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Abstract

We develop a new sampling strategy that
uses the hit-and-run algorithm within level
sets of a target density. Our method can be
applied to any quasi-concave density, which
covers a broad class of models. Standard
sampling methods often perform poorly
on densities that are high-dimensional or
multi-modal. Our level set sampler per-
forms well in high-dimensional settings,
which we illustrate on a spike-and-slab mix-
ture model. We also extend our method
to exponentially-tilted quasi-concave densi-
ties, which arise in Bayesian models consist-
ing of a log-concave likelihood and quasi-
concave prior density. We illustrate our
exponentially-tilted level-set sampler on a
Cauchy-normal model where our sampler
is better able to handle a high-dimensional
and multi-modal posterior distribution com-
pared to Gibbs sampling and Hamiltonian
Monte Carlo.

1 Introduction

Complex Bayesian models are often estimated by
sampling random variables from complicated distri-
butions. This strategy is especially prevalent when
Markov Chain Monte Carlo (MCMC) simulation is
used to estimate the posterior distribution of a set
of unknown parameters. The most common MCMC
technique is the Gibbs sampler (Geman and Geman,
1984), where small subsets of parameters are sampled
from their conditional posterior distribution given the
current values of all other parameters.

With  high dimensional parameter spaces,
component-wise strategies such as the Gibbs sampler
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can encounter problems such as high autocorrelation
and the inability to move between local modes.
Hamiltonian Monte Carlo (Duane et al., 1987; Neal,
2011) is an alternative MCMC strategy that uses
Hamiltonian dynamics to improve convergence to
high-dimensional target distributions. Hoffman and
Gelman (2011) introduce the No-U-Turn sampler
that extends Hamiltonian Monte Carlo. The No-U-
Turn sampler has been implemented for a general
set of models in the Stan software package (Stan
Development Team, 2013).

In high dimensions, one would ideally employ a
strategy that sampled the high-dimensional param-
eter vector directly, instead of a small set of compo-
nents at a time. In this paper, we develop a sampling
algorithm that provides direct samples from a high-
dimensional quasi-concave density. As we discuss in
Section 2.1, quasi-concave densities are a broad class
that covers many real data models. We also provide
an extension of our algorithm to provide direct sam-
ples from a high-dimensional (and potentially multi-
modal) exponentially-tilted quasi-concave density.

Our procedure is based on the fact that any horizon-
tal slice through a quasi-concave density f will give a
convex level set above that slice. By slicing the quasi-
concave density f at a sequence of different heights,
we divide the density f into a sequence of convex
level sets. We then use the hit-and-run algorithm
to sample high-dimensional points 2 within each of
these convex level sets, while simultaneously estimat-
ing the volume of each convex level set.

As reviewed in Vempala (2005), recent work suggests
that the hit-and-run algorithm is an efficient way to
sample from high-dimension convex set as long as
the start is “warm” (which we discuss in Section 2.1).
The hit-and-run algorithm is not as commonplace as
other sampling methods (e.g. Metropolis-Hastings),
though Chen and Schmeiser (1996) discuss using hit-
and-run Monte Carlo to evaluate multi-dimensional
integrals.

In Section 2.1, we review several recent results for
hit-and-run sampling in convex sets. In Section 2.2,
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we outline our procedure for ensuring a warm start
within each convex slice, thereby giving us an effi-
cient way of sampling from the entire quasi-concave
density. In Section 3, we present an empirical com-
parison that suggests our “level-set hit-and-run sam-
pling” methodology is much more efficient than
Gibbs sampling or Hamiltonian Monte Carlo for high
dimensional quasi-concave posterior densities.

We also extend our method to sample efficiently
from exponentially-tilted quasi-concave densities in Sec-
tion 2.4. Exponentially-tilted quasi-concave den-
sities are very common in Bayesian models: the
combination of a quasi-concave prior density and
a log-concave likelihood leads to an exponentially-
tilted quasi-concave posterior density. In Section 4,
we illustrate the efficiency of our method on a
exponentially-tilted quasi-concave posterior density
from a model consisting of a Normal data likelihood
and a Cauchy prior density. It should be noted that
this posterior density can be multi-modal, depend-
ing on the relative locations of the prior mode and
observed data. Our results in Section 4 suggest that
our sampling strategy can accurately estimate pos-
terior distributions which are both high-dimensional
and multi-modal.

The popular Bayesian software program WinBUGS
(Lunn et al., 2000) uses adaptive rejection sampling
Gilks (1992) to obtain samples from log-concave pos-
terior distributions. Our approach can obtain sam-
ples from the more general class of quasi-concave
(Section 2.1) and exponentially-tilted quasi-concave
(Section 2.3) posterior distributions. Our approach
has a similar spirit to slice sampling (Neal, 2003)
but differs substantially in that we use hit-and-run
within horizontal slices of the target density, rather
than sampling uniformly along a horizontal line at
a randomly-sampled density height. Our hit-and-
run strategy allows us more easily obtain samples
in high dimensions, whereas multivariate versions of
slice sampling are more difficult to implement unless
a component-wise strategy is employed.

2 Level-Set Sampling Methodology

2.1 Quasi-Concave Densities and Level Sets

Let f() be a density in a high dimensional space. A
density function f is quasi-concave if:

C,={z|f(x) > a}

is convex for all values of a. In other words, the level
set (', of a quasi-concave density f is convex for any
value a. Let Q denote the set of all quasi-concave den-
sities and D denote the set of all concave densities. All
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concave densities are quasi-concave, D C Q, but the
converse is not true. Quasi-concave densities are a
very broad class that contains posterior densities for
many common Bayesian models, including the nor-
mal, gamma, student’s ¢, and uniform densities.

Our proposed method is based on computing the vol-
ume of a convex level set C' by obtaining random
samples z from C. Let us assume we are already at
a point z° in C. A simple algorithm for obtaining a
random sample  would be a ball walk: pick a uni-
form point z in a ball of size § around z”, and move
tox onlyif z is still in C.

An alternative algorithm is hit-and-run, where a ran-
dom direction d is picked from current point z°. This
direction will intersect the boundary of the convex set
C at some point z!. A new point z is sampled uni-
formly along the line segment defined by direction d
and end points 2° and z', and is thus guaranteed to
remain in C.

Lovasz (1999) showed that the hit-and-run algorithm
mixes rapidly from a warm start in a convex body. The
warm start criterion is designed to ensure that our
starting point is not stuck in some isolated corner of
the convex body.

Vempala (2005) suggests that a random point from
convex set C’ € C provides a warm start for convex
set C' as long as volume(C”) /volume(C') > 0.5. Vem-
pala (2005) also presents several results that suggest
the hit-and-run algorithm mixes more rapidly than
the ball walk algorithm.

2.2 LSHR1: Level-Set Hit-and-run Sampler for
Quasi-concave Densities

Our level-set hit-and-run algorithm iteratively sam-
ples from increasingly larger level sets of the quasi-
concave density, while ensuring that each level set
provides a warm start for the next level set. The sam-
ples from each level set are then weighted appropri-
ately to provide a full sample from the quasi-concave
probability density. We briefly describe our LSHR1
algorithm below, with details and pseudo-code given
in our supplementary materials.

Our sampling method must be initialized at the max-
imum value ..« of the quasi-concave density f(-),
which could either be known or found by an opti-
mization algorithm. Our algorithm begins by taking a
small level set C; = {z : f(z) > ¢} centered around
that maximum value. Starting from Z,,x, we run a
hit-and-run sampler within this initial level set for
m iterations. Each iteration of the hit-and-run sam-
pler picks a random direction d from current point
z, which defines a line segment with endpoints at
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the edge of the convex level set C;. The endpoints
are found by bisection starting from points outside
C; along d. Once the endpoints of the line segment
have been found, a new pointz’ is sampled uniformly
along this line segment, which ensures that ' remains
in Cy. We use {z}; to denote the set of all points sam-
pled from C; using this hit-and-run method.

After sampling m times from convex level set C;, we
need to pick a new threshold t; < ¢; that defines a sec-
ond level set of the quasi-concave probability density
f(-). For our sampler to stay warm (Section 2.1), we
need ¢; to define a convex shape Cy with volume V5
less than twice the volume V3, i.e. Ry.0 = V1 /Va > 0.5.

We propose a new threshold ., and then run m it-
erations of the hit-and-run sampler within the new
convex level set C,op defined by f(z) > tprop. We
then estimate Ry, as the proportion of these sam-
pled points from convex level set Cy,,,,, that were also
contained within the previous level set C;. We only
accept the proposed threshold tyrop if 0.55 < Rprop <
0.8. The lower bound fulfills the warm criterion and
the ad hoc upper bound fulfills our desire for effi-
ciency: we do not want the new level set to be too
close in volume to the previous level set.

If the proposed threshold is accepted, we re-define
tprop = t2 and then the convex level set Cprop = Co
becomes our current level set. The collection of sam-
pled points {z}; from C; are retained, as well as the
estimated ratio of level set volumes R;.5. Our supple-
mentary materials outlines an adaptive method for
proposing a new threshold if the proposed threshold
is not accepted.

In this same fashion, we continue to add level sets C},
defined by threshold ¢, based on comparison to the
previous level sets Cj_;. The level set algorithm ter-
minates when the accepted threshold ¢;, is lower than
some pre-specified lower bound K on the probability
density f(-).

The result of our LSHR1 procedure is n level sets, rep-
resented by a vector of thresholds (¢4, ...t,), a vector
of estimated ratios of volumes (}?1:2, ey Rn,lm), and
the level set collections: a set of m sampled points

from each level set ({z}1,...,{z}n).

We obtain L essentially independent! samples from
the quasi-convex density f(-) by sub-sampling points
from the level set collections ({z}y,...,{z},) with
each level set i represented proportional to its prob-
ability p;. The probabilities for each level set is the

IAlthough there is technically some dependence between
successive sampled points from the hit-and-run sampler, our
scheme of sub-sampling randomly from level set collections
({z}1,...,{z}n) essentially removes this dependence
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product of its height and volume,
pi=(tic1 —t;) xV;

/ We have our volume ratios Ri:iﬂ as estimates of
Vi/Vit1, which allows us to estimate p; by first calcu-
lating

n
G = (ti—t) x [[ Ry

Jj=t

i=1,...,n (1)

where t( is the maximum of f(-) and Rn:nﬂ =1,and
thenp}- = le/ ZCL

Further details and pseudo-code for our LSHR1 algo-
rithm are given in our supplementary materials. We
demonstrate our LSHR1 algorithm on a spike-and-
slab density in Section 3.

2.3 Exponentially-Tilted Quasi-concave Densities

A density g() is a log-concave density function if
log g() is a concave density function. Let £ denote
the set of all log-concave density functions. All log-
concave density functions are also concave density
functions (£ C D), and thus all log-concave den-
sity functions are also quasi-concave density func-
tions (£ C Q).

Bagnoli and Bergstrom (2005) gives an excellent re-
view of log-concave densities. The normal density is
log-concave whereas the student’s ¢ and Cauchy den-
sity are not. The gamma and beta densities are log-
concave only under certain parameter settings, e.g.
both the uniform and exponential densities are log-
concave. The beta(a, b) density with other parameter
settings (e.g. @ < 1,b < 1) can be neither log-concave
nor quasi-concave.

Now, let T' denote the set of exponentially-tilted quasi-
concave density functions. A density function h is
an exponentially-tilted quasi-concave density func-
tion if there exists a quasi-concave density f € Q
such that f(z)/h(z) = exp(f'z). Exponentially-tilted
quasi-concave densities are a generalization of quasi-
concave densities, so Q C 7.

These three classes of functions (log-concave, quasi-
concave, and exponentially-tilted quasi-concave) are
linked by the following important relationship: if
X ~ fwhere f € Qand Y|X ~ g where g € L,
then X|Y ~ hwhere h € T.

The consequences of this relationship is apparent for
the Bayesian modeling. The combination of a quasi-
concave prior density for parameters f(f) and a log-
concave likelihood for data g(y|#) will produce an
exponentially-tilted quasi-concave posterior density

h(@ly)-
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Examples of log-concave likelihoods for data g(y|6)
include the normal density, exponential density and
uniform density. Quasi-concave priors for parame-
ters f(@) are an even broader class of densities, in-
cluding the normal density, the ¢ density, the Cauchy
density and the gamma density. In Section 4, we
examine an exponentially-tilted quasi-concave poste-
rior density resulting from the combination of a mul-
tivariate normal density with a Cauchy prior density.

We now extend our level-set hit-and-run sampling
methodology to exponentially-tilted quasi-concave
densities, which makes our procedure applicable to
a large class of Bayesian models consisting of quasi-
concave priors and log-concave likelihoods.

2.4 LSHR2: Level-Set Hit-and-Run Sampler for
Exponentially-Tilted Quasi-concave Densities

In Section 2.2, we presented our level set hit-and-run
algorithm for sampling x from quasiconcave density
f(z). We now extend our algorithm to sample from
an exponentially-tilted quasi-concave density h(z).

As mentioned in Section 2.3, exponentially-tilted
quasi-concave densities commonly arise as posterior
distributions in Bayesian models. In keeping with the
usual notation for Bayesian models, we replace our
previous variables x with parameters 6. These param-
eters @ have an exponentially-tilted quasi-concave
posterior density h(f|y) arising from a log-concave
likelihood g¢(y|@) and quasi-concave prior density

/(8).

Our LSHR?2 algorithm starts just as before, by taking
a small level set centered around the maximum value
0.max of the quasi-concave prior density f(-). This ini-
tial level set is defined, in part, as the convex shape
of the probability density f(-) above an initial density
threshold ¢;.

However, we now augment our sampling space with
an extra variable p where p < log g(y|@). Letting *
(8, p), our convex shape is now

Dy ={0":f(6)>t1,p<logg(yld)}

Within this new convex shape, we run an
exponentially-weighted version of the hit-and-run
algorithm. Specifically, a random (d + 1)-dimensional
direction d is sampled which, along with the current
0*, defines a line segment with endpoints at the
boundaries of D;. Instead of sampling uniformly
along this line segment, we sample a new point (8*)’
from points on this line segment weighted by exp(p).
The remainder of the LSHR2 algorithm proceeds in
the same fashion as our LSHR1 algorithm: we con-
struct a schedule of decreasing thresholds 1,1, ...
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and corresponding level sets Dy, D»,... such that
each level set Dy, is a warm start for the next level set
Diy1.

Within each of these steps, the exponentially-
weighted hit-and-run algorithm is used to sample
values 8* within the current level set. As before, Dy, is
a warm start for the next level set Dy if the ratio of
volumes? Ry, k+1 = Vi/Vi41 that lies within the range
0.55 < Rk;k.ﬂrl < 0.8 The algorithm terminates when
our decreasing thresholds t; achieve a pre-specified
lower bound K.

Our procedure results in n level sets (D1,...,D,),
represented by a vector of thresholds (¢1, . .. t,), a vec-
tor of estimated ratios of volumes (R1.2,...,Rn_1.n),

and the level set collections: a set of m sampled points
from each level set:

({6731, -, {07}n)

Finally, we obtain L samples (67,...,607) by sub-
sampling points from the level set collections
({607}1,...,{0%},), with each level set i represented
proportional to its probability p;. The probability of
each level set is still calculated as in (1).

By simply ignoring the sampled dimension p, we are
left with samples (64, ...,0;) from the exponentially-
tilted quasi-convex posterior density h(f|y). Details
of our LSHR? algorithm are given in the supplemen-
tary materials. We demonstrate our LSHR2 algorithm
on a Cauchy-normal model in Section 4.

3 Example 1: Spike-and-slab Model

We illustrate our LSHR1 sampler on a multivariate
density which consists of a 50-50 mixture of two nor-
mal distributions, both centered at zero but with dif-
ferent variances. Specifically, the first component has
variance ¥ with off-diagonal elements equal to zero
and diagonal elements equal to 0.05, whereas the sec-
ond component has variance ¥, with off-diagonal el-
ements equal to zero and diagonal elements equal to
3. Figure 1 gives this spike-and-slab density in a sin-
gle dimension.

The spike-and-slab density is commonly used as a
mixture model for important versus spurious predic-
tors in variable selection models (George and McCul-
loch, 1997).

This density is quasi-concave and thus amenable to
our proposed level-set hit-and-run sampling method-
ology. Sampling from this density in a single di-

2We continue to use the term “volume” even though these con-
vex shapes are a combination of d-dimensional § and the extra log-
density p dimension.
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Figure 1: Spike-and-slab density: gray lines indicate density of the
two components, black line is the mixture density

Spike and Slab Density in One Dimension

0.6 0.8

Density

0.2 0.4

0.0

Normal Mixture

mension can be easily accomplished by Gibbs sam-
pling using data augmentation. However, we will
see that Gibbs sampling or Hamiltonian Monte Carlo
will not perform adequately in higher dimensions
whereas our LSHR1 sampling strategy continues to
show good performance in high dimensions.

3.1 Previous Methods for Spike and Slab Density

Before exploring the results from our level-set hit-
and-run procedure, we first introduce two current
methods for obtaining samples from the spike-and-
slab density: Gibbs sampling (Geman and Geman,
1984) and the Stan software (Stan Development Team,
2013) based on Hamiltonian Monte Carlo (Neal, 2011;
Hoffman and Gelman, 2011).

The usual Gibbs sampling approach to obtaining a
sample x from a mixture density is to augment the
variable space with an indicator variable I where
I =1 indicates the current mixture component from
which xz is drawn. The algorithm iterates between

1. Sample z from mixture component dictated by I,

ie.
2~ {

2. Sample I with probability based on z:

T ¢(x,0,21)
P(I=1)= ¢(x,0,51)+(x,0,X1)

if I'=1
if I=0

N(0,%,)
N(0,%)

where ¢(z, p, X) is the density of a multivariate nor-
mal with mean p and variance ¥ evaluated at z.

This Gibbs sampling algorithm mixes well when z
has a small number of dimensions (d < 10), but in
higher dimensions, it is difficult for the algorithm to
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move between the two components. We see this be-
havior in Figure 2, where we evaluate results from
running the Gibbs sampler for 100000 iterations on
the spike-and-slab density with different dimensions
(d = 2,5,10,15). Specifically, we plot the proportion
of the Gibbs samples taken from the first component
(the spike) for x of different dimensions.

The mixing of the sampler for lower dimensions (d =
2 and d = 5) is reasonable, but we can see that for
higher dimensions the sampler is extremely sticky
and does not mix well at all. In the case of d = 10,
the sampler only makes a couple moves between the
spike component and the slab component during the
entire run. In the case of d = 15, the sampler does
not move into the second component at all during the
entire 100000 sample run.

Figure 2: Empirical mixing proportion after each iteration is calcu-
lated as the proportion of samples up to that iteration that are from
the first component (the spike). Gray lines indicate the true mixing
proportion of 0.5

Dimension d = 2 Dimension d = 5

Empirical Mixing Proportion
Empirical Mixing Proportion

00400 20404  de+04  Ge+04  Be+04  1e+05

Hterations Iterations.
Dimension d = 10

e T T T T T
00400 20404  de+04  Ge+04  Be+04  1e+05

00 04 o8
L
Empirical Mixing Proportion

Empirical Mixing Proportion

Hterations Iterations.

In high dimensions, we can estimate how often the
Gibbs sampler will switch from one domain to the
other. When the sampler is in one of the components,
the variable = will mostly have a norm of ||x||3 ~ do?
where 0 = oy .05 for component zero and o
o1 = 3.0 for component one. For a variable currently
classified into the zero component, the probability of
a switch is
) d

where the approximation holds if 0p < ;. Details of
this calculation are given in the supplementary mate-
rials. This result suggests that the expected number of
iterations until a switch is about (o1 /0g+/€)? = 36.4%.
This approximate switching time will be more accu-
rate for large d.

ooy/e

01

P(I=1||x]|3 = dog) ~ <

The Stan software (Stan Development Team, 2013)
employs Hamiltonian Monte Carlo (Neal, 2011; Hoff-
man and Gelman, 2011) to sample directly from the
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spike-and-slab density rather than using a data aug-
mentation strategy. Since sampling of the component
indicator [ is avoided, the Stan software has the po-
tential for improved mixing compared to the Gibbs
sampler in this situation. We will see in Section 3.2
that this is indeed the case: the Stan software out-
performs the Gibbs sampler for this spike-and-slab
model. However, both the Stan software and the
Gibbs Sampler are outperformed by our level-set hit-
and-run (LSHR1) methodology.

3.2 Level-set Sampler for Spike and Slab

Our LSHR1 sampling methodology was imple-
mented on the same spike-and-slab distribution. Our
sampling method does not depend on a data aug-
mentation scheme that moves between the two com-
ponents. Rather, we start from the mode and move
outwards in convex level sets defined by thresholds
on the density, while running a hit-and-run algorithm
within each level set. In this example, the number of
thresholds needed scaled linearly with the dimension
d, suggesting that our method scales to higher dimen-
sions.

We compare our LSHR1 sampling strategy to both the
Gibbs sampling and Stan software alternatives by ex-
amining the empirical density of the sampled values
in any particular dimension. In Figure 3, we plot the
true quantiles of the spike-and-slab density against
the quantiles of the first dimension of sampled val-
ues from the Gibbs sampler, the Stan software, and
our LSHRI1 sampler.

We see that for low dimensions (d = 2), samples from
all three methods are an excellent match to the cor-
rect spike-and-slab distribution. However, for higher
dimensions (d = 20), the Gibbs sampler provides a
grossly inaccurate picture of the true distribution, due
to the fact that the Markov chain never escapes the
spike component of the distribution. The samples
from the Stan software are a better match than the
Gibbs sampler but still do not match the true distribu-
tion particularly well. The samples from our level-set
hit-and-run sampler provides a superior match to the
true distribution in the d = 20 case. We have checked
even higher dimensions and the level-set hit-and-run
sampler still provides a good match to the true distri-
bution.

4 Example 2: Cauchy-normal Model

We illustrate our LSHR2 algorithm on a Bayesian
model consisting of a multivariate normal likelihood
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Figure 3: Quantile-quantile plots of samples versus true spike-and-
slab distribution. Left is low dimension (d = 2), right is high di-
mension (d = 20). Top row is Gibbs sampler, middle row is Stan
software, bottom row is our LSHR1 sampler
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and a Cauchy prior density,

yl@ ~ Normal(8,o°T)
0 Cauchy(0,I)

~

()

where y and @ are d dimensions and o2 is fixed and
known. As mentioned in Section 2.3, this combi-
nation of a log-concave density g(y|f) and a quasi-
concave density for f(0) gives an exponentially-tilted
quasi-concave posterior density h(0|y).

For some combinations of o2 and observed y val-

ues, the posterior density h(f|y) is multi-modal. Fig-
ure 4 gives examples of this multi-modality in one
and two dimensions. The one-dimensional h(f]y) in
Figure 4a has y = 10 and 0® = 10.84, whereas the
two-dimensional i (0|y) in Figure 4 has y = (10, 10)
and 02 = 12.57.

In higher dimensions (d > 3), it is difficult to evalu-
ate (or sample from) the true posterior density 1 (0|y)
which we need in order to have a gold standard for
comparison between the Gibbs sampler and LSHR2
algoirithm. Fortunately, for this simple model, there
is a rotation procedure that we detail in our supple-
mentary materials that allows us to accurately esti-
mate the true posterior density h(0y).

4.1 Gibbs Sampling for Cauchy Normal Model

The Cauchy-normal model (2) can be estimated via
Gibbs sampling by augmenting the parameter space
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Figure 4: Posterior density h(@|y = 10) for Cauchy-normal model
in (a) one and (b) two dimensions.

(a) Posterior Density (d=1) (b) Posterior Density (d=2)

with an extra scale parameter 72,

Normal(8, o*T)
Normal(0, 7°T)
Gamma(1/2,1/2)

i

~ ®)
Marginalizing over 72 gives us the same Cauchy(0, I)
prior for . The Gibbs sampler iterates between sam-
pling from the conditional distribution of 8|72, y:

1
-2y

1
52

0|72y ~ Normal(

T

and the conditional distribution of 7|6, y:

d+1 d+676

2\-1
(t5)710,y Gamma( 5> 5

> ©)

For several different dimensions d, we ran this Gibbs
sampler for one million iterations, with the first
500000 iterations discarded at burn-in. In Figure 5,
we compare the posterior samples for the first dimen-
sion #; from our Gibbs sampler to the true posterior
distribution for d = 1,2, 10 and 20.

We see that the Gibbs sampler performs poorly at ex-
ploring the full posterior space in dimensions greater
than one. Even in two dimensions, the Gibbs sam-
pler struggles to fully explore both modes of the pos-
terior distribution and this problem is exacerbated in
dimensions higher than two.

4.2 Stan software for Cauchy Normal Model

The Stan software (Stan Development Team, 2013)
can also be used to obtain posterior samples of
from the Cauchy Normal model (2) using Hamilto-
nian Monte Carlo (Neal, 2011; Hoffman and Gelman,
2011). For the same set of dimensions (d = 1,2,10
and 20), we ran the Stan algorithm for one million it-
erations with the first 500000 iterations discarded at
burn-in.

445

Figure 5: Posterior samples of the first dimension 6; of § from
Gibbs sampler for Cauchy-normal model in different dimensions
d. Red curve in each plot represents the true posterior density.
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In Figure 6, we compare the posterior samples for the
first dimension 6; from the Stan software to the true
posterior distribution for d = 1, 2, 10 and 20.

006 o008

000 o002 o0

Gibbs Samples d=10

000 005 010 0.15 020 025 030 035

Figure 6: Posterior samples of the first dimension 0 of 8 from the
Stan software for Cauchy-normal model in different dimensions d.
Red curve in each plot represents the true posterior density.
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We see that the Stan software performs better than
the Gibbs sampler in higher dimensions, but still per-
forms quite poorly at estimating the true posterior
distribution in dimensions greater than one. Both the
Gibbs sampler and the Stan software struggle to ex-
plore both posterior modes, especially in higher di-
mensions.

000 002 o004 005 008

Stan Samples d=10

000 002 004 006 008 010 012

4.3 LSHR2 sampling for Cauchy-Normal Model

Our LSHR? level set sampling methodology was im-
plemented on the same Cauchy-normal model. We
start from the prior mode and move outwards in con-
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vex level sets, while running an exponentially-tilted
hit-and-run algorithm within each level set in order to
get samples from the posterior distribution. As out-
lined in Section 2.4, each convex level set is defined
by a threshold on the density that is slowly decreased
in order to assure that each level set has a warm start.
Just as with the spike-and-slab model, the number of
needed thresholds scaled linearly with the dimension
which suggests our algorithm would scale to even
higher dimensions.

In Figure 7, we compare the posterior samples for
the first dimension ; from our LSHR2 sampler to
the true posterior distribution for d = 1,2,10 and
20. Our LSHR?2 level set sampler (with exponential

Figure 7: Posterior samples of the first dimension 0; of 6 from
LSHR2 sampler for Cauchy-normal model in different dimensions
d. Red curve in each plot represents the true posterior density.

Level Set Samples d=01 Level Set Samples d=02

Level Set Samples d=10 Level Set Samples d=20

tilting) samples closely match the true posterior den-
sity in both low and high-dimensional cases. Com-
paring Figures 5 and Figures 7 clearly suggests that
our level set hit-and-run methodology gives more ac-
curate samples from the Cauchy-normal model in di-
mensions higher than one, compared with either the
Gibbs sampler (Section 4.1) or the Stan software (Sec-
tion 4.2).

5 Discussion

In this paper, we have developed a general sam-
pling strategy based on dividing a density into a se-
ries of level sets, and running the hit-and-run al-
gorithm within each level set. Our basic level-set
hit-and-run sampler (LSHR1) can be applied to the
broad class of quasi-concave densities, which in-
cludes many distributions used in applied statistical
modeling. We illustrate our LSHR1 sampler on spike-
and-slab density (Section 3), where our procedure
performs much better in high dimensions than the
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standard Gibbs sampler or the Stan algorithm (Stan
Development Team, 2013) that implements Hamilto-
nian Monte Carlo (Neal, 2011; Hoffman and Gelman,
2011).

We also extend our sampling methodology to an
exponentially-tilted level-set hit-and-run sampler
(LSHR2). We illustrate our LSHR2 sampler on the
posterior density from a Cauchy normal model (Sec-
tion 4) where our method is much more effective than
Gibbs sampling or Hamiltonian Monte Carlo. Al-
though both of our examples are rather simple for
the sake of illustration, we believe that our level-
set hit-and-run sampling procedure has broad appli-
cability to a wide variety of models. For example,
exponentially-tilted quasi-concave densities arise fre-
quently in Bayesian models as the posterior distribu-
tion formed from the combination of a log-concave
likelihood and quasi-concave prior density. These
model classes are more general than the log-concave
densities that can be implemented in the popular
Bayesian software WinBUGS (Lunn et al., 2000).

A weakness of our approach that we must start from
a modal value of the quasi-concave density. An op-
timization algorithm would be needed in situations
where a mode is not known a priori. We do not con-
sider this constraint to be particularly limiting since
hill-climbing is typically an easier task (especially for
quasi-concave densities) compared to the difficulty of
sampling in high dimensions. We also saw in Sec-
tion 4 that only a prior mode is required as a start-
ing point for our exponentially-tilted level-set hit-
and-run sampler. Starting from a known prior mode,
we were able to explore multiple unknown poste-
rior modes. Our procedure is able to sample effec-
tively from this multi-modal posterior density even in
high dimensions, where the Gibbs sampler performs
poorly. This example demonstrates that our method-
ology can handle a multi-modal posterior density,
which represents a substantial advance over alterna-
tive sampling technology such as the Gibbs sampler
or Hamiltonian Monte Carlo (as implemented in the
Stan software).
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