ

Vh,n(ωg,h)

‖ωg,h‖2n
≥ η
√
n ,Gλmin

)
. (24)

The supremum of normalized increments similar to the one appearing above was studied by van de Geer [1990].
In fact, we will adapt Lemma 3.4 of this paper to our purposes. The lemma requires minimal modifications: In
our case, the empirical process is indexed with elements of {ωg,h : g ∈ G, h ∈ H}, the product set G ×H, whereas
van de Geer [1990] considers a similar result for h = 0. As a result, whereas van de Geer [1990] reduces the study
of this probability to bounding the “size” of balls in the the index space, we will reduce it to bounding the size of
“tubes”.

To state the generalization of Lemma 3.4 of van de Geer [1990], we introduce the following abstract setting: Let
(V, dV,k), (Λ, dΛ,k) be pseudo-metric spaces (k = 1, . . . , n), d2

k be the pseudo-metric on V ×Λ, which for γ = (ν, λ),

γ̃ = (ν̃, λ̃) in V ×Λ is defined by d2
k(γ, γ̃) = d2

V,k(ν, ν̃) + d2
Λ,k(λ, λ̃). Further, let d2 be the pseudo-metric on V ×Λ

defined by d2 = 1
n

∑n
k=1 d

2
k. Consider the real-valued processes U1, U2, . . . , Un on V × Λ and the process

Zn =
1√
n

n∑
k=1

Uk .

For σ > 0, denote by H(ε, σ)
.
= H(ε, T (σ), d), the metric entropy of the σ-“tube”

T (σ) = ∪ν∈V {ν} × {λ ∈ Λν : dΛ(λν , λ) ≤ σ} ⊂ V × Λ ,

where for ν ∈ V , Λν ⊂ Λ and dΛ (defining the “tube”) is the a pseudo-metric on Λ defined by d2
Λ(λ, λ̃) =

1
n

∑
k d

2
Λ,k(λ, λ̃). For L > 0, define

αn(L, σ) =

∫ 1

0

√
H(uLσ,Lσ)du
√
nLσ

.

With this, we are ready to state our generalization of Lemma 3.4 of van de Geer [1990]:

Lemma C.5. Assume that the following conditions hold:

(i) U1, U2, · · · , Un are independent, centered; for all ν ∈ V , Zn(ν, λν) = 0 for some λν ∈ Λ, and

|Uk(γ)− Uk(γ̃)| ≤Mkdk(γ, γ̃) , γ, γ̃ ∈ V × Λ,

where M1,M2, · · · ,Mn are uniformly subgaussian, i.e., for some positive β and Γ,

E[exp(|βMk|2)] ≤ Γ <∞, k = 1, 2, . . . , n.

(ii) Assume that σ > 0 is such that
√
nσ ≥ 1 and suppose

lim
L→∞

αn(L, σ) = 0 .
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Then, there exist constants L0 ≥ 1 and C0, depending only on (β,Γ) and the map L 7→ αn(L, σ), such that for all
L ≥ L0,

P
(

sup
ν∈V

sup
λ∈Λν :

dΛ(λν ,λ)>Lσ

|Zn(ν, λ)|
d2

Λ(λν , λ)
≥
√
n
)
≤ exp(−C0L

2σ2n).

Remark C.1. The proof is obtained by modifying the proof of van de Geer [1990]’s Lemma 3.4 in a straightforward
manner and hence it is omitted. A careful investigation of the original proof will find that the result also holds if
we find L0 and C0 depending on an upper bound α̃n(L, σ) for αn(L, σ) provided that limL→∞ α̃n(L, σ) = 0 still
holds. Moreover, if the upper bound is selected such that it does not depend on n and σ but only on L and the
“size” of the spaces V , (Λν)ν∈V , then L0 and C0 will depend only on (β,Γ) and the mentioned “size”.

To apply Lemma C.5 to our problem, we choose the spaces to be V = H, Λ = ∪h∈HΛh, where Λh = Ωh,n.

Further, we choose the pseudo-metrics to be d2
V,k(h, h̃) = |h(Xk) − h̃(Xk)|2 + ‖h − h̃‖2∞,n (h, h̃ ∈ V ), and

dΛ,k(ω, ω̃) = |ω(Xk)− ω̃(Xk)| (ω, ω̃ ∈ Λ). We also choose Λh = Ωh,n ⊂ Λ. Since these pseudo-metrics are random
(they depend on X1:n), for a proper use of Lemma C.5 we again need to “condition” on X1:n when using this
lemma. Making this argument formal has been discussed in Appendix B.

For f ∈ L1(X , PX), ω ∈ Λ, h ∈ H set

∆k(f) =
1

η
(`(Zk, f)− Ex1:n

[`(Zk, f)]) ,

Uk(h, ω) = ∆k(h+ gh,n)−∆k(h+ gh,n + ω) .

(We remind the reader that, although not shown to minimize clutter, ∆k and Uk do depend on x1:n.)

Now, for h ∈ H, we set λh = 0. Thus, Uk(h, λh) = Uk(h, 0) = 0. Furthermore, for Zn(h, ω) = 1√
n

∑n
k=1 Uk(h, ω)

we have Zn(h, ω) = 1
ηVh,n(ω) and therefore (using that λh = 0 and dΛ(ω, ω̃) = ‖ω − ω̃‖n)

sup
h∈H

sup
ω∈Λh:

dΛ(λh,ω)>Lσ

Zn(h, ω)

d2
Λ(λh, ω)

= sup
h∈H

sup
ω∈Ωh,n:
‖ω‖n>Lσ

Vh,n(ω)

η ‖ω‖2n
=: Qn(Lσ) , (25)

showing that the conclusion of the lemma suffices to bound the quantity of interest appearing in (24).

We claim that the condition of Lemma C.5 are satisfied for [PX ] almost every x1:n ∈ Xn such that λmin(x1:n)
.
=

λmin(Φ(x1:n)>Φ(x1:n)) ≥ λmin/2. Let N ⊂ Xn be the [PX ] null-set where the claim is not required to hold (we
will construct N in the proof). That Uk are centered and Zn(h, λh) = 0 for any h ∈ H holds by construction. As
far as the remaining conditions are concerned, we have:

Condition (i), the independence of (Uk): This follows from the definition of Px1:n and the independence of
(Xk, Yk).

Condition (i), the Lipschitzness of Uk: Our goal is to show (for later use) that the Lipschitz coefficients Mk can
be chosen independently of n and x1:n as long λmin(x1:n) ≥ λmin/2. For this, we will assume that

K ≥ 1 . (26)

Since Uk is defined as a function of ∆k, we consider the Lipschitzness of ∆k first. Using the definition of ∆k and
the Lipschitzness of ` (cf. Assumption 3.1(iii)), for any f, f ′ ∈ L1(X , PX) we have

|∆k(f)−∆k(f ′)| ≤ 1

η

(
|`(Zk, f))− `(Zk, f ′)|
|f(Xk)− f ′(Xk)|

+
E [|`(Zk, f)− `(Zk, f ′)| |Xk]

|f(Xk)− f ′(Xk)|

)
|f(Xk)− f ′(Xk)|.

Denote |`(Zk,f))−`(Zk,f ′)|
|f(Xk)−f ′(Xk)| +

E[|`(Zk,f)−`(Zk,f ′)| |Xk]
|f(Xk)−f ′(Xk)| by Nk(f, f ′). Thus, for h, h̃ ∈ H, ω, ω̃ ∈ Λ, letting f = h+ gh,n,

f̃ = h̃+ gh̃,n,

|Uk(h, ω)− Uk(h̃, ω̃)|

≤ 1

η
Nk(f, f̃)

∣∣∣f(Xk)− f̃(Xk)
∣∣∣

+
1

η
Nk(f + ω, f̃ + ω̃)

{∣∣∣f(Xk)− f̃(Xk)
∣∣∣+ |ω(Xk)− ω̃(Xk)|

}
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Now, by assumption |h(xk)|, |h̃(xk)| ≤ r. From λmin(x1:n) ≥ λmin/2, (18) and Lemma C.2 it follows that

|gh,n(xk)|, |gh̃,n(xk)| ≤ 2R
λmin

. Also, by the same argument as in Lemma C.7, again thanks to λmin(x1:n) ≥ λmin/2,

|ω(xk)|, |ω̃(xk)| ≤ 1
K(λmin/2)1/2 ≤ 1

(λmin/2)1/2 , where we used (26). Hence,

Nk(f, f̃) ≤ K`

(
Yk, r +

2R

λmin

)
+ E

[
K`

(
Yk, r +

2R

λmin

)
|Xk

]
and similarly,

Nk(f + ω, f̃ + ω̃) ≤ K`

(
Yk, r +

2R

λmin
+

1

(λmin/2)1/2

)
+ E

[
K`

(
Yk, r +

2R

λmin
+

1

(λmin/2)1/2

)
|Xk

]
Now,

|f(xk)− f̃(xk)| ≤ |h(xk)− h̃(xk)|+ |gh,n(xk)− gh̃,n(xk)|

≤ |h(xk)− h̃(xk)|+Kh‖h− h̃‖∞,n ,

where the second inequality follows since by Assumption 3.4, h 7→ gh,n(xk) is Kh-Lipschitz. Therefore, by the
choice of dV,k and dΛ,k,

|Uk(h, ω)− Uk(h̃, ω̃)| ≤ 2Mk

η

(
dV,k(h, h̃) + dΛ,k(ω, ω̃)

)
≤M ′kdk

(
(h, ω), (h̃, ω̃)

)
where Mk = 2K`

(
Yk, r + 2R

λmin
+ 1

(λmin/2)1/2

)
+ 2E

[
K`

(
Yk, r + 2R

λmin
+ 1

(λmin/2)1/2

)
|Xk

]
. Note

that by Lemma A.1(i), it holds almost surely that E
[
K`

(
Yk, r + 2R

λmin
+ 1

(λmin/2)1/2

)
|Xk

]
≤

1
β

√
Γr+2R/λmin+1/(λmin/2)1/2 − 1. Then by Lemma A.1(ii), Mk is uniformly subgaussian, so is M ′k.

Condition (ii): We want to verify that αn(L, σ)→ 0 as L→∞ and show that in fact an upper bound α̃(L) on
αn(L, σ) which is independent of x1:n, n, K and σ exists such that α̃(L)→ 0 still holds. Since αn(L, σ) depends
on the entropy numbers H(ε, T (σ), d) of the tube w.r.t. d2 = 1

n

∑
k d

2
k, first we need to estimate these entropy

numbers. For γ = (h, ω), γ̃ = (h̃, ω̃), we have

d2(γ, γ̃) =
1

n

∑
k

d2
V,k(h, h̃) +

1

n

∑
k

d2
Λ,k(ω, ω̃)

= ‖h− h̃‖2n + ‖h− h̃‖2∞,n + ‖ω − ω̃‖2n ≤ 2
(
‖h− h̃‖2∞,n + ‖ω − ω̃‖2n

)
.

Further, d2
Λ(ω, ω̃) = ‖ω − ω̃‖2n and therefore by the choice Λh = Ωh,n and λh = 0,

T (σ) = {(h, ω) : h ∈ H, ω ∈ Ωh,n s.t. ‖ω‖n ≤ σ} .

Therefore, it suffices to estimate the metric entropy of T (σ) at different scales w.r.t. the pseudo-norm ‖·‖T
defined by ‖(h, ωg,h)‖T = ‖h‖∞,n + ‖ωg,h‖n. This is done in the following proposition, which also shows that the
integrability assumption is satisfied (the proof is presented in the appendix):

Proposition C.6. Let Assumptions 3.1 to 3.4 hold. Take n ≥ 1, K > 0, ε > 0, 1 ≥ σ ≥ ε such that Kσ ≤ 1/2.
Then on Gλmin ,

H(ε, T (σ), ‖ · ‖T ) ≤ρ log(σ/ε) + ρ log(241) +AH( εA ,H, ‖·‖∞,n)

holds a.s. for some positive (non-random) constant A that depends only on Kh.

Furthermore, on Gλmin , ∫ 1

0

H1/2(uσ, T (σ), ‖ · ‖T ) du ≤ A′√ρ+
A′′

σ
,

holds a.s. for some universal constant A′ > 0 and some non-random constant A′′ that depends on CH and Kh

only.
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Now, H(ε, σ) = H(ε, T (σ), d) ≤ CH(ε, T (σ), ‖·‖T ) with some universal constant C, hence H(uLσ,Lσ) ≤
CH(uLσ, T (Lσ), ‖·‖T ) and by the previous result,∫ 1

0

H1/2(uLσ,Lσ)du ≤ C1/2

∫ 1

0

H1/2(uLσ, T (Lσ), ‖·‖T ) du ≤ C ′
(

1 +
1

σ

)
≤ 2C ′

σ

where C ′ is a constant that is independent of L, n,K, σ and we assumed that σ ≤ 1. Hence,

αn(L, σ) ≤ 2C ′√
nLσ2

≤ 2C ′

L

provided that
√
nσ2 ≥ 1. Thus, under this condition, αn(L, σ) → 0 as L → ∞, as required. Furthermore, the

upper bound on αn(L, σ) is independent of x1:n, K, n and σ. Therefore, L0 and C0 can be selected independently
of x1:n, K, n and σ, finishing the verification of the conditions of Lemma C.5.

Therefore, using (25) we conclude that for any L ≥ L0, K,n, σ such that
√
nσ2 ≥ 1 and Kσ ≤ 1/2 and K ≥ 1,

for [PX ] almost all x1:n such that λmin(x1:n) ≥ λmin/2,

Px1:n

(
Qn(Lσ) ≥

√
n
)
≤ exp(−C0L

2σ2n).

Now, by the definition of Px1:n
,

P
(
Qn(Lσ) ≥

√
n,Gλmin

)
=

∫
Px1:n

(
Qn(Lσ) ≥

√
n,Gλmin

)
PX(dx1:n)

=

∫
λmin(x1:n)≥λmin/2

Px1:n

(
Qn(Lσ) ≥

√
n
)
PX(dx1:n)

≤
∫
λmin(x1:n)≥λmin/2

exp(−C0L
2σ2n)PX(dx1:n) ≤ exp(−C0L

2σ2n) ,

where the second equality follows since Gλmin is X1:n-measurable.

Hence, by combining (23) and (24), using the definition of Qn(Lσ) in (25) and choosing L = L0,

P
(

sup
h∈H

∥∥gh,n − gh,n∥∥n ≥ L0σ

1−KL0σ
,Gλmin

)
≤ P

(
Qn(Lσ) ≥

√
n,Gλmin

)
≤ exp(−C0L

2
0σ

2n) .

Choosing σ = 1/(2L0) and K = 1, noting that n ≥ σ−4 then translates into n ≥ 16L4
0 gives that

P
(

sup
h∈H

∥∥gh,n − gh,n∥∥n ≥ 1, Gλmin

)
≤ exp(−C0n/4),

which is the desired result (we also used that L0 ≥ 1 by assumption and hence σ ≤ 1 which gives that√
nσ ≥

√
nσ2 ≥ 1).

C.2 Eigenvalue Bound

Lemma C.1. The following hold:

(i) With probability one, for any θ ∈ Rd, θ>Ĝθ ≤ θ>Gθ
λmin

.

(ii) Assuming that n ∈ N and δ ∈ (0, 1) are such that

n ≥ 2

λmin log
(
e
2

) log
(ρ
δ

)
, (19)

where ρ and λmin are respectively the rank and the smallest positive eigenvalue of G, with probability at least
1− δ, it holds that λ̂min ≥ λmin

2 > 0.

(iii) For any n, δ satisfying (19), with probability 1− δ it holds that for any θ ∈ Rd and [PX ] almost every x ∈ X ,

|〈θ, φ(x)〉| ≤
√

2θ>Ĝθ
λmin

.
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Proof. Part (i): We first show that Ker(G) ⊆ Ker(Ĝ) holds almost surely: In particular, this can be seen by proving
that Gθ = 0 for some θ ∈ Rd then with probability one, Ĝθ = 0 also holds. Indeed, if the latter did not hold with
probability one, then for some ε > 0, P(θ>Ĝθ ≥ ε) > 0 would hold. Then, θ>Gθ = E[θ>Ĝθ] ≥ εP(θ>Ĝθ ≥ ε) > 0,
which means that θ 6∈ Ker(G). Now, if we take a set of vectors {θ1, . . . , θm} spanning Ker(G), then on some event
E with P(E) = 1, Ĝθi = 0 holds for all 1 ≤ i ≤ m. Now, on E, Ker(G) ⊂ Ker(Ĝ). Indeed, take an arbitrary
θ ∈ Ker(G) and expand it using {θi}: θ =

∑m
i=1 λiθi. Then, Ĝt =

∑
i λĜθi and since Ĝθi = 0 simultaneously for

all i, the statement follows.

Now, for proving Part (i), consider the event E where Ker(G) ⊂ Ker(Ĝ). We prove the result on E: Pick any
θ ∈ Rd and decompose it into θ = θ⊥ + θ|| such that θ⊥ ⊥ Im(G) and θ|| ∈ Im(G). Hence, θ>Gθ = θ>||Gθ||. Since

θ⊥ ∈ Ker(G) and Ker(G) ⊂ Ker(Ĝ), we have Ĝθ⊥ = 0. Hence, θ>Ĝθ = θ>|| Ĝθ||. Now, since ‖φ(x)‖2 ≤ 1 it holds

that λ̂max ≤ 1, where λ̂max denotes the largest eigenvalue of Ĝ. Therefore, on E,

θ>Ĝθ = θ>|| Ĝθ|| ≤ ‖θ||‖
2
2 ≤

θ>||Gθ||

λmin
=
θ>Gθ

λmin
.

Since P(E) = 1, the result follows.

Part (ii): By the “Eigenvalue Chernoff Bound” (Theorem 4.1) of Gittens and Tropp [2011], with probability at

least 1− ρ exp
(
− nλmin

(
ε+ (1− ε) log(1− ε)

))
, λ̂min ≥ (1− ε)λmin. Choosing ε = 1/2 gives the result.

Part (iii): Fix n, δ as required. Let E be the event where Ker(G) ⊂ Ker(Ĝ) and let Fδ be the event where the
inequality of Part (ii) holds. Take the set S of those x ∈ supp(PX) where Ker(G) ⊂ Ker(φ(x)φ(x)>) holds. It
follows from the argument presented in Part (i) that PX(X \ S) = 0.

Since P(E ∩ Fδ) ≥ 1− δ, it suffices to prove the statement on E ∩ Fδ. Hence, in what follows all statements are
meant to hold on this event. Pick any θ ∈ Rd, x ∈ S and decompose θ as before. Then, thanks to x ∈ S it holds
that θ⊥ ∈ Ker(φ(x)φ(x)>). Hence, 〈θ, φ(x)〉2 = θ>φ(x)φ(x)>θ = θ||φ(x)φ(x)>θ|| = 〈θ||, φ(x)〉2. Now, owning to
‖φ(x)‖2 ≤ 1,

〈θ||, φ(x)〉2 ≤
∥∥θ||∥∥2

2
≤
θ>|| Ĝθ||

λ̂min

≤
2 θ>|| Ĝθ||

λmin
=

2 θ>Ĝθ

λmin
,

where the last inequality follows from Part (ii).

C.3 Proof of the “Basic Inequality” (Lemma C.4)

We start with a uniform bound for the infinity norm of elements in Ωh,n. Let

K∞ =
1

K(λmin/2)1/2
.

Recall that Gλmin is the event when λ̂min ≥ λmin/2.

Lemma C.7. On the event Gλmin ,
sup

ω∈Ωh,n

‖ω‖∞ < K∞.

Proof. Introduce ‖x‖2M = x>Mx for M positive definite. Let θh,n be the parameter of gh,n. Thus,

|ω(x)| = |〈φ(x), θ − θh,n〉|

1 +K

√∥∥θ − θh,n∥∥2

Ĝ

≤ ‖θ − θh,n‖2
1 +Kλ̂

1/2
min‖θ − θh,n‖2

<
1

Kλ̂
1/2
min

≤ K∞.

With this, we can state the proof of Lemma C.4:

Lemma C.4 (“Basic Inequality”). Let Assumption 3.2 hold. There exists a constant η, such that on the event
Gλmin

, for any h ∈ H,

η ‖ω̂h,n‖2n ≤∆h,n(gh,n)−∆h,n(gh,n + ω̂h,n) .
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Proof. The proof follows the ideas underlying the proof of Lemma 12.2 of the book of van de Geer [2000].

First, we will prove that Lh,n(gh,n) − Lh,n(gh,n + ω̂h,n) ≥ 0. Note that by the definition of gh,n, Lh,n(gh,n) −
Lh,n(gh,n) ≥ 0. Thus,

0 ≤ Lh,n(gh,n)− Lh,n(gh,n − gh,n + gh,n) ≤ 1

α
(Lh,n(gh,n)− Lh,n((1− α)gh,n + αgh,n))

for any 0 < α ≤ 1, because of the convexity of Lh,n. Taking α = 1

1+K‖gh,n−gh,n‖n
, the previous inequality gives

1

α
(Lh,n(gh,n)− Lh,n(gh,n + ω̂h,n)) ≥ 0. (27)

Now take ε > 0 small enough so that it satisfies Assumption 3.2 and also ε
K∞
≤ 1. Then we have Lh,n(gh,n +

ω̂h,n)− Lh,n(gh,n) ≥ ε
K∞

(Lh,n(gh,n + ω̂h,n)− Lh,n(gh,n)) because gh,n is a minimizer of Lh,n (thus Lh,n(gh,n +

ω̂h,n)− Lh,n(gh,n) > 0) and thus

Lh,n(gh,n + ω̂h,n)− Lh,n(gh,n) ≥ Lh,n(gh,n +
ε

K∞
ω̂h,n)− Lh,n(gh,n) ≥ ε3

K2
∞
‖ω̂h,n‖2n. (28)

Here, the first inequality holds by the convexity of Lh,n. The second inequality follows from Assumption 3.2

used with a = ω̂h,n

∣∣∣
X1:n

, once we verify that its conditions. That a ∈ [−ε, ε]n follows from Lemma C.7, while

a ∈ Im(Φ) follows since both gh,n|X1:n
and gh,n|X1:n

satisfy this, by construction. Combining (27) and (28) gives
the desired result.

C.4 Proof of Proposition C.6

The result we want to prove is as follows:

Proposition C.6. Let Assumptions 3.1 to 3.4 hold. Take n ≥ 1, K > 0, ε > 0, 1 ≥ σ ≥ ε such that Kσ ≤ 1/2.
Then on Gλmin

,

H(ε, T (σ), ‖ · ‖T ) ≤ρ log(σ/ε) + ρ log(241) +AH( εA ,H, ‖·‖∞,n)

holds a.s. for some positive (non-random) constant A that depends only on Kh.

Furthermore, on Gλmin , ∫ 1

0

H1/2(uσ, T (σ), ‖ · ‖T ) du ≤ A′√ρ+
A′′

σ
,

holds a.s. for some universal constant A′ > 0 and some non-random constant A′′ that depends on CH and Kh

only.

We start by showing that the mapping g, h 7→ (h, ωg,h) is Lipschitz w.r.t ‖·‖T (g ∈ G, h ∈ H) as this will allow us
to bound the entropy of T (σ) in terms of the entropy of H and the entropy of the union of balls in ∪h∈HΩh,n, in
particular ∪h∈HΩh,n(σ).

Proposition C.8. Let Assumption 3.4 hold Then, for any K,σ > 0 satisfying Kσ ≤ 1/2 and any
(g1, h1), (g2, h2) ∈ G ×H s.t. ‖ωgi,hi‖n ≤ σ,

‖ωg1,h1
− ωg2,h2

‖n ≤ Kg ‖g1 − g2‖n +KgKh ‖h1 − h2‖∞,n (29)

holds a.s. on the event Gλmin
, where Kg = 4

√
2.

The constant Kh appearing in the bound is the Lipschitz constant defined in Assumption 3.4.

Proof. Take any (g1, h1), (g2, h2) ∈ G ×H with the required property. By the triangle inequality, we have

‖ωg1,h1
− ωg2,h2

‖T ≤ ‖ωg1,h1
− ωg2,h1

‖T + ‖ωg2,h1
− ωg2,h2

‖T .
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Let us consider bounding ‖ωg1,h1 − ωg2,h1‖T as the first step. To minimize clutter, introduce h = h1, ωi = ωgi,h,
i = 1, 2. With this, our goal is to bound ‖ω1 − ω2‖T .

We have

|ω1(x)− ω2(x)| =

∣∣∣∣∣ (g1 − gh,n)(x)

1 +K
∥∥g1 − gh,n

∥∥
n

−
(g2 − gh,n)(x)

1 +K
∥∥g2 − gh,n

∥∥
n

∣∣∣∣∣
=

∣∣∣∣∣g1(x)

(
1

1 +K
∥∥g1 − gh,n

∥∥
n

− 1

1 +K
∥∥g2 − gh,n

∥∥
n

)

+
1

1 +K
∥∥g2 − gh,n

∥∥
n

(g1 − g2)(x)

− gh,n(x)

(
1

1 +K
∥∥g1 − gh,n

∥∥
n

− 1

1 +K
∥∥g2 − gh,n

∥∥
n

)∣∣∣∣∣.
By the triangle inequality,∣∣∣∣∣ 1

1 +K
∥∥g1 − gh,n

∥∥
n

− 1

1 +K
∥∥g2 − gh,n

∥∥
n

∣∣∣∣∣ ≤ K ‖g1 − g2‖n .

Thus,
|ω1(x)− ω2(x)| ≤ K|g1(x)− gh,n(x)| ‖g1 − g2‖n + |(g1 − g2)(x)|

and therefore,

n‖ω1 − ω2‖2n ≤
n∑
i=1

{
K|g1(Xi)− gh,n(Xi)| ‖g1 − g2‖n + |(g1 − g2)(Xi)|

}2

≤ 2

n∑
i=1

{
K2|g1(Xi)− gh,n(Xi)|2 ‖g1 − g2‖2n + |(g1 − g2)(Xi)|2

}
≤ 2n(K2

∥∥g1 − gh,n
∥∥2

n
+ 1) ‖g1 − g2‖2n .

By Equation (23), ∥∥g1 − gh,n
∥∥
n

=
‖ω1‖n

1−K ‖ω1‖n
.

Since ω1 ∈ Ωh,n(σ), ‖ω1‖n ≤ σ and Kσ < 1 by assumption,
∥∥g1 − gh,n

∥∥
n
≤ σ

1−Kσ . Combining this with the

bound on n ‖ω1 − ω2‖2n, after simplification we get

‖ω1 − ω2‖n ≤

√
2 + 2

(
Kσ

1−Kσ

)2

‖g1 − g2‖n ≤
√

2

(
1 +

Kσ

1−Kσ

)
‖g1 − g2‖n

=
2
√

2

1−Kσ
‖g1 − g2‖n ≤ Kg ‖g1 − g2‖n , (30)

where Kg = 4
√

2 in the last two steps we used that by assumption Kσ ≤ 1/2.

Let us now consider bounding
‖ωg2,h1

− ωg2,h2
‖n .

Noticing that apart from a sign, gh,n and g play a symmetric role in the definition of ωg,h, following the derivation
in the first part we get that, similarly to (30),

‖ωg2,h1 − ωg2,h2‖n ≤
2
√

2

1−Kσ
‖ḡh1,n − ḡh2,n‖n ≤ Kg ‖ḡh1,n − ḡh2,n‖n .

Since by Assumption 3.4, ‖ḡh1,n − ḡh2,n‖n ≤ Kh ‖h1 − h2‖∞,n holds a.s. on Gλmin
, we get

‖ωg2,h1
− ωg2,h2

‖n ≤ KgKh ‖h1 − h2‖∞,n .
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Putting together the bounds obtained, we get that on the event Gλmin ,

‖ωg1,h1
− ωg2,h2

‖n ≤ Kg ‖g1 − g2‖n +KgKh ‖h1 − h2‖∞,n

as required.

With this, we can state the proof of Proposition C.6.

Proof of Proposition C.6. We can write

T (σ) = ∪h∈H{h} × Ωh,n(σ) ,

where
Ωh,n(σ) = {ω ∈ Ωh,n : ‖ω‖n ≤ σ} .

We first show that

H(ε, T (σ), ‖·‖T ) ≤ H( ε2 ,H, ‖·‖∞,n) +H( ε2 ,Ωn(σ), ‖·‖n) , (31)

where Ωn(σ) = ∪h∈HΩh,n(σ). In short, this follows since T (σ) ⊂ H × Ωn(σ) and since, by definition, ‖·‖T is
obtained by “summing” ‖·‖∞,n and ‖·‖n.

In details, we have: Let C be an integer s.t. C ≥ exp (H(ε/2,H, ‖·‖∞,n)). Then, there exists {h1, . . . , hC} ⊂ H
such that for any h ∈ H, ‖h− hi‖∞,n ≤ ε/2 for some i ∈ {1, . . . , C}. Similarly, let D be an integer s.t.

D ≥ exp(H( ε2 ,Ωn(σ), ‖·‖n)) ≥ max
1≤i≤C

exp(H( ε2 ,Ωhi,n(σ), ‖·‖n))

and {ω1, . . . , ωD} ⊂ Ωn(σ) be an ε/2-net of Ωn(σ) w.r.t. ‖·‖n. Then,

{(hi, ωj : 1 ≤ i ≤ C, 1 ≤ j ≤ D}

is an ε-net of T (σ): To show this pick any (h, ω) ∈ T (σ). Then, take the index i such that ‖h− hi‖∞,n ≤ ε/2
and take the index j such that ‖ω − ωj‖n ≤ ε/2. Then, ‖(h, ω)− (hi, ωj)‖T = ‖h− hi‖∞,n + ‖ω − ωj‖n ≤ ε as
required. This shows that (31) indeed holds.

Next, we bound H(ε,Ωn(σ), ‖·‖n). We have

Ωn(σ) =
{
ωg,h : h ∈ H, g ∈ G, ‖ωg,h‖n ≤ σ

}
⊂
{
ωg,h : h ∈ H, g ∈ G,

∥∥g − gh,n∥∥n ≤ σ
1−Kσ

}
,

(32)

where the containment follows since by Equation (23),
∥∥g − gh,n∥∥n =

‖ωg,h‖n
1−K‖ωg,h‖n

. For s ≥ 0 define

Gh(s) =
{
g ∈ G :

∥∥g − gh,n∥∥n ≤ s} .
Pick Ĥ ⊂ H and an arbitrary “discretization” map N : H → Ĥ. We claim that on Gλmin

,

Ωn(σ) ⊂
{
ωg,h : h ∈ H, g ∈ GN(h)

(
σ

1−Kσ +Kh ‖N(h)− h‖∞,n
)}

a.s. (33)

By (32) it suffices to show that for any h ∈ H and g ∈ Gh
(

σ
1−Kσ

)
,

g ∈ GN(h)

(
σ

1−Kσ +Kh ‖N(h)− h‖∞,n
)

(34)

also holds true. For brevity introduce h′ = N(h). Thanks to the choice g and Assumption 3.4,∥∥g − gh′,n∥∥n ≤ ∥∥g − gh,n∥∥n +
∥∥gh,n − gh′,n∥∥n ≤ σ

1−Kσ
+Kh ‖h− h′‖∞,n
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holds a.s. on Gλmin , which shows that (34) indeed holds.

The following statements holds a.s. on Gλmin
– hence we will not mention this condition to minimize clutter.

If Ĥ is an ε/(2KgKh)-net of H w.r.t. ‖·‖∞,n and N(h) = arg minh′∈H ‖h− h′‖∞,n then Kh ‖N(h)− h‖∞,n ≤
ε/(2Kg) ≤ ε/2 and therefore for any h′ ∈ Ĥ,

Gh′
(

σ
1−Kσ +Kh ‖N(h)− h‖∞,n

)
⊂ Gh′

(
2σ +

ε

2

)
.

For each h ∈ Ĥ, let Ĝh′ be an ε/2Kg-net of Gh′
(
2σ + ε

2

)
. We claim that

S =
{
ωg′,h′ : h′ ∈ Ĥ, g′ ∈ Ĝh′

}
is an ε-net of Ωn(σ) w.r.t. ‖·‖n. Indeed, let ω = ωg,h ∈ Ωn(σ) arbitrary. Let h′ be the nearest neighbor of h in Ĥ
w.r.t. ‖·‖∞,n and let g′ be the nearest neighbor of g in Ĝh′ w.r.t. ‖·‖n. Note that g ∈ Gh′(2σ + ε/2). Then, by
Proposition C.8,

‖ωg,h − ωg′,h′‖n ≤ Kg ‖g − g′‖n +KgKh ‖h− h′‖∞,n .

Now, because g ∈ Gh′(2σ + ε/2) and Ĝh′ is an ε/(2Kk)-net of this set, Kg ‖g − g′‖n ≤ ε/2. Similarly, by the
choice of H, ‖h− h′‖∞,n ≤ ε/2, showing that S is indeed an ε-net of Ωn(σ). Note that the cardinality of S can
be bounded by

|S| ≤ |Ĥ| max
h′∈Ĥ

|Ĝh′ | .

Hence,
H(ε,Ωn(σ), ‖·‖n) ≤ H( ε

2Kg
,Gh0

(2σ + ε/2), ‖·‖n) +H( ε
2KgKh

,H, ‖·‖∞,n) ,

for an arbitrary h0 ∈ H, where we used that ‖·‖n is translation invariant.

Combining this with (31), we get

H(ε, T (σ), ‖·‖T ) ≤ H( ε2 ,Ωn(σ), ‖·‖n) +H( ε2 ,H, ‖·‖∞,n)

≤ H( ε
4Kg

,Gh0
(2σ + ε/2), ‖·‖n) +H( ε

4KgKh
,H, ‖·‖∞,n) +H( ε2 ,H, ‖·‖∞,n)

≤ H( ε
4Kg

,Gh0
(2σ + ε/2), ‖·‖n) +AH( εA ,H, ‖·‖∞,n) (35)

for A large enough.

By Corollary 2.6 in the book of van de Geer [2000], H(ε,Gh0
(σ), ‖·‖n) ≤ ρ log( 4σ+ε

ε ) a.s.. Hence,

H( ε
4Kg

,Gh0
(2σ + ε/2), ‖·‖n) ≤ ρ log

(
32σKg + 8Kgε+ ε

ε

)
≤ ρ log(241) + ρ log(σ/ε), a.s..

Here the second inequality follows from bounding the ε in numerator by σ (since σ ≥ ε), and Kg < 6. Combining
this with (35) finishes the proof of the first statement.

To prove the second part, note that
∫ 1

0
(− log(x))1/2 dx =

√
π/2. Thus, with I(σ,H) =

∫ 1

0
H1/2(uσ,H, ‖·‖∞,n) du,∫ 1

0

H1/2(uσ, T (σ), ‖ · ‖T ) du ≤ ρ 1
2

∫ 1

0

log
1
2 ( 1
u ) du+ ρ

1
2 log

1
2 (241) +A

1
2 I( σA ,H)

≤ ρ 1
2
√
π/2 + ρ

1
2 log

1
2 (241) +A

1
2 I( σA ,H).

Now, note that∫ 1

0

H1/2(uσ,H, ‖·‖∞,n) du =
1

σ

∫ σ

0

H1/2(v,H, ‖·‖∞,n) dv ≤ 1

σ

∫ 1

0

H1/2(v,H, ‖·‖∞,n) dv ≤ CH/σ,

where the first inequality follows since σ ≤ 1, while the last inequality follows by Assumption 3.3. The desired

result follows by choosing A′ =
√
π/2 + log

1
2 (241) and A′′ = A3/2CH .
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