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Abstract

The ratio between two probability density
functions is an important component of var-
ious tasks, including selection bias correc-
tion, novelty detection and classification. Re-
cently, several estimators of this ratio have
been proposed. Most of these methods fail
if the sample space is high-dimensional, and
hence require a dimension reduction step, the
result of which can be a significant loss of
information. Here we propose a simple-to-
implement, fully nonparametric density ratio
estimator that expands the ratio in terms of
the eigenfunctions of a kernel-based operator;
these functions reflect the underlying geome-
try of the data (e.g., submanifold structure),
often leading to better estimates without an
explicit dimension reduction step. We show
how our general framework can be extended
to address another important problem, the
estimation of a likelihood function in situ-
ations where that function cannot be well-
approximated by an analytical form. One
is often faced with this situation when per-
forming statistical inference with data from
the sciences, due the complexity of the data
and of the processes that generated those
data. We emphasize applications where using
existing likelihood-free methods of inference
would be challenging due to the high dimen-
sionality of the sample space, but where our
spectral series method yields a reasonable es-
timate of the likelihood function. We provide
theoretical guarantees and illustrate the ef-
fectiveness of our proposed method with nu-
merical experiments.
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right 2014 by the authors.
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1 INTRODUCTION

There has been growing interest in the problem of es-
timating the ratio of two probability densities, 8(x) =
f(x)/g(x), given i.i.d. samples from unknown distri-
butions F' and G. For example, these ratios play a key
role in matching training and test data in so-called
transfer learning or domain adaptation (Sugiyama
et al., 2010a), where the goal is to predict an outcome
y given test data x from a distribution (G) that is dif-
ferent from that of the training data (F). Estimated
density ratios also appear in novelty detection (Hido
et al., 2011), conditional density estimation (Sugiyama
et al., 2010b), selection bias correction (Gretton et al.,
2010), and classification (Nam et al., 2012).

Experiments have shown that it is suboptimal to esti-
mate ((x) by first estimating the two component den-
sities and then taking their ratio (Sugiyama et al.,
2008). Hence, several alternative approaches have
been proposed that directly estimate 5(x); e.g., uL-
SIF, an estimator obtained via least-squares minimiza-
tion (Kanamori et al., 2009); KLIEP, which is ob-
tained via Kullback-Leibler divergence minimization
(Sugiyama et al., 2008); KuLSIF, a kernelized version
of uLSIF (Kanamori et al., 2012); and kernel mean
matching, which is based on minimizing the mean dis-
crepancy between transformations of the two samples
in a Reproducing Kernel Hilbert Space (RKHS) (Gret-
ton et al., 2010). For a review of techniques see Mar-
golis (2011).

Existing methods are not effective when x is of high
dimension, and hence authors recommend a dimension
reduction prior to implementation (Sugiyama et al.,
2011). As is the case with any data reduction, such a
step can result in significant loss of information. Here
we propose a novel series estimator of 3(x) designed to
take advantage of the intrinsic dimensionality of x, but
without an explicit dimension reduction step. Thus,
this work addresses a critical need by constructing a
nonparametric estimator for 5(x) which performs well
even when x is of high dimension.
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Figure 1: Level sets of the top three eigenfunctions of a
kernel-based operator when the support of the data (z,y)
is close to a spiral. The eigenfunctions form a Fourier-
like basis adapted to the geometry of the data. This basis
is well-suited for approximating smooth functions in the

region around the spiral.

Our method is fast and simple to implement. To ap-
proximate B(x), we expand 3 in terms of the eigen-
functions of a kernel-based operator. These eigenfunc-
tions are orthogonal with respect to the underlying
data distribution as opposed to the Lebesgue measure
on the ambient space. In fact, the eigenfunctions form
a Fourier-like basis adapted to the submanifold struc-
ture with the low-order components smoother than
the higher-order ones, see Figure 1. As we shall see,
this basis is particularly well-suited for approximating
smooth functions in high dimensions. Unlike RKHS
methods (Gretton et al., 2010) (which do not explicitly
compute the eigenfunctions themselves), our approach
to nonparametric density estimation allows for out-
of-sample extensions and a principled way of choos-
ing tuning parameters via well-studied model selection
techniques such as cross-validation.

We extend our proposed methodology for estimating
density ratios to the problem of estimating the likeli-
hood function of observing data x given parameters
0. Estimation of the likelihood is necessary when
the complexity of the data-generation process prevents
derivation of a sufficiently accurate analytical form
for the likelihood function. Here we exploit the fact
that, in many such situations, one can simulate data
sets x under different parameters 6. This is often
the case in statistical inference problems in the sci-
ences, where the relationship between parameters of
interest and observable data is complex, but accurate
simulation models are available; see, for example, ge-
netics (Beaumont 2010; Estoup et al. 2012) and as-
tronomy (Cameron and Pettitt 2012; Weyant et al.
2013). Problems of this type have motivated recent
interest in methods of likelihood-free inference, which
includes methods of Approzimate Bayesian Computa-
tion (ABC); see Marin et al. (2012) for a review.

In our implementation, we redefine the likelihood func-
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tion as L(x;0) = f(x|0)/g(x), where g(x) is a density
with support larger than that of f(x|6). This formu-
lation differs from the standard definition of the like-
lihood by only a multiplicative term which is constant
in #, and hence £(x;6) can still be used for likelihood-
based inference (including maximum likelihood esti-
mation). In particular, the shape of the posterior
for 0 is unaffected. The challenge of estimating the
likelihood is now a density ratio estimation problem.
This approach will yield significant advantages in cases
where g is chosen to focus high probability on the low-
dimensional subspace in which the data x lie. One
natural choice is g(x) = [ f(x|#)dm(6), where 7 is a
well-chosen prior distribution for . The orthogonality
of the spectral series with respect to g results in an
efficient implementation of the estimator. Moreover,
directly estimating the ratio f(x|0)/g(x) may itself be
easier than estimating f(x|6), e.g., when the condi-
tional distributions f(x|@) for different 6 are similar!,
or when they have similar support in high dimensions.
To our knowledge, this is the first work that proposes a
spectral series approach to non-parametric density es-
timation and likelihood inference in high dimensions.

The organization of the paper is as follows: In Section
2 we present our density ratio estimator and apply it
to a prediction problem in astronomy with covariate
shift. In Section 3, we show how our method can be ex-
tended to estimating a likelihood function, and provide
experiments that show its advantages over traditional
methods. Finally, in Section 4, we provide theoretical
guarantees and rates of convergence of the proposed
estimators. Full proofs as well as details on the astron-
omy data are provided in Supplementary Materials.

2 SPECTRAL SERIES ESTIMATOR
OF A DENSITY RATIO

In this section we will present the mathematical de-
tails behind our spectral series estimator of a density
ratio. To begin, let x denote a d-dimensional random
vector, assumed to lie in the subspace X. We observe
an i.i.d. sample xI", ... ,fo from an unknown distri-
bution F, as well as an 4.i.d. sample x§, . .. ,xfc from
an unknown distribution G. The goal is to estimate

Bx) = f(x)/9(x).

We assume that F<<G so that this ratio is well-defined.

Let K«(z,y) be a bounded, symmetric, and positive
definite kernel?®, and let {t;};en be the eigenfunctions

A trivial example: If x is independent of #,
f(x|0)/g(x) = 1 is a constant function, whereas f(x|6) =
f(x) may be a harder to estimate (nonsmooth) function.

’In our applications, we use the Gaussian kernel
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of the operator Ky : L?(X,G) — L?(X,G) (Rosasco
et al., 2010):

K, (1) (2) = /X Ke(zy)h(y)dG(y). (1)

Our spectral series estimator relies on the fact that
{¥);}jen is an orthonormal basis of L?(X,G), i.e., the
eigenfunctions are orthonormal with respect to the
data distribution G rather than the Lebesgue measure:

=J).

/ G ()5 ()dG(x) = (i
X

Hence, for 8(x) € L*(X,G), we can write

Bx) = Biv;(x),

jEN

where 8; = [ B(x)9;(x)dG(x) = Ep[p;(X)].
Since G is unknown, the 1;’s must be estimated. First,

we compute the J < ng eigenvectors )1, . .. ,{/)V J (with
largest eigenvalues) of the Gram matrix based on the

sample from G,
G\1"¢

[Fx (x5

0x7)]

ij=1"

These functions are then extended to all x € X via the
Nystrom Extension (Drineas and Mahoney, 2005)

hj(x) = \/gTG > (xF) Ka (x,x5)
7 k=1

where Z}‘ is the eigenvalue associated to the eigenvector

1. Next we estimate the f;’s in Eq. (2) using the
sample from F"

1 &
A. —_ A4 F
Bj np Z V; (Xk) :
k=1
Our spectral series estimator is finally given by

J
B0 = | D289 (x) 3)

+

This approach can be motivated as follows. The basis
functions 1; are consistent estimators of the eigenfunc-
tions 1); of the corresponding integral operator (Bengio
et al., 2004). In our nonparametric model, J is a tun-
ing parameter that controls the bias/variance tradeoff:
Decreasing J decreases the variance, but increases the

Kx(z,y) = exp(—d*(z,y)/4€), where d(-,-) is the Eu-
clidean distance in R
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bias of the estimator. We choose J (and the other tun-
ing parameters) in a principled way described below.

Model Selection. To evaluate the performance of an
estimator 3(x), we use the loss function

[ (360 - 5

_ / B(x)2dG(x) — 2 / Bx)dF(x) + K

2
L(3,8) ) dG(x)

where K does not depend on B We estimate this
quantity (up to K) using

ng

~ 1 ~ 2 S
L(B.A) = =Y &) - =D BED. (@)
ng nr
k=1 k=1
where X, ... ,igc is a validation sample from G, and
<P ,igF is a validation sample from F. Tuning

parameters are chosen to minimize Z(B ,B). Note that

because of the orthogonality of the @Zj, it is not nec-
essary to recompute the estimated coefficients Bj’s for
each value of J in Eq. (3), unlike most estimation pro-
cedures, where estimated coefficients have to be recom-
puted for each configuration of the tuning parameters.
In other words, only the tuning parameters associated
with the kernel (in our case, the kernel bandwidth e)
affect the computation time.

2.1 Application: Correction to Covariate
Shift in Photometric Redshift Prediction

Assume we observe a sample of unlabeled data, as well
as a sample of labeled data, where the Z’s represent
the labels and x’s are the covariates. One is often in-
terested in estimating the regression function E[Z|x]
under selection bias, i.e., in situations where the dis-
tributions of labeled and unlabeled samples (fr,(x)
and fy(x), respectively) are different. If the estimate
E[Z|x] is constructed using the labeled data with the
goal of predicting Z from x on the unlabeled data, cor-
rections have to be made. A key quantity for making
this correction under the covariate shift assumption
(Shimodaira, 2000) is the density ratio fy(x)/fr(x),
the so-called importance weights (Gretton et al., 2010).
We now compare various estimators of importance
weights for a key problem in astronomy, namely that
of redshift estimation (Sheldon et al., 2012).

We use a subset of the Sloan Digital Sky Survey (Ai-
hara et al., 2011). The ultimate goal is to build a
predictor of galaxy redshift Z based on photometric
data x; see Supplementary Materials for details. We
are given a training set with covariates x of galax-
ies and their redshifts, as well as unlabeled target
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Figure 2: Estimated losses of B(x) with standard errors
for SDSS data. The spectral series estimator has best per-
formance.

data. Because it is difficult to acquire the true red-
shift of faint galaxies, these data suffer from selection
bias. We compare our method of estimating the im-
portance weights (Series) to uLSIF, KLIEP, and KuL-
SIF, described in Section 1. We also compute LHSS,
which uses uLSIF after applying a dimension reduc-
tion technique specifically designed for estimating a
density ratio, see Sugiyama et al. (2011). Moreover,
we include a comparison with a k-nearest neighbors
estimator (KNN) proposed in the astronomy litera-
ture (Lima et al. 2008), which it not based on ratios.
We do not show results of ratio-based estimators be-
cause the estimates of fr(x) are close to zero for many
x’s, inducing estimates of 8 that are infinity.

Figure 2 shows the estimated losses of the different
methods of estimating the ratio fy(x)/fr(x) when us-
ing 5,000 labeled and 5,000 unlabeled samples, and 10
photometric covariates x. We use 60% of the data for
training, 20% for validation and 20% for testing. Even
though this example has a covariate space with as few
as 10 dimensions, we can already see the benefits of
the spectral series estimator.

3 EXTENSION: SPECTRAL SERIES
ESTIMATOR OF A LIKELIHOOD
FUNCTION

Our framework for estimating density ratios can
be extended to the problem of estimating a high-
dimensional likelihood function. To the derivation
described above, we add 8 € O, the p-dimensional
parameter. In this context, x € X C R? is a ran-
dom vector representing a single sample observation.
We will adopt a Bayesian perspective, and let Fy be
the marginal distribution for €, i.e., the prior, and let
G denote the marginal distribution for x. Then, let
(x{',601),...,(xk ,0,,) be an i.i.d. sample from the
joint distribution of x and 6. Further, let x§,... x¢

i XTLG
be an i.i.d. sample from G. Our objective is to esti-
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mate the ratio

()

where f(x|0) is the conditional density of x given 6,
and g(x) is the marginal density for x. This is, up to
a multiplicative factor that is not a function of 6, the
standard definition of the likelihood function.

To estimate L£(z;60), we use a spectral series approach
as before, but because the likelihood is a function of
both x and #, we consider the tensor product of a basis
for x and a basis for 8, {¥; ;}; jen, where

\Ijl}j(xv 0) = ¢](X)¢1(9)v 1,J € N.

The construction of the separate bases {1; },; and {¢;};
proceeds just as described in Section 2. Note that for

6, we consider the eigenfunctions {¢; }; of the operator
Ky: LQ(@, F@) — LQ(@, Fg):

Ko (h)(€) = /O (€, p)h(p)dF (1),

where Kjy is not necessarily the same kernel as K.
That is, while {1}, is estimated using a Gram ma-
trix based on x{ G {¢;}; is estimated using

o1 Xpg
o1, ...

1 On e

Since {¢;}; is an orthonormal basis of functions in
L?(©, Fy), the tensor product {¥; ;}, ; is an orthonor-
mal basis for functions in L?(0© x X, Fp x G).

The projection of £(x;0) onto {¥; ;}; ; is given by

> B Vi (x,0),
i,jEN
where
Bij = ﬂﬁ(x; 0)V; ;(x,0)dG(x)dFy(0)

=Ep[V;;(x,0)]. (6)

Hence, we define our likelihood function estimator by
L(x;0) = Z Z Bi Vi ;(x,0),
i=1 j=1

1
nr

nr

where §; ; = iy Vi g (xkF, Gk), and

Wi 5(x,0) = 1 (x)9i(0)
is the estimator for ¥; ;(x, #), obtained via a Nystrom
extension as in Section 2. The tuning parameters [
and J control the bias/variance tradeoff. Because we
define the likelihood in terms of g(x) (Eq. 5), we
can take advantage of the orthogonality of the ba-
sis functions when estimating the coefficients 3; ;; see
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Eq. 6. The result is a simple and fast-to-implement
procedure for estimating likelihood functions for high-
dimensional data.

Model Selection. To evaluate the performance of a
given estimator, we use the loss function

L (2, c)

/ (Z(x; 0) — L(x; 9))2 dG(x)dF (6)
/ L(x;0)2dG(x)dF (0) —

2/ L(x;0)dF(0,x) + K,

(7)

where K does not depend on L. We can estimate this
quantity (up to K) by

B n
H(e0) -5y [t )]
E ; L& 10,

where X§,... ,)Ncg is a validation sample from G;
(01,%1),...,(07,%L) is a validation sample from the

joint distribution of x and 6; 551), e ,57(7” for [ =
1,..., B are random permutations of the original sam-
ple 01, ...,05; and B is a number limited only by com-
putational considerations. We choose tuning parame-
ters so as to minimize L.

Remarks. By choosing an appropriate kernel, the
spectral series approach can be extended to discrete
data. For example, in Lee et al. (2010), p. 185, the
authors suggest a distance kernel that take into ac-
count the discrete nature of genetic SNP data. By
minimizing the loss in Eq. (7), one can also select the
best kernel from a set of reasonable candidate kernels.
Finally, our procedure can be scaled up to large sets
of simulated data by speeding up the eigendecompo-
sition of the Gram matrix. Possible methods include
the Nystrom extension (Drineas and Mahoney, 2005)
and procedures described in, e.g., Belabbas and Wolfe
(2009) and Halko et al. (2011). In particular, some of
these approaches can be parallelized for even higher
computational efficiency.

3.1 Numerical Experiments

Estimation of a likelihood function is of particular
value in cases where the complexity of the data and
the data-generating process prevents construction of a
sufficiently accurate analytical form, a situation typi-
cally present in high-dimensional scientific data. The
general setup is as follows. We have data which are
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modeled as an i.i.d. sample x1,...,X,, from the dis-
tribution f(x|#). Our goal is to infer the value 6. Al-
though we are able to simulate from f(x|6) for fixed 6,
we lack an analytical form for the likelihood function.
Hence, we use the methodology of Section 3 to esti-
mate L£(x;60) from a simulated sample. Once we have
an estimate £(x; ), we can approximate the likelihood
of an observed sample according to

m
:Il sz

This approximation can then be used in likelihood-
based inference by, for example, plugging the expres-
sion into Bayes Theorem or by finding the maximum
likelihood estimate.

~

£((X1,...,

In what follows we present five numerical examples
where the ambient dimensionality of x is larger than its
intrinsic dimensionality. In all experiments, we choose
a uniform prior distribution on the parameter space.

i..d. of

Spiral. The data are observations

(XM, X)) where
XM =f0cosh+ N(0,1) and X® = 0sind + N(0,1)

for 0 < # < 15. Although the dimension of the sam-
ple space is 2, the data lie close to a one-dimensional
spiral.

Klein Bottle. The data are i.i.d. observations of
(XM x@ xG) X @) where

XM = 2(cosfy + 1) cos by + N(0,1)
X®@ =2(cosfy + 1)sin6; + N(0,1)
X)) = 2sin 6y cos 61 /2 + N(0,1)
X = 2ginfysinb, /2 4+ N(0,1)

for 0 < 01,05 < 27w. The dimension of the sample is
4, but the data lie close to a two-dimensional Klein
Bottle embedded in R*.

Transformed Images. In this example, we ro-
tate and translate an image of a tiger, see the
top row of Figure 3. The model parameters are
(0, pz, py). The transformed images are centered at
(ps + Nr(0,10), p, + N7(0,10))® with rotation angle
(04 N(0,10)). The final images are cropped to 20 x 20
pixels, i.e., the sample space has dimension 400.

Edges. Here we generate 20 x 20 images of binary
edges from a model with two parameters, « and A. The
data are i.i.d. observations of an edge with rotation

3Nr is the truncated normal to guarantee that the pa-
rameters are in the range of the image.
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Figure 3: Some examples of data generated according to
Section 3.1.
“Transformed Images”.)

(The top left image is the original image in

angle a + N(0,7/4) and displacement A + N (0,0.5)
from the center, see Figure 3 for some examples.

Simulated Galaxy Images. The last example is
a simplified version of a key estimation problem in
astronomy, namely that of shear estimation (Bridle
et al., 2009). We use the GalSim Toolkit* to simu-
late realistic galaxy images. We sample two parame-
ters: First, the orientation with respect to the z-axis
of the image and, second, the axis ratio of the galaxies,
which measures their ellipticity. To mimic a realistic
situation, the observed data are low-resolution images
of size 20 x 20. Figure 3, bottom, shows some exam-
ples. These images have been degraded by observa-
tional effects such as background noise, pixelization,
and blurring due to the atmosphere and telescope; see
the Supplementary Materials for details.

We assume that the orientation and axis ratio of
galaxy i are given by a; ~ Laplace(a,10) and r; ~
N7(p,0.12), respectively. We seek to infer § = (a, p)
based on an observed i.i.d. sample of images x con-
taminated by observational effects. Notice we do not
observe a; and r;, but only x;, the 400-dimensional
noisy image.

Methods. In the examples above, the likelihood func-
tion is estimated based on np = ng = 5,000 observa-
tions from the simulation model; 60% of the data are
used for training and 40% for validation. We com-
pare Series, our spectral series estimator from Section
3, with two state-of-the-art estimators of f(x|f). The
first estimator is KDE — a kernel density estimator

“https://github.com/GalSim-developers/GalSim
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based on taking the ratio of kernel estimates of f(x,0)
and f(#). We use the implementation from the pack-
age “‘np” (Hayfield and Racine, 2008) for R. For the
Spiral and Klein bottle examples, we select the band-
widths of KDE via cross-validation. However, the high
dimension of the other examples (Transformed, Edges,
and Galaxy) makes a cross-validation approach com-
putationally intractable and the density estimates nu-
merically unstable. For these examples, we instead use
the default reference rule for the bandwidth, and we
reduce the dimensionality of the data with PCA with
number of components chosen by minimizing the esti-
mated loss (Eq. 7). The second estimator in our com-
parisons is LS — the direct least-squares conditional
density estimator of Sugiyama et al. (2010b). This es-
timator is based on a direct expansion of the likelihood
into a set of prespecified functions. This approach typ-
ically yields better results than estimators based on the
ratio of random variables. Again, to avoid the prob-
lem of high dimensionality in the examples with d > 4,
we implement PCA+LS, the direct least-squares con-
ditional density estimator after dimension reduction
via PCA, with number of components chosen so as to
minimize the estimated loss. PCA has the additional
goal of decorrelating adjacent pixels in the images ex-
amples.

Results. In Tables 1 and 2, we present the estimated
L? loss (Eq. 7), as well as the estimated average like-
lihood E(x,g) [LA(X7 0)] based on a test set with 3,000
observations®. Both measures indicate that, while tra-
ditional methods have better performance in low di-
mensions, our spectral series method yields substantial
improvements when the ambient dimensionality of the
sample space is large. Note that even after dimension
reduction, LS does not yield the same performance as
Series. In fact, in some cases, a dimension reduction
via PCA leads to less accurate estimates.

As a further illustration, Figure 4 shows the estimated
likelihood function for a sample of size m = 10 drawn
from the galaxy image model with parameters ae = 80°
and p = 0.2. For comparison, we also include the true
likelihood function (TRUTH), which is unavailable in
practical applications®. It is apparent from the figure
that the spectral series estimator comes closer to the
truth than the other estimators, even without first re-
ducing the dimensionality of the galaxy images. In the
Supplementary Materials we present additional plots
for other sample sizes. These results yield similar con-
clusions.

Furthermore, to quantify how the level sets of the like-

5To make results comparable, we renormalize the esti-
mated likelihood functions to integrate to 1 in 6.

SBecause the observed images are simulated, we can
compute a; and r;.
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Table 1: Estimated L? loss (with standard errors) of the likelihood function estimators. Best-performing models with

smallest loss are in bold fonts.

DATA DIM. L? LOSS

Series LS PCA+LS KDFE PCA+KDE
Spiral 2 7.13 (0.14)  6.61 (0.12) — 2.95 (0.30) —
Klein Bottle 4 |1.45 (0.07) 2.02 (0.06) — 1.68 (0.11) —
Transf. Images| 400 [20.94 (0.03) 26.91 (0.04) 27.12 (0.03) — 26.62 (0.06)
Edges 400 | 0.70 (0.03) 1.77 (0.02) 1.55 (0.03) — 1.60(0.02)
Galaxy Images| 400 |40.94 (0.03) 42.57 (0.01) 42.53 (0.01) — 43.99 (0.04)

Table 2: Estimated average likelihood (with standard errors) of the likelihood function estimators. Best-performing

models with largest average likelihood are in bold fonts.

DATA DIM. AVERAGE LIKELIHOOD

Series LS PCA+LS KDE PCA+KDE
Spiral 2 |16.54 (0.16) 19.49 (0.14)  —  28.62 (0.01)  —
Klein Bottle 4 | 562(0.08) 4.96(0.08) —  5.63 (0.13) —
Transf. Images| 400 |8.31 (0.03) 1.83 (0.03) 1.08 (0.02) — 1.58 (0.06)
Edges 400 |3.69 (0.04) 1.72 (0.02) 2.55 (0.03) — 2.10 (0.02)
Galaxy Images| 400 |4.63 (0.04) 2.24 (0.01) 2.43 (0.02) — 1.01 (0.04)

Estimated Likelihood

TRUTH

0.5
0.3
0.1
0.5
Q 0.3
0.1
0.5
0.3
0.1
30 80 130
a

Figure 4: Estimated likelihood function for the galaxy
example using different estimators. The contours represent
the level sets; horizontal and vertical lines are the true
values of the parameters. The spectral series estimator
gets close to the true distribution, which is uncomputable

in practice.

lihood function concentrate around the true parame-
ters, we define the expected average distance of the
estimated likelihood function to the real parameter
value, Ey g+ U d(6*,0)L(x; 9)d9} 7 where the expecta-
tion is taken with respect to both 8* and the observed
data. Here we choose d(6*,6) to be the Euclidean dis-
tance between the vectors of parameters, standardized

7As the prior distribution is uniform, this quantity is

Ex o~ [ [ d(0*,0)df(0\x)].
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so that each component has minimum 0 and maximum
1. As a final comparison of methods, we study how the
above likelihood metric changes as a function of the
sample size m of the observed data (the sample size
of the simulated data used to estimate the likelihood
is held constant); see Figure 5 for results. Because
L(x;0) concentrates around the true parameter value
0* for large sample sizes, we expect the average like-
lihood to decrease as m increases — if the likelihood
estimates are reasonable. Indeed, we observe this be-
havior for all methods in the comparison for the prob-
lems with low dimensionality. However, for the prob-
lems with high dimensionality, this is no longer the
case. On the other hand, the results indicate that Se-
ries is able to overcome the curse of dimensionality
and recover the true 6* parameter as the number of
observations increases.

4 THEORY

Next we provide theoretical guarantees of the perfor-
mance of the estimator 8. The integral operator Ky
from Eq. 1 is self-adjoint, compact and has a countable
number of eigenfunctions {¢; }; with respective eigen-
values A\;1 > Ay > ... > 0. These eigenfunctions there-
fore form an orthonormal basis of L?(X,G) (Minh,
2010). We make the following assumptions:

Assumption 1. [ 3%(x)dG(x) < cc.
Assumption 2. A\ > Ay > ... > A7 > 0.

Assumption 1 states that the ratio is L? integrable. It
implies that it is possible to expand S into the basis
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Figure 5: Average distance of estimated likelihoods to the
true 6 (and standard errors) as a function of the number of
observed images for the galaxy data. While in low dimen-
sions all estimators have similar performance, our approach
performs better in high dimensions.

1. Assumption 2 allows one to uniquely define each of
the eigenfunctions (see, e.g., Ji et al. 2012 for similar
assumptions, and Zwald and Blanchard 2005 on how
to proceed if it does not hold). Let Hg, denote the
Reproducing Kernel Hilbert Space (RKHS) associated
to the kernel K. We assume

Assumption 3. cx, = |[(x)[[5,,. < oo.

Assumption 3 implies smoothness of 3(x) as measured
by the RKHS norm defined by K. Smaller values of
¢k, imply smoother functions. In the Supplementary
Materials we prove the following main result.

Theorem 1. Under Assumptions 1 — 3, the loss

~ 2
/ (ﬁJ(X) - B(X)> dG(x) is bounded by

1 1
J x [OP<n ) +OP()\JAL2]7LG):| + ¢k, O(AJ),

ne
where Ay = minj<j<s|\; — Aj41] and BJ(X) is the
spectral series ratio estimator truncated at J.

The first term of the rate in Theorem 1 is the sample
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error. The second term is the approximation error.
Smooth functions have a small value of cx_, and there-
fore a smaller bias. These rates depend on the decay
of the eigenvalues A; and the eigengaps Ay — Ajy1.

As an illustration, assume a fized kernel K. Then,
if n =np =ng, Ay < J2* for some @ > 3, and
A7 — Mgy < J72271 (see Ji et al. 2012 for an empir-
ical motivation), then the optimal smoothing is given

by J = n!/a+3) With this choice of J, the rate of

convergence is
2
Op (’I’L_ §a 13 ) .

Note, however, that by changing the kernel (e.g., by
using different bandwidths €), one can improve the per-
formance of the estimator: different kernels lead to dif-
ferent eigenvalue decays, as well as different cx. ’s (e.g.,
a depends on €). Hence, choosing the tuning parame-
ters properly is important. Note that J x Op(1/np) is
the traditional variance of orthogonal classical estima-
tors in one dimension, in which one expands the target
function with respect to a basis fized beforehand (e.g.,
the Fourier basis) (Efromovich, 1999). The additional
term J x Op(1/(A;A%n¢)) is the cost of estimating
a basis (from data) that better captures the geometry
of the data.

Under similar assumptions (see the Supplementary
Materials for proofs and details), an analogous bound
holds for the spectral series likelihood estimator trun-

cated at I and J:

L (E[ﬁ], ﬁ) = IJOP <max {

+ ek, O(N]) + e, O(XY)

where the superscript x and 6 denote quantities asso-
ciated with the eigenfunctions ;’s and ¢;’s, respec-
tively. Similar interpretation holds for this bound.

1 1
/\’J‘Ai,JnG ’ A?Aalnp

5 CONCLUSION

We have demonstrated the effectiveness of a new spec-
tral series approach for estimating the ratio of two
high-dimensional densities, with extensions to likeli-
hood approximation in high dimensions. Traditional
approaches typically fail for high-dimensional data
(even with a dimension reduction by PCA) whereas
the proposed method is designed to adapt to the un-
derlying geometry of the data.
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