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Abstract

The Fisher discriminant analysis (FDA) is a
common technique for binary classification.
A parametrized extension, which we call the
extended FDA, has been introduced from the
viewpoint of robust optimization. In this
work, we first give a new probabilistic inter-
pretation of the extended FDA. We then de-
velop algorithms for solving an optimization
problem that arises from the extended FDA:
computing the distance between a point and
the surface of an ellipsoid. We solve this
problem via the KKT points, which we show
are obtained by solving a generalized eigen-
value problem. We speed up the algorithm
by taking advantage of the matrix structure
and proving that a globally optimal solution
is a KKT point with the smallest Lagrange
multiplier, which can be computed efficiently
as the leftmost eigenvalue. Numerical exper-
iments illustrate the efficiency and effective-
ness of the extended FDA model combined
with our algorithm.

1 Introduction

Various binary classification methods such as the
Fisher discriminant analysis (FDA) have been exten-
sively studied in machine learning and statistics. A
recent work of Takeda et al. [19] introduced a unified
framework for binary classification, which extends the
range of hyper-parameters in several existing learn-
ing models. In particular, [19] briefly suggested a
parametrized extension of FDA, which we call the ex-
tended FDA.
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Our first contribution is a probabilistic interpretation
of the extended FDA: It attempts to maximize the
margin while ensuring that the worst-case probability
of a correct prediction is bounded below. The interpre-
tation implies that the extension of FDA has an effect
of allowing the margin to be negative, which may suit
well for noisy datasets where distributions of samples
in each class are highly overlapping.

The extended FDA involves an optimization problem
parametrized by x > 0. By taking the dual, this prob-
lem is turned into computing the minimum distance
between a given point and the surface of an ellipsoid
obtained from the data. The parameter k serves as
a scale factor of the ellipsoid. When & is sufficiently
small, the given point stays outside the ellipsoid. In
this case, computing the minimum distance reduces to
a second order cone program (SOCP), which is a con-
vex optimization problem that can be solved efficiently
by the interior point method. For a certain value
K = Ko, the given point hits the surface of the ellipsoid,
in which case the extended FDA becomes equivalent to
the original FDA. When « > kg, the point stays inside
the ellipsoid, and computing the minimum distance is
essentially a non-convex optimization problem, which
is in general hard to solve. It is nonetheless important
to address such cases, because they correspond to the
extended FDA that allows for negative margins.

A standard approach to non-convex optimization in
practice is to design an efficient local search algo-
rithm that finds a locally optimal solution. If we are
lucky, the obtained solution may be globally optimal,
or may perform just as well. It should be remarked,
however, that there is no guarantee in this approach.
An alternative approach is to design an exact algo-
rithm based on the cutting-plane or branch-and-bound
method [11]. This approach gives an optimal solution,
but the computational cost may be enormous.

Our second contribution is the design of an efficient al-
gorithm that finds a globally optimal solution for the
extended FDA, convex or non-convex, by exploiting
the structure of the problem. Specifically, we analyze
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the Karush-Kuhn-Tucker (KKT) conditions and show
that all the possible Lagrange multipliers that yield
the KKT points are generalized eigenvalues of a cer-
tain matrix pencil. This allows us to use existing and
reliable algorithms developed for the generalized eigen-
value problem.

Furthermore, we show that a globally optimal solu-
tion corresponds to the leftmost generalized eigen-
value, which is in fact real and can be obtained much
faster than the set of all the generalized eigenvalues.
Using these facts and by exploiting special properties
of the matrix pencil, we develop an algorithm that runs
as fast as the diagonalization of the symmetric matrix
that defines the ellipsoid.

The point-ellipsoid distance is a well-studied problem
(e.g., [13]). In particular, Eberly [7] gives a complete
analysis for dimensions n < 3, but less complete for
higher dimensions, for which no explanation is given
to prove that the smallest eigenvalue (root) for an al-
gebraic equation corresponds to the the solution. We
examine the problem for arbitrary n, showing that the
point-ellipsoid distance corresponds to the KKT point
with the smallest Lagrange multiplier. Our discussion
also allows the ellipsoid matrix to be singular.

Numerical experiments illustrate that the extended
FDA combined with our proposed algorithm is much
faster than the C-support vector machine (C-SVM)
[6], while giving comparable prediction performance
for most datasets. The inputs of the extended FDA are
simply obtained from the covariance matrix and the
mean vector of samples in each class. Crucially they
do not depend on the sample size, which often leads to
significant speedups. Indeed, our global optimization
algorithm requires much less running time than local
search algorithms [19], which iteratively solves convex
relaxation problems. Our experiments using random
matrices show that our algorithm can deal with the
extended FDA with feature size as large as 10%.

The rest of this paper is organized as follows. In Sec-
tion 2, we review the binary classification problem
and outline FDA and its extension. Section 3 de-
rives a probabilistic interpretation for extended FDA.
In Section 4, we develop our efficient algorithm for
the dual (point-ellipsoid distance) problem, which in-
cludes analyses of the KKT points and the algorithm
complexity. Numerical experiments are presented in
Section 5.

2 Problem Setting

In this section, we describe the problem setting for
binary classification. Let X C R"™ be the input do-
main and {+1,—1} be the set of binary labels. The
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observed training samples are denoted by (x;,y;) €
X x {+1,-1} for i = 1,...,m. We estimate a deci-
sion function f : X — R from the training samples.
After obtaining f, the label of a new input x is pre-
dicted by the classifier h(x) = sign(f(x)), where sign
means the sign function, i.e., sign(§) = 1if £ > 0 and
—1 otherwise. We shall focus on linear classifiers, i.e.,
h(z) = sign(z"w + b), where w (€ R™) is a vector
and b (€ R) is a bias parameter. The discussions in
this paper can be directly applied to kernel classifiers
by following [16].

2.1 Fisher discriminant analysis (FDA)

Let &4 (or £_) be the n-dimensional sample mean vec-
tor and ¥ (or ¥_) be the sample covariance matrix
for each class. Let A:=%, +¥_andc:=Z; —T_.
Suppose for the moment that the matrix A is non-
singular (we will deal with the singular case later in
Section 4.5). In FDA, a discriminant hyperplane is
computed from A and e. The hyperplane is deter-
mined from the optimal solution w* to the problem

[8]:
cTw
max

w AV 2wl
The intuition behind (2.1) is to find a direction which
maximizes the projected class means (the numerator)
while minimizing the class variance in this direction
(the denominator). An optimal solution of (2.1) can be
obtained by solving a generalized eigenvalue problem:
(ce™)w = Nw.

(2.1)

After obtaining a solution w* by FDA, we can de-
termine the bias term b by assuming a probabilistic
model, such as the normal distribution, for the ob-
served samples. The empirical loss function can also
be used for computing b as

1 - T,,.%
min — Zl[yz(wi w* +b) < 0], (2.2)

=1

where I is the indicator function evaluating to 1 if the
condition enclosed is true, and 0 otherwise.

2.2 Extended FDA

FDA can be extended to the following classification
model [19]:

max min x' w, (2.3)
w:||wl|2=1xzeUr
where U" denotes the ellipsoid defined by
Ut ={c+A"?u | ||lu| < r} (2.4)
with reference to a positive parameter x and || - || de-

notes the Fuclidean norm. The parameter « controls
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the size of the ellipsoid. When « is large, " tends
to include O in its interior. We call (2.3) with U" of
(2.4) the “extended FDA”. Indeed, when "0 contains
0 in its boundary, i.e., 0 € bd(U"°), the classifica-
tion model (2.3) with such U*° coincides with FDA
(see [19]). The optimization problem (2.3) can further
express various learning models such as v-SVM [18]
and minimax probability machine [14] by setting "
appropriately.

The difficulty of solving (2.3) depends on whether
0 € U" or not. Specifically, when 0 & U"”, the con-
straint ||w||? = 1 can be relaxed to |Jw]|? < 1 without
changing the optimality and (2.3) reduces to a convex
problem. On the other hand, if 0 is in the interior of
U", that is, 0 € int(U"), then ||w|? = 1 is equivalent
to |lw||* > 1 and (2.3) is a nonconvex problem. We
call the former “convex extended FDA” and the latter
“nonconvex extended FDA”.

When 0 ¢ U*, by taking the dual of the inner min-
imization in (2.3) and replacing the nonconvex con-
straint by ||w|? < 1, the convex extended FDA re-
duces to a second order cone program (SOCP):

min k|| AY?w| —c"w sub. to |w|?<1. (2.5)
w

By replacing the Euclidean norm ||w]|| with the L;-

norm ||w||; for the constraint ||w]? < 1, (2.5) becomes

similar to a sparse feature selection model [2] based on
FDA.

When 0 € int(U"), nonconvex extended FDA is

Tw sub. to ||w|?=1.

nql})n k|| AY 2w — ¢ (2.6)
A two-stage algorithm was proposed for (2.3) in [19].
At first, it solves a convex relaxation problem whose
constraint is ||wl|[> < 1. If the optimal solution w*
is not 0, then w* is an optimal solution to (2.3). If
w* = 0, then it applies a local search algorithm [17],
which iteratively solves relaxation problems of (2.6)
with the nonconvex constraint ||w]|? = 1 replaced by
a linearized constraint w, ' w = 1 at a feasible solution
w;. The algorithm repeatedly solves SOCPs until it
converges.

In Section 4, we design more efficient algorithms that
work both in the convex and nonconvex cases.

3 Probabilistic Interpretation for
Extended FDA

We give a probabilistic interpretation for (2.3). Here,
suppose that x is a vector of random variables follow-
ing a distribution with prescribed mean vector ¢ and
covariance matrix A, but are otherwise arbitrary. The
notation & ~ (¢, A) refers to the class of distributions
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that have mean ¢ and covariance A. The definitions
of ¢ and A imply that « represents the difference of
random vectors of two classes, i.e., inputs x; and x_
for class 1 and class —1.

We start with showing a probabilistic interpretation
for convex extended FDA (2.5). To distinguish be-
tween the convex and nonconvex cases for (2.3), we
can also use the optimal value of (2.6) instead of the
set U" of (2.4). Note that the optimal value of ex-
tended FDA (2.6) is an increasing function of k. As
long as the optimal value is negative, (2.6) can be re-
placed by (2.5) without altering the problem. Then
the extended FDA can be understood as a stochastic
programming problem as follows.

Theorem 3.1. The convexr extended FDA (2.5) is
equivalent to

min ||w||? sub. to i?fA) Pr{z'w > 1} >a, (3.1)

where o = %
Proof. The probabilistic constraint in (3.1) is the same
as
sup Pr{wT'w <1} <1-gq,
xz~(c,A)

which is transformed into

cTw >, /12| AV w] 4+ 1

when a > 0 (see, e.g., [14, 2] for this equivalence). We
can verify the equivalence between (2.5) and

min ||w||?> sub.to e'w > kl|AY?w|+1 (3.2)

in the following way. For an optimal solution w* of
(3.2), Tewry 1 optimal for (2.5); otherwise, we can
find a better feasible solution for (3.2) than w*. This
means that we obtain an optimal solution of (2.5) by
solving (3.2). The inverse relation also holds, i.e., for
an optimal solution w* and optimal value ,f* (which
is assumed to be negative) of (2.5), % is optimal

for (3.2); otherwise, we can find a feasible solution
for (2.5) that achieves a smaller objective value than
—f*. We thus proved the equivalence between (2.5)
and (3.2), which is also equivalent to (3.1). O

Theorem 3.1 suggests that the classifier maximizes the
margin (1/||w]|) under the condition that the worst-
case probability of a correct prediction is bounded be-
low by a.

In practice, ¢ and A are obtained from the mean vec-
tors and covariance matrices from the training sam-
ples. When the given dataset is almost linearly sepa-
rable, zTw = (x; —x_)"w > 1 will hold with high
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probability. Then the prediction accuracy probability
«a can be set to a large value. However, in general,
(3.1) becomes infeasible for extremely large a.

Note that as « of (3.1) gets large, the corresponding
k in (2.5) also gets large. When & is large enough so
that 0 € U", our problem is nonconvex as in (2.6). We
give a probabilistic interpretation for the nonconvex
problem (2.6) with positive optimal value as follows.

Theorem 3.2. The nonconvex extended FDA (2.6) is
equivalent to

max |[w|?> sub.to inf Pr{z'w > -1} >a,
w z~(c,A)

(3.3)

where o = %
Proof. We can verify the equivalence between (2.6)
with a positive optimal value and

max ||w|? sub. to ¢ w > k|AV2w| -1 (3.4)

analogously to the proof of Theorem 3.1. We can give
a probabilistic interpretation for (3.4) as (3.3) by fol-
lowing the discussion of [14]. O

Here (z, —x_)"w > —1 is expected to hold with
high probability. This inequality is weakened from the
condition (x; — x_)Tw > 1 for the convex case by
allowing the margin to be negative.

These probabilistic interpretations for both convex
and nonconvex cases should be compared with the
hard margin SVM:

_ T
max min | Fr o) w

w ry UL x_cU_

fwl

where U, and U_ are the convex hulls of training sam-
ples with labels +1 and —1, respectively. The hard
margin SVM is usually defined for the linearly separa-
ble case, that is, ming, ey, o cu_ (T4 —x_) w > 0.
Then the hard margin SVM reduces to

min |w|? sub.to x'w>1, Vxel,
w

using the Minkowski difference U of Uy and U_, i.e.,
U={xy —x_ | L € Uy, z_ € U_}. This problem
is closely related to (3.1). On the other hand, we can
think of the extended version for nonlinearly separable
datasets by allowing ming. ey, &_cu_ (T4 — z ) w<
0. Then the extended hard margin SVM reduces to

max |w|? sub.to x'w>-1, Vxcl.
w

This is related to (3.3).
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4 Global Optimization Methods via
Generalized Eigenvalues

We consider a dual problem for (2.3) and provide algo-
rithms that are more efficient than existing ones, e.g.,
two-stage algorithm [19], especially in the nonconvex
case. In contrast to existing methods, our algorithm
solves the problem (2.3) regardless of whether it is con-
Vex Or nonconvex.

The following is the dual problem of (2.3) due to
Briec [4] (see [19]):

mmin lz]] sub.to x € bdU"). (4.1)
This asks the nearest distance between a point (the
origin) and points on the surface of an ellipsoid, i.e.,
the point-ellipsoid distance. The set bd (") can be ex-
pressed by one nonconvex constraint (x —c) " A~ (z —
c) = k%, where A is an n X n symmetric positive def-
inite matrix. Fortunately there is no duality gap here
and the optimal solution w* of (2.3) can be obtained
from the optimal solution * of (4.1) by

* Ail(c — "B*)
T Y
[A=1 (e —a*)]|
This can be simplified as w* = &*/||x*|| if 0 € U" and
as w* = —z*/||z*| if 0 € int(U"). Below we discuss

algorithms for solving (4.1).

4.1 Finding all the KKT points

We introduce the Lagrange multiplier A and attempt
to find € R™ and A € R that satisfy

(x—c)"A  (x—¢) (4.2)
Az = ANz — ¢). (4.3)

The first condition (4.2) requires that @ is on the sur-
face of the ellipsoid, and (4.3) represents the KKT con-
dition. A feasible solution « is called a KKT point if
it satisfies (4.3) for some A. Note that (4.3) can be
rephrased as

= ,‘<“/27

(M — Az = e (4.4)
In order to find A that admits x satisfying these con-
ditions, we now introduce a (2n+ 1) x (2n + 1) matrix
pencil whose eigenvalues give the KK'T points:

K2 O cl
M(s)= 1|0 —A sl — A (4.5)
c sI—A O

Note that the entries of M (s) are affine functions in
s. Since M(s) is clearly a regular matrix pencil, i.e.,
det M(s) # 0 as a polynomial in s, it has 2n+1 eigen-
values, including one at infinity. The eigenvalues of
M (s) are the candidate values of A:
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Lemma 4.1. If a Lagrange multiplier A admits a KKT
point, then det M(\) = 0 holds.

Proof. By the condition (4.4), ¢ must belong to
Im (A — A). If X is an eigenvalue of A, this implies
rank [c A — A] < n, and hence M () is singular.

We now suppose that A is not an eigenvalue of A. Then
applying Gaussian elimination to M () we have

k2 —h(N)TARN) h(N)TA O
det M()\) = det Ah(N) —A  A-A
o) M—-A O

(=1)"det(A — A)*{k? — h(\) T AR(N)},

where h(\) = (M — A)~te. The conditions (4.3) and
(4.4) imply that h(\) = A~ (x — ¢). Since x satisfies
(4.2) as well, we have s — h(\)T Ah(\) = 0, which
means det M () = 0. O

Thus we can compute all possible A by solving the
generalized eigenvalue problem det M () = 0, which
yields 2n finite (including complex) candidates of \.

Once the generalized eigenvalue problem is solved, we
can obtain the KKT point « from the corresponding

eigenvector v = [9 y' zT]T for each A as follows.

If & # 0, putting « : —%y provides a solution to
(4.4). If X is not an eigenvalue of A, then this solution
x satisfies (4.2) as well. If A is an eigenvalue of A,
then the system of linear equations (4.4) is underde-
termined. In fact, @ := — 5y +w satisfies (4.4) for any
eigenvector u of A corresponding to A. In this case,
among all these solutions to (4.4), we find those that
satisfy (4.2) as well. Such & may not exist (see (A.4)),
in which case there is no KKT point at A.

We now consider the case § = 0. If y # 0, then A must
be an eigenvalue of A and y must be a corresponding
eigenvector, which imply y ¢ Im (AI — A). The middle
block of M (A\)v = 0, however, shows that Ay = (A —
A)z, which is a contradiction. Thus y = 0 must hold.
Then z is an eigenvector of A corresponding to A. In
this case, we solve the system of linear equations (4.4),
which is underdetermined. Among all the solutions,
we find those that satisfy (4.2) as well.

4.2 Simplification via eigendecomposition

Let A= QDQ" be the eigenvalue decomposition of A,
where @ is orthogonal, i.e., QTQ = QQ" = I, and D
is the diagonal matrix of eigenvalues. With the aid of
Qo := diag{1, @, Q}, we have

B K2 O ér
M(s):=QiM(s)Qo= |0 —-D sI-D|,
é¢ sI-D O

(4.6)
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where é := QTc. Note that M(s) is highly sparse,
which we take advantage of in our algorithm. Denote
the ith entry of € by ¢;. We also denote the ith diag-
onal entry of D by d;. Then we have

Since det M (s) = det M(s), the generalized eigenvalue
problem is equivalent to the algebraic equation

n n

det M(s) = x> H(s —d;)?* - Z

i=1 =1

n

(a2 TLs - 7

J#i

n n

K> H(s —d;)? — Z

i=1 i=1

(dié? II6s— dj)2> =0 (4.7)
J#i
for s. This can be solved in a number of ways, includ-
ing linearization to the companion matrix (e.g., [9])
and the Ehrlich-Aberth method [1]. However, solving
algebraic equations is known to be possibly numeri-
cally unstable. For s # d;, (4.7) is equivalent to

n

d;c?
2 _ i%  _
K Z = di)2 0.

i=1

(4.8)

In Section 4.1, we have described how to obtain & from
the eigenpair (A, v) of M (s). Since in practice comput-
ing the whole eigendecomposition is much more expen-
sive than computing just the eigenvalues, we provide
another approach for computing the KKT points x
from the Lagrange multipliers A via (4.4). For each ),
solving (4.4) for x requires a solution of a linear sys-
tem. If a dense linear solver is invoked from scratch,
each solution takes O(n?®) operations, resulting in a to-
tal of O(n*) operations. However, cost saving is possi-
ble using the eigendecomposition A = QDQ T that we
have already computed, as we can compute x directly
as

x=)\Q\ - D) 'Q"e. (4.9)

The resulting « naturally satisfies (4.2) as well. Since
each x can be computed via matrix-vector multiplica-
tions in just O(n?) operations, finding all the corre-
sponding KKT points is reduced to O(n?) flops.

Separately from the solutions of (4.8), we also examine
eigenvalues of M (s) equal to some d;, and check if they
lead to a KKT point. By (4.7), this can happen only
if ¢; = 0 for all j such that d; = d;. In this case,
the system of linear equations (4.4) is solvable and
underdetermined. Among all the solutions, we adopt
those that satisfy (4.2) as well. More specifically, we
assign

)2

(~ -
It Zj,dj;ﬁdi deJ-CJ
no feasible solution satisfies the KKT condition with

> k2, then we may assert that
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A = d;. Otherwise, set T; such that

P LICEDS

J,di=d; J#i

(7 —&)*
dj

l€2—

);

(4.11)

and the resulting vector & yields a KKT point x = Qx.
Note that the choice of Z; is not unique, showing there
are many points on the surface of the ellipsoid with the
same minimum ||x||. This is especially true when there
are many different j in the summand of (4.11). See the
appendix for an example where this happens.

4.3 A globally optimal solution from the
smallest Lagrange multiplier

As we have seen above, there can be as many as 2n
real values of A that satisfy (4.2) and (4.3). Among
these candidates, we show that an optimal solution
of the optimization problem (4.1) corresponds to the
smallest real A that satisfies the KKT conditions.

Eberly [7] implicitly proves this result for n = 2, and
uses it also for n > 3 but without a proof. Below we
give a proof for arbitrary n. We start with a claim
that holds in the generic case ¢, # 0.

Lemma 4.2. If ¢, # 0, then the solution of (4.1)
corresponds to the KK'T point with Lagrange multiplier
A <dp.

See the appendix for the proof. We next consider the
nongeneric case where é&, = 0, or more generally |¢| >
Ckt+1 = -+ = &, = 0, and show that the minimal ||| is
still attained at the smallest A that satisfies the KKT
conditions.

Theorem 4.1. The solution of (4.1) corresponds to
the KKT point with the smallest Lagrange multiplier
A

See the appendix for the proof, which shows that if
a valid KKT point with A = dj; exists, then the
point with the largest j (smallest dj;) is a globally
optimal solution. However, in the convex case, where
the origin is outside the ellipsoid, there is no KKT
point with A\ = dj1;. This is because it follows from

25" @ /d; < 0 that (4.8) has a negative solution.

R™=2.i=16G

Eberly [7] implicitly uses Theorem 4.1 to derive a
case-dependent method (e.g. depending on whether
A = dj4; satisfies the KKT conditions) for the point-
ellipsoid distance. Our algorithm does not need such
special care as it can find all the KKT points, and the
solution is directly obtained from the smallest \.

4.4 The leftmost eigenvalue is real

We have just seen that to solve the minimization prob-
lem (4.1) we generically need to compute the smallest
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real eigenvalue A, of M(s) in (4.5). Here we show that
A, is in fact the leftmost eigenvalue, i.e., the eigenvalue
having the smallest real part (excluding the eigenvalue
at infinity).

Proposition 4.2. The leftmost eigenvalue of M (s) is
real.

See the appendix for the proof. Theorem 4.1 and
Proposition 4.2 suggest that to obtain the desired solu-
tion we can invoke any algorithm for sparse generalized
eigenproblems that computes the leftmost eigenpair.
Known algorithms suitable for this task exist, for ex-
ample the shift-invert Arnoldi process [15]. Recall that
M(s) = Q¢ M(s)Qo as in (4.6) is highly sparse. The
shift-invert Arnoldi process requires solving linear sys-
tems of the form M (A)v = b, which may be efficiently
solved via solving M(\)& = b, where b = Qg b and
v = QJ v, using a sparse direct solver exploiting the
sparsity. ARPACK provides this option, and for exam-
ple, MATLAB'’s eigs with the option ’sr’ does this
task. This dramatically reduces the cost compared
with computing all the eigenvalues of M (\).

4.5 When the covariance matrix A is singular

Throughout the above discussion we assumed that A
is nonsingular. In some cases A can be singular or
highly ill-conditioned. Here we discuss how to solve
(4.1) when A~! does not exist.

The point-ellipse distance (4.1) is still well-posed, but
the points on the boundary of the ellipse U* = {c +
AY?u | |lu|| = K} now has no component in the null
space of A.

This can be dealt with by simply forcing z; = ¢; for
the corresponding coordinates ¢ with d; = 0. Then we
remove the rows and columns corresponding to d; = 0
in M (s), resulting in a smaller matrix pencil, shrunk
by twice the number of the zero eigenvalues of A.

4.6 Algorithm summary and complexity

Below are pseudocodes for solving (4.1) in two cases:
when only the globally optimal solution is to be com-
puted, and when all the KKT points are required.

Algorithm 4.1 Find a globally optimal solution.
1:
2:
3:

Compute the eigendecomposition A = QDQ .
Compute the leftmost eigenpair (X, v) of M(s).
Compute —%y if & # 0. Otherwise set Z;
via (4.10) and (4.11) if (4.11) is positive, if not
compute the next leftmost eigenpair and repeat.

The dominant cost of the above process is in Step 1
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where the eigenvalue decomposition of a symmetric
matrix is computed, whose cost is about 9n3 flops.

We note that Eberly [7] uses a bisection method for
computing just the smallest A that satisfies (4.8). As-
suming that bisection finds a good estimate in a con-
stant number of steps, we may assert that finding A
from (4.8) by the bisection step needs O(n) operations.
Since the eigenvalue decomposition of A is still neces-
sary, the overall cost is again 9n?.

Algorithm 4.2 Enumerate all the KKT points.
1:
2:
3:

Compute the eigendecomposition A = QDQ'.
Compute all the eigenvalues \ of M(s).

For each real \, find the corresponding x via (4.9),
or (4.10) and (4.11) if (4.11) is positive, if not there
is no KKT point at that A.

The main cost of Algorithm 4.2 is in Step 2, which
solves an 2n x 2n generalized eigenvalue problem by the
QZ algorithm [10], which requires about 30 x (2n)® =
240n> flops. This is roughly 30 times as expensive
as Algorithm 4.1. Note that M ()\) is symmetric (al-
though indefinite), so an algorithm that exploits sym-
metry (which the standard QZ algorithm unfortu-
nately does not) may solve (4.6) faster.

In Algorithm 4.1 we compute « from the eigenvector
because eigs finds the leftmost eigenpair, including
the eigenvector. In contrast, in Algorithm 4.2, it is
more efficient to compute just the eigenvalues of M ()
and then find = from (4.9).

To compare with previous algorithms, each iteration of
the algorithm in [19] uses the interior point method,
which requires at least O(n3) flops as it solves linear
systems of size n repeatedly. Thus our global opti-
mization method is at least as fast as the previous
local algorithm, and indeed faster in experiments.

5 Numerical Experiments

Below we present numerical experiments to illustrate
the performance of our algorithms and the effective-
ness of the extended FDA. We provide three sets
of experiments: Computing the point-ellipsoid dis-
tance, binary classification with synthetic datasets,
and datasets from LIBSVM [5] and the UCI repository
[3]. All of our computations were run using MATLAB
(R2011b) on a MacBook Pro with 8 GB of RAM and
2.3 GHz Intel Core i7. Our codes are posted at [12].

5.1 Scalability test with random matrices

To examine the performance of Algorithm 4.1 for com-
puting the point-ellipsoid distance in large dimensions,

417

(a) computational time (dist=4.0) (b) test accuracy (dist=4.0)

w -*=Local = 80

g ’ ",\ —©— Global < 75 -%-Local
] >

= A N, w** T 850 -6~ Global

c ! * - - -Best

2

= :

a e * o -

£

[s}

© 1.5 2

(c) objective function value

3
2
1
v
! 0.

% Local
—©— Global

objective value

Figure 1: Computational time, test accuracy and the
objective function value of (4.1) with respect to pa-
rameter k. The vertical line indicates the threshold
kg, which corresponds to FDA, and provides the bor-
der between convex and nonconvex extended FDA.

we take A, ¢ to be n x n random matrices and vectors
and test the runtime.

n | runtime(s) | runtime(eig(A))/runtime
2000 3.99 0.944
4000 36.43 0.981
6000 115.14 0.986
8000 263.05 0.989

10000 504.54 0.991

Our algorithm can handle n as large as 10* on a stan-
dard laptop machine, or more if the eigendecomposi-
tion of A is available. The dominant runtime is con-
sumed in computing the eigendecomposition of A, and
since this step is necessary also in the approach by
Eberly, we conclude that our method is nearly the best
known in terms of speed.

5.2 Synthetic datasets

Now we show how to generate synthetic data sets. We
supposed that the conditional probabilities, p(x| + 1)
and p(x| — 1), were each multivariate normal distri-
butions. The dimension of the input vector x was
set to n = 100. The mean vector and the variance-
covariance matrix of p(x| + 1) were defined by the
null vector (0,...,0)" € R™ and the identity matrix
I, € R™*" respectively (i.e., the probability distribu-
tion was a multivariate standard normal distribution).
For p(x| — 1), the variance-covariance matrix was ran-
domly generated so that the eigenvalues were numbers
placed at even intervals from 1074 to 10%. The mean
vector of p(x| —1) was defined by %(17 DT eR™
Note that the distance between the mean vectors of
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Table 1: Performance comparison for UCI datasets

Dataset n m Global Local C-SVM
acc. [%] time [s] | acc. [%] time [s] | acc. (%]  time [s]
fourclass 2 862 77.96 0.0086 77.96 0.1540 76.22 0.0686
liver-disorders 6 345 68.69 0.0134 68.69 0.1890 68.41 0.0232
diabetes 8 768 76.97 0.0160 76.84 0.2506 76.71 0.1248
breast cancer 10 683 96.92 0.0178 96.92 0.1812 96.63 0.0584
heart 13 270 82.22 0.0214 82.22 0.2712 83.33 0.1886
australian 14 690 85.80 0.0258 85.80 0.3156 85.51 1.4274
german.numer 24 1000 76.90 0.0934 76.90 0.5670 78.00 2.8648
splice 60 1000 79.90 0.0682 79.90 0.8740 80.10 10.1138
mushrooms 112 8124 | 100.00 0.5592 - - | 100.00 0.5274
ala 119 1605 82.74 0.1016 - - 82.55 4.6360
wla 300 2477 97.78 0.2764 - - 96.93 0.2974
(a) computational time (b) test accuracy cally optimal solution for (2-6) by repeatedly approx-
o P B imating ||w||? = 1 with a linear supporting function.
@ e g8 “Best” shows the highest test accuracy among all lo-
£ K > . . .
= . & 80 cally optimal solutions found by enumerating KKT
805 ! o Local §78 points. Our method can find a globally optimal so-
g ; —o-Global 5 =e-Local lution, which leads to better test accuracy than the
o 4 1o} —©—Global
E fdeoo0ecooce0 % locally optimal solution found by “Local” and almost
° roos2 roo1s2 equal test accuracy to “Best”. Because of large scale
dataset (n = 100, m = 10*), C-SVM [6] and v-SVM
@O'OS E @80 v [18] of LIBSVM [5] could not find optimal solutions
2 0.06 HoSTs r within one hour.
f 1 % ’
S 0.04 ;1 5700 )
2 A g 5.3 UCI datasets
S o0.02 o % 65[,"
Q bt e e - Q -+-C-
E 0 i - 60‘ We present several UCI datasets showing the effec-
° 107 180 10°  10° 180 10° tiveness of our proposed method. Table 1 shows

Figure 2: Computational time and test accuracy of
the extended FDA (4.1) with respect to parameter
and those of C-SVM with respect to parameter C' for
diabetes. The vertical line in upper panels indicates
the threshold kg, which corresponds to FDA. (4.1) re-
duces to a convex problem on the left-hand side and it
remains a nonconvex problem on the right-hand side.

p(x|+1) and p(x| —1) was equal to 4. We assume that
the marginal probabilities of the positive and negative
labels are the same. The training sample size and test
sample size were set to m = 10* and m = 10%, respec-
tively. We used sample covariance matrices (X4,3_)
and mean vectors (4, Z_) that were computed from
training samples of each class as input data for our
model. Therefore, the complexity of our algorithm is
irrelevant to the sample size.

Figure 1 compares the performance of two algorithms,
the local search algorithm [19] (shown as “Local”) and
our algorithm (shown as “Global”), in terms of com-
putational time and test accuracy. The bias of each
classifier was computed by (2.2). “Local” finds a lo-
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the average test accuracy and average computational
time which are evaluated by the 10-fold cross vali-
dation. We found the best parameter setting from
5 candidates: k € {6,7,8,9,10}/8 x ko using the
threshold of convexity, kg, for our model (4.1) and
C € {1071,1,10,10%,10%} for C-SVM [6]. The first
two candidates for k reduce (4.1) to convex problems,
while (4.1) is essentially nonconvex for the last two
candidates. The last three datasets in Table 1 have
singular matrices A, which prevent the local search
algorithm [19] from converging. Figure 2 compares
the performance of three methods (Local, Global and
C-SVM) for diabetes. The training data consists of
randomly chosen samples with size 9m/10. The test
accuracy was evaluated by using the remaining m/10
samples. From Table 1 and Figure 2, we can confirm
that our model (4.1) achieved comparable prediction
performance while being faster than C-SVM for most
of the datasets.
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