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A Kernel mean estimator of conditional distributions

We first review the kernel mean estimator of conditional distributions (Song et al., 2009;
Grünewälder et al., 2012). Let X and Y be measurable spaces and PXY be a joint
distribution on X × Y with density p(x|y)p(y) for x ∈ X , y ∈ Y. Let kX and kY be
bounded kernels on X and Y, respectively, and HX and HY be the respective RKHSs.
Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. samples from PXY and let y ∈ Y be fixed. Then
the following is a consistent estimator of the kernel mean of the conditional probability
mPX |y :=

∫
kX (·, x)p(x|y)dx

m̂PX |y =

n∑
i=1

wikX (·, Xi), w = (GY + nεnIn)
−1kY (y) ∈ Rn, (A1)

where GY = (kY(Yi, Yj)) ∈ Rn×n is a Gram matrix, εn > 0 is a regularization constant,
and kY (y) = (kY(y, Yi))

n
i=1 ∈ Rn. Then with εn = n−1/4 we have

∥m̂PX |y −mPX |y∥HX = Op(n
−1/8) (n → ∞)

under some smoothness assumption (Song et al., 2010, Theorem 1). We therefore have in
this case the value of b = 1/8 in Section 3 of the main text.

We aim here to show that E[
∑n

i=1w
2
i ] = O(n−c) with c = 1/4. First, we need the

following lemma.

Lemma A1. The solution to the minimization problem

min
γ∈Rn

∥kY(·, y)−
n∑

i=1

γikY(·, Yi)∥2HY

is given by GY γ∗ = kY (y), and the minimum value is

min
γ∈Rn

∥kY(·, y)−
n∑

i=1

γikY(·, Yi)∥2HY = kY(y, y)− γT∗ GY γ∗
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Proof. Straightforward calculation.

Then c = 1/4 follows from the following proposition.

Proposition A1. Let w ∈ Rn be given by Eq. (A1). Then we have

nwTw ≤ kY(y, y)

εn

Proof. From Lemma A1, there is γ ∈ Rn such that kY (y) = GY γ and γTGY γ ≤ kY(y, y).
We have

w = (GY + nεnIn)
−1GY γ,

and thus

nw(n)Tw = nγTGY (GY + nεnIn)
−2GY γ

≤ nγT (GY + nεnIn)
−1GY γ ≤ 1

εn
γTGY γ ≤ kY(y, y)

εn

where the first inequality in the second line uses (GY + nεnIn)
−1GY ≤ In and the second

one uses n(GY + nεn)
−1 ≤ (1/εn)In.

B Numerical Experiments for Corollary 2

We conducted numerical experiments to see the consistency of the estimator for measures
on intervals of Corollary 2 in the main text. To this end, we use the kernel mean estimator
for conditional distributions (A1) as m̂P in Corollary 2.

Let d = 1. We generated i.i.d. samples (X1, Y1), . . . , (Xn, Yn) as Xi|Yi ∼ N(Yi, 1), Yi ∼
Uniform[0, 1], where N(Yi, 1) is the normal distribution with mean Yi and variance 1 and
Uniform[0, 1] is the uniform distribution on [0, 1]. We used the Gaussian kernel kγ(x, x

′) =
exp(−∥x− x′∥2/γ) as kX and kY with parameter fixed as γ = 1. We set the regularization
constant as εn = n−1/4. The conditional distribution PX|y for which the kernel mean is
estimated is X|y ∼ N(y, 1) with y = 0.5. In this experiment, the intervals [a, b] are set to
(1) [a, b] = [0.5,∞] and (2) [a, b] = [−1, 1]. The performance was evaluated by the absolute

error in Corollary 2,
∣∣∣∑Xi∈[a,b]wi − P ([a, b])

∣∣∣, where P ([a, b]) = PX|y([a, b]) with y = 0.5

in this setting. We run experiments for each sample size for 20 times and averaged the
results.

The results are shown in Table 1. The results empirically show the consistency of the
estimator of Corollary 2 for both cases (1) (2). The convergence rates are roughly O(n−0.45)
for (1) and O(n−0.4) for (2). Thus, these results suggest that the rates in Corollary 2 may
be further improved.
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Table 1: Result of Numerical Experiments. The performance was evaluated by the absolute

errors
∣∣∣∑Xi∈[a,b]wi − P ([a, b])

∣∣∣
sample size (1) [a, b] = [0.5,∞] (2) [a, b] = [−1, 1]

24 0.0958± 0.0521 0.0869± 0.0630
25 0.0752± 0.0521 0.0730± 0.0490
26 0.0533± 0.0466 0.0584± 0.0450
27 0.0417± 0.0315 0.0306± 0.0199
28 0.0264± 0.0245 0.0334± 0.0249
29 0.0313± 0.0206 0.0228± 0.0226
210 0.0141± 0.0121 0.0192± 0.0154
211 0.0094± 0.0074 0.0124± 0.0092
212 0.0086± 0.0072 0.0097± 0.0067

C Theorems from (Eberts and Steinwart, 2013)

We review the theorems from (Eberts and Steinwart, 2013) which are used in our proof. Let

kγ : Rd → R be a function on Rd defined by kγ = exp
(
−∥x∥2

γ2

)
and kγ(x, x

′) := kγ(x− x′)

be the Gaussian kernel with the band-width parameter γ > 0. Let Hγ be the RKHS defined
by the kernel kγ , and ⟨·, ·⟩Hγ

and ∥ · ∥Hγ be its inner-product and norm, respectively.

We define, for r ∈ N and γ > 0, the function Kγ : Rd → R by

Kγ(x) :=

r∑
j=1

(
r

j

)
(−1)1−j 1

jd

(
2

γ2π

) d
2

kjγ/
√
2(x) . (C2)

Theorem C1 (Theorem 2.2 in (Eberts and Steinwart, 2013)). Let q be a constant such
that q ∈ [1,∞). Let P be probability distribution Rd. Assume that P has a density function
satisfying g ∈ L2(Rd) for some p ∈ [1,∞]. Let f : Rd → R be such that f ∈ Lq(Rd) ∩
L∞(Rd). Then, for r ∈ N, γ > 0, and s ≥ 1 with 1 = 1

s +
1
p , we have

∥Kγ ∗ f − f∥qLq(P ) ≤ Cr,q∥g∥L2(Rd)ω
q
r,Lqs(Rd)

(f, γ/2) ,

where Cr,q is a constant depending only on r and q.

Theorem C2 (Theorem 2.3 in (Eberts and Steinwart, 2013)). Let f ∈ L2(Rd), Hγ be the
RKHS of the Gaussian kernel kγ over X ⊂ Rd with γ > 0. Then we have Kγ,r ∗ f ∈ Hγ

with
∥Kγ ∗ f∥Hγ ≤ (γ

√
π)−

d
2 (2r − 1)∥f∥L2(Rd) .
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D Proof of Lemma 1.

Proof. Since f is Lipschitz, there exists a constant C such that |f(x)− f(y)| ≤ C∥x− y∥
holds for all x, y ∈ Rd. We therefore have∣∣∣∣∫ Jh(x− x0)f(x)dx− f(x0)

∣∣∣∣
=

∣∣∣∣∫ Jh(x− x0)(f(x)− f(x0))dx

∣∣∣∣
≤ C

∫
|Jh(x− x0)|∥x− x0∥dx

= C

∫ ∣∣∣∣ 1hdJ1((x− x0)/h)

∣∣∣∣ ∥x− x0∥dx

≤ Ch

∫
|J1(u)|∥u∥du =: Mh.

E Proof of Lemma 2.

Proof. First, we have for all v ∈ [0,∞)d

∆r
v(f(·/h), x) =

r∑
j=0

(
r

j

)
(−1)r−jf

(
x+ jv

h

)

=

r∑
j=0

(
r

j

)
(−1)r−jf

(
x

h
+

jv

h

)
= ∆r

v/h(f, x/h) .

Then, we have for all t > 0

ωr,L2(Rd)(f(·/h), t) = sup
∥v∥2≤t

∥∆r
v(f(·/h), ·)∥L2(Rd)

= sup
∥v∥2≤t

∥∆r
v/h(f, ·/h)∥L2(Rd)

= sup
∥v∥≤t/h

∥∆r
v(f, ·/h)∥L2(Rd)

= hd/2 sup
∥v∥≤t/h

∥∆r
v(f, ·)∥L2(Rd) .
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Thus, we have

|f(·/h)|Bα
2,∞(Rd) = sup

t>0

(
t−αωr,L2(Rd)(f(·/h), t)

)
= hd/2 sup

t>0

(
t−α sup

∥v∥≤t/h
∥∆r

v(f, ·)∥L2(Rd)

)

= hd/2 sup
t>0

(
t−αh−α sup

∥v∥≤t
∥∆r

v(f, ·)∥L2(Rd)

)
= h−α+d/2|f |Bα

2,∞(Rd)
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